
Towards heterogeneous behavioral model composition
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1 Introduction

A common approach to handle the increasing complexity of software systems is Model-driven
engineering (MDE). MDE envisions a clear separation of concerns by modeling each aspect of
a system separately [2]. However, these individual models must be composed to execute the
system or reason about global properties [5].

Our contribution addresses the problem of how the individual models can be composed
to describe the entire software system, even if the used models are heterogeneous, i.e., do not
conform to the same modeling language. In particular, we address the composition of behavioral
models since its structural counterpart has been the focus of a significant amount of research
already, for example, in [5, 6, 10]. We further limit the behavioral models to those describing
discrete behavior such as finite state machines, Business Process Modeling Notation (BPMN)
diagrams, process algebras, and Petri nets.

Our contribution can be summarized as follows. Given a collection of behavioral models
describing one system coordinated using our two types of interactions, we can construct a
model representing the system’s behavior. One can then analyze the state space generated by
the composite model to reason about global properties and analyze possible execution paths
of the system. We will use graph grammars (GGs) as an underlying formalism to explain
our approach in this contribution. However, one could also choose a different formalism if it
supports our two types of interactions and generates a global state space. This contribution
extends our work in [7] by adding asynchronous communication and an example showing how
to implement hierarchical composition.

An approach with similar goals uses event structures as an underlying formalism and event
scheduling to model behavioral relations [5]. However, it is only applied to compose homoge-
neous models and does not include model-checking.

2 Heterogeneous behavioral model composition

We assume that each behavioral model describes a component of the overall system running
independently and in parallel when it is not interacting with other components. Each compo-
nent, i.e., behavioral model, should interact at least once with a different model to contribute
to the composite system behavior.

Our approach supports two types of interactions between behavioral models: synchronous
and asynchronous communication. One can use synchronous communication to model that one
component acquires a resource realized in a separate model since it is shared across the entire
system. Asynchronous communication can, for example, be used to model that two components
communicate using a messaging system or by writing/consuming files in a shared file system.
Defining synchronous communication leads to two components becoming active simultaneously,
while asynchronous communication only requires one component to be active.
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Our model composition approach can be separated into two steps. The first step is to
define interactions among a set of behavioral models using synchronous and asynchronous com-
munication. However, not any element in a behavioral model can be part of an interaction. For
example, it does not make sense to define that a state in a state machine should communicate
with a transition in a Petri net since a state represents static information. Consequently, only
certain elements in each behavioral model, such as transitions in state machines and Petri nets,
should be used when defining interactions between behavioral models. One can achieve these
restrictions by creating and aligning the metamodels of the respective behavioral models, as
described in [7].

In the second step of our approach, we will use GGs to realize the behavioral semantics
of the individual models and their combination as defined by the interactions. However, one
could also choose a different formalism, as described earlier.

For this step, there has to be an implementation of each behavioral formalism using GGs.
Implementations for finite state machines and Petri nets were, for example, defined in [7].
An implementation of the π-calculus process algebra using GGs is described in [3], while [9]
illustrates how to execute workflow models using graph transformations. Consequently, we can
(automatically) map each model to a GG representing that model’s behavior. Afterward, all
GGs are combined into one respecting the interactions defined earlier.

The start graph of the GG describing the composite system is given by the sum of all start
graphs of the individual GGs. The set of GG rules for the composite system depends on the
defined interactions between the models because the rules corresponding to these elements will
be combined. All non-related GG rules are kept unchanged for the composite system.

Rules related by synchronous communication are amalgamated into one parallel production
rule, formally defined as a coproduct construction using category theory (CT) in [1, Def. 3.2.7].
This forces both rules to be executed simultaneously in one rule application step.
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Figure 1: GG rules for synchronous and asynchronous interactions

An example of a rule created by synchronous communication can be seen on the left of
Figure 1. It shows two pairs of a Petri net and state machine model with one transition each.
The transitions are connected by synchronous communication on the left side and asynchronous
communication on the right side (cyan lines). The lower part of Figure 1 shows the correspond-
ing GG rules according to our approach. Synchronous rules can have two or more participants
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from distinct behavioral models.
Asynchronous communication will lead to rules being enriched, not merged. In its simplest

form, an asynchronous interaction is directional between two model elements. It will lead to
the creation and consumption of a unique message node. An example can be seen on the right
of Figure 1. One could also think about asynchronous messages from one model to a set of
models, creating multiple messages instead of only one message. Asynchronous communication
influences the global system behavior by forcing two previously unrelated rules to be executed
in a particular order.

In addition, we are working towards including a structural model into our approach, which
describes how many instances of each behavioral model exist and which of these instances are
communicating with whom. This is useful because we do not want to duplicate behavioral
models only to model two instances in our system. For example, if we have a state machine
representing that a resource is acquired or not acquired, we do not want to duplicate this model
for every resource in our system. However, including a structural model makes rule generation
more complex since the objects representing instances of behavioral models have to be taken
into account.

As a simple example, we want to show how we can use our approach to implement the
hierarchical composition of two behavioral models. Often one wants to specify the behavior of
one part of a model in more detail using a separate sub-model.

In Figure 2, we have a state machine and a BPMN process model where the behavior of
the state Processing is described by a BPMN process model. When the state Processing is
entered, a BPMN process should be started, and the state can only be exited when this process
is finished. We can achieve this by synchronizing transition b with the start event and transition
c with the end event in the BPMN process model, as highlighted by the cyan connections in
Figure 2.
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Figure 2: Hierarchical composition of a state machine and a BPMN process model

We implemented the hierarchical composition example in Groove1. Groove is a toolset that
supports creating and executing GGs, among other things [4, 8]. We manually constructed the
GG, which describes the behavior of the composite system, and executed it to check validity.

Using Groove, we can generate the state space of the given GG. Since the GG describes
the composite systems, we can use its state space to check global properties, for example,
specified in temporal logic. The atomic propositions for each state in the global state space
can be taken from the individual models because each global state determines which state an
individual model has. We can also analyze the execution path of the individual systems, which
is constrained by interactions between them.

1https://github.com/timKraeuter/NWPT-2021/tree/main/groove
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