
Cost Analysis for an Actor-Based Workflow Modelling

Language ∗

Muhammad Rizwan Ali1 and Violet Ka I Pun1

Western Norway University of Applied Sciences, Norway
{mral,vpu}@hvl.no

1 Introduction

Workflow planning is a process to define a series of tasks that are carried out based on user-
defined rules to accomplish some particular goals. These goals can be organizing surgeries in
a hospital, coordinating different maintenance activities on an oil platform, scheduling takeoff
and landing of planes at an airport, and so on. In addition, workflow planning allows the
early discovery of potential problems. Also, workflow planning helps to anticipate unforeseen
situations that may happen during the implementation of workflows, which enables advance
preparation of reparative steps and alternative implementations.

With the boom of e-commerce and the digital industry, organisations usually work beyond
their boundaries and collaborate with others to achieve specific goals. Cross-organisational
workflows usually comprise various workflows and very often they run concurrently in different
departments within the same organisation or in different organisations.

Domain-specific knowledge is required to perform optimal resource allocation and task man-
agement, making cross-organisational workflow planning especially challenging. Furthermore,
changing workflows is error-prone: a change in one workflow may propagate to other concur-
rently running workflows, and a minor mistake might have significant negative consequences.

Considerable research has been done in the area of workflow automation and tools such
as Process-Aware Information Systems (PAIS) [8] and Enterprise Resource Planning (ERP)
systems [1, 2] have been developed to assist workflow planning. Furthermore, Petri-nets [12] has
been used to formalize Business Process Model and Notation (BPMN) [6]. Moreover, Temporal
Logic of Actions (TLA) [5] has been used for the formalisation of the workflows. However,
the available tools and techniques often lack adequate resource management or do not support
domain-specific knowledge, making cross-organisational workflow planning relatively manual.
Moreover, the planners of cross-organisational workflows may not have a common understanding
of all the collaborative workflows, which can be catastrophic.

In this extended abstract, we first present a formal modelling language Rpl. The language
has specific notions for task dependencies, resource usage and time consumption, allowing
planners to couple multiple workflows employing resources and task dependencies. Moreover,
we also present a static analysis based on the work in [11] to over-approximate the worst
execution time of the workflows modelled as an Rpl program by translating the program into
a set of cost equations. The analysis also allows planners to predict the effects of the changes
in cross-organisational workflows in terms of execution time before the actual implementation.

2 Formal Workflow Modelling Language Rpl
The language Rpl is inspired by ABS [10], an active object language extending the Actor
model of concurrency with asynchronous method calls and synchronisation using futures. It

∗Partially supported by CroFlow: Enabling Highly Automated Cross-Organisational Workflow Planning and
COEMS training network.

Cost Analysis for an Actor-Based Workflow Modelling Language M. R. Ali and V. K. I Pun

has specific notions for resource acquisition and task dependencies. The syntax is given below.

P ::= R Cl {T x; s}
Cl ::= class C {T x; M}
M ::= Sg {T x; s}
Sg ::= B m(T y)
B ::= Int | Bool | Unit
T ::= C | B | Fut〈B〉

e ::= x | g | this
g ::= b | f? | g ∧ g
s ::= x = rhs | skip | if e {s} | wait(f) | return e

| hold(r, e) | release(r, e) | cost(e) | s ; s
rhs ::= e | new C | f.get

|m(x, e) after f? | !m(x, e) after f?

An Rpl program P comprises resources R, a sequence of class declarations Cl and a main
method body {T x; s}. Types T in Rpl are basic types B, a class C and future types Fut〈B〉,
which types asynchronous method invocations. A class declaration has a class name C and a
class body {T x; M} comprising state variables and methods of the class. Methods in Rpl have
a method signature Sg followed by a method body {T x; s}. Expressions e include guards g,
variables x and self-identifier this.

Statements like sequential composition, assignment, conditional, skip, and return are stan-
dard. Rpl uses hold(r, e) and release(r, e) to acquire and return e number of resources r.
Statement wait(f) suspends the current process until future f is resolved, while other processes
in the same object can be scheduled for execution. Statement cost(e), the only term in Rpl
that consumes time, represents e units of time advancement. The right-hand side rhs of an
assignment includes expressions e, object creation new C, method invocations and synchroni-
sation. Communication in Rpl is based on method calls, which can be either synchronous,
written as m(x, e) after f?, or asynchronous, written as !m(x, e) after f?, where x is the callee
object and f? is a sequence of futures that must be resolved prior to invoking method m. An
asynchronous method invocation is associated to a future variable of type Fut〈B〉, where B is
the return type of the invoked method. Moreover, the expression f.get blocks all execution in
the object until future f is resolved. The full semantics, the type-system and subject reduction
of Rpl can be found in the technical report [4].

