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Abstract

To capture the behavior of complex software components, specifications must be exact-
ing yet simultaneously comprehensible, simple, and scalable. To achieve this goal, we need
rich specification languages that allow software developers to use arbitrary mathematical
theories—including those which are undecidable, and to employ mathematical models and
notations most suitable for describing the behavior of components. This flexibility in soft-
ware development requires an extendable library of mathematical theories from which the
automated prover can retrieve theorems appropriate to the verification condition under
consideration.

While decision procedures such as SMT solvers have been shown to be fast and efficient
for program verification within a fixed domain of decidable theories, they cannot easily
scale beyond such theories. So automatable verification of software with adequately rich
specifications remains a challenging problem. This paper outlines an example verification
problem to motivate a discussion of what concepts beyond decision procedures might be
necessary. The end goal is to make progress toward developing automatable provers that
work with extendable mathematical libraries and employ effective strategies to achieve
verification.

1 Introduction

Formal verification of software requires a formal description of the software component’s be-
havior using a specification language rich enough to support comprehensible description and a
prover that can establish its correctness. A programming language analogy is useful. Modern
languages have advanced from earlier high-level languages, such as C, FORTRAN, and Pascal,
to languages like C++ and Java that allow new objects to be defined and employed to construct
intellectually complex software components. Similarly, specification languages must advance to
accommodate adequately descriptive mathematical theories that support the writing of spec-
ifications that are comprehensible, simple, scalable, and amenable to automated verification.
Such specification languages are rich, and they provide the intellectual leverage needed to scale
up and describe the complex behavior of sophisticated object-based software components.

2 Requirements for Automatable Verification for Rich Lan-
guages

The notion of specification language richness concerns support for software engineers to em-
ploy sophisticated mathematical theories to describe accurately and completely a component’s

*This research is supported in part by grants from the U.S. National Science Foundation



Automatable Verification of Specificationally Rich Software Components. N. Mbwambo et al.

behavior, and having it can be viewed as providing an “insight optimization” capability that al-
lows software components to be described in the best possible way for clients to comprehend. It
is analogous to classical optimizations that focus on implementation efficiency. However, when
components with rich specifications are verified, the resulting verification conditions (VCs)
frequently lie outside the scope of decision procedures.

The need for an extendable mathematical library supporting rich languages in turn requires a
verification system capable of working with more than a fixed set of theories and of employing
theorems from arbitrary domains when proving VCs. The working hypothesis is that if the
software is well-engineered, with suitable specifications and code annotations, the resulting
VCs would be comparatively straightforward [1, 2]. So our focus is on an automatable system
for verifying verification conditions (VCs) whose correctness, relative to supporting theories
that have been appropriately developed, is “obvious”: A VC is obvious if it can be established
from the available theorems in relatively few proof steps. As seen from Figure 1, the prover may
fail to verify a VC either because it is invalid or because it is not sufficiently obvious from the
available theorems in the library. So an appropriately developed theory may need to include
theorems that are somewhat redundant for a sophisticated mathematician, but that are proof
step saving for an automated verifier.
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Figure 1: Verification condition provability when employing rich specifications

The use of the term ”automatable” in this work means that after the system fails to ver-
ify a VC for not being sufficiently obvious, the responsibilities of software developers include
making the correctness of their code obvious, such as by improving their specifications or their
code annotations. It also means that mathematical specialists working in conjunction with
software developers may need to formulate (and prove) additional theorems needed to make
the correctness of all the VCs from their code obvious to the verification system.

Example decision procedures include SMT solvers such as Z3 [3], and Yices [4] that are
designed to operate with a fixed set of mathematical first-order logic theories. Current verifica-
tion systems using these decision procedures include Why3/[5], and Dafny [6]. While these and
other decision procedures have been successful in program verification because of their speed
and efficiency, their scope is limited. Verifying new software components with varying complex-
ities has a considerable development cost as for any assertions outside the decision procedure’s
domain, a new one has to be developed.

Our present work toward developing an automatable prover is set in the context of RE-
SOLVE [7], an integrated language that enables rich specifications and object-based implemen-
tations. Key characteristics of the language are summarized in [8], including the notion of clean
semantics. Recent automated verification work includes the role of specification engineering in
proving [9] and generation of sequent-style verification conditions (Sun2021).



Automatable Verification of Specificationally Rich Software Components. N. Mbwambo et al.

3 A Challenging Verification Example Outline

The specification presented in [11] conceptualizes a novel and generic tree data abstraction with
a navigable position that makes it easy to explore and populate a tree, even while avoiding
any explicit references in the specification. The comprehensibility of this concept is primarily
attributed to its rich specifications. The specification language used makes it possible to extend
the existing mathematical library to develop an undecidable, general tree theory with suitable
definitions and predicates necessary to author succinct specifications of the data abstraction.

An implementation for a map data abstraction that uses the specified tree data abstraction is
also described in [11]. VCs arising from proving the correctness of this implementation present
a challenge to the current verification systems as it involves multiple theories, including the
general tree theory for which there are no special-purpose solvers. The thesis here is that the
VCs will be obvious for a verification system with well-engineered specifications and theories.
Therefore, this workshop paper aims to raise a discussion of verification of such non-trivial
implementations with specifications that use mathematics beyond fixed theories—a problem
that will require advances in verification systems that go beyond the current capabilities of
decision procedures.
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