3 Analysis of Rpl Program

The analysis over-approximates the overall execution time of cross-organisational workflows
modelled in Rpl. The analysis enables the planners to predict the effect of changes on the over-
all execution time of the collaborative workflows before implementation. We assume all Rpl
programs terminate and all methods return and are synchronised, i.e., the return values are re-
trieved.

Cross-Organisational
Workflows modelled
as a RPL program

Translate method body
into a set of cost

constraints

A constraint set of
the RPL program

Fo
r e

ac
h

m
et

ho
d Identify sets of potential

interfering objects

Constraint
Solver

Over-approximation
of the workflow
execution time

Figure 1: Cost Analysis of Rpl programs

The flow of the cost
analysis is depicted in Fig-
ure 1. Given an Rpl pro-
gram modelling some cross-
organisational workflows, for
each of the method in the
program, the analysis first
identifies all the objects
whose processes have implicit dependencies; that is, the processes of these objects may in
turn influence the process pools of other objects through method invocations and synchronisa-
tions. The analysis then translates the method body by parsing each statement into a set of
cost constraints. The solution to this constraint set correspond to the worst execution time of
the method. By translating the body of all methods, including main, of the Rpl program, the
analysis produces a set of constraints, which can be fed into an off-the-shelf constraint solver
(e.g., [9, 3]), to capture the (over-approximated) worst execution time for the program.

2

Cost Analysis for an Actor-Based Workflow Modelling Language M. R. Ali and V. K. I Pun

4 Properties
Theorem 1 below formuThe correctness of our analysis follows the. This theorem states that for
an Rpl program P, the execution time to reach from initial state cn to any reachable state cn′,
calculated by time(cn ′), will never exceed the U(P), cost calculated by the analysis presented
in Section 3.

Theorem 1. Let P be an Rpl program, whose initial configuration is cn, and U(P) be the
closed-form solution of P. If cn ⇒∗ cn ′, then time(cn ′) ≤ U(P).

5 Conclusion
In this paper, we have presented a formal language, Rpl, intended for modelling cross-
organisational workflows. Additionally, we have proposed a static analysis to over-approximate
the computational time of an Rpl program. As for the immediate next steps, we plan to en-
rich the language such that the resource features, e.g., the experience of a person and speed
of a machine, can be explicitly specified and to extend the analysis to handle non-terminating
programs and unsynchronised method invocations. Furthermore, we intend to develop verifi-
cation techniques to ensure the correctness of workflow models in Rpl for cross-organisational
workflows. A possible starting point is to investigate how to extend KeY-ABS [7], a deductive
verification tool for ABS, to support Rpl.

References

[1] Safran project. http://www.safran.com/. Accessed in Oct-2021.

[2] SAP ERP. http://www.sap.com/. Accessed in Oct-2021.

[3] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-form upper bounds in
static cost analysis. Journal of automated reasoning, 46(2):161–203, 2011.

[4] Muhammad Rizwan Ali and Violet Ka I Pun. Cost Analysis for an Actor-Based Workflow Mod-
elling Language (long version). Research Report 15, Western Norway Univ. of Applied Sciences,
2021.

[5] Jose L Caro. Proposing a formal method for workflow modelling: Temporal logic of actions (TLA).
Int. Journal of Computer Science Theory and Application, 1(1):1–11, 2014.

[6] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and analysis of BPMN
process models using Petri nets. Queensland Univ. of Technology, Tech. Rep., pages 1–30, 2007.

[7] Crystal Chang Din, Richard Bubel, and Reiner Hähnle. KeY-ABS: A deductive verification tool
for the concurrent modelling language ABS. In Intl. Conf. on Automated Deduction, volume 9195
of LNCS, pages 517–526. Springer, 2015.

[8] Marlon Dumas, Wil M van der Aalst, and Arthur H Ter Hofstede. Process-aware information
systems: bridging people and software through process technology. John Wiley & Sons, 2005.

[9] Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex programs with cost
equations. In Asian Symp. on Programming Languages and Systems, pages 275–295. Springer,
2014.

[10] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS:
A core language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer,
and Marcello M. Bonsangue, editors, Int. Symp. on Formal Methods for Components and Objects,
volume 6957 of LNCS, pages 142–164. Springer, 2011.

[11] Cosimo Laneve, Michael Lienhardt, Violet Ka I Pun, and Guillermo Román-Dı́ez. Time analysis
of actor programs. Journal of Logical and Algebraic Methods in Programming, 105:1–27, 2019.

[12] Wil M van der Aalst. The application of Petri nets to workflow management. Journal of circuits,
systems, and computers, 8(01):21–66, 1998.

3

http://www.safran.com/
http://www.sap.com/

	Introduction
	Formal Workflow Modelling Language Rpl
	Analysis of Rpl Program
	Properties
	Conclusion

