
Reflection, Encodability and Separation∗

Stian Lybech1

Dept. of Computer Science, Reykjavík University, Iceland
stian21@ru.is

1 Introduction
Process calculi are formalisms for modelling and reasoning about concurrent and distributed
computations; a prominent example being the 𝜋-calculus of Milner et al. [7, 10]. It models
computation as communication of channel names through named channels, which thus marks
it as a purely first-order model. Later variants such as the Higher-Order 𝜋-calculus (HO𝜋)
[9, 8] adds constructs for higher-order process mobility; but an early result by Sangiorgi [9, 8]
showed that HO𝜋 can be encoded in the first-order 𝜋-calculus, which took away much of the
interest in the higher-order paradigm, since higher-order behaviour may thus be viewed as just
an extension on top of an already computationally complete, first-order language.

However, higher-order behaviour may alternatively be viewed as a limited form of reflection;
i.e. the ability of a program to turn code into data, modify or compute with it, and reinstantiate
it as running code. This capability is inherent in the Reflective Higher-Order (RHO or 𝜌)
calculus of Meredith and Radestock [5], and process mobility here appears as a special case
where data (code) is just transmitted without modification. Surprisingly also, there is no
encoding of the 𝜌-calculus into the 𝜋-calculus satisfying the validity criteria of Gorla [4], as we
shall see below, which shows that higher-order behaviour cannot always be treated as a simple
extension of the first-order paradigm.

2 The Reflective Higher-Order calculus
Definition 1 (𝜌-calculus syntax). The 𝜌-calculus syntax is given by the grammar:

𝑃 ∶∶= 𝟎 ∣ 𝑃1 | 𝑃2 ∣ 𝑥 ⟨|𝑃 |⟩ ∣ 𝑥(𝑦).𝑃 ∣ ⌝𝑥⌜
𝑥, 𝑦 ∶∶= ⌜𝑃⌝

Notably, names and processes are built from the same syntax, so if 𝑃 is a process, then ⌜𝑃 ⌝
is a name, pronounced quote 𝑃 . The nil, input and parallel construct are as in the 𝜋-calculus.
The lift construct 𝑥 ⟨|𝑃 |⟩ quotes the process 𝑃 , thereby creating the name ⌜𝑃 ⌝, and outputs it
on 𝑥; thus name generation is handled explicitly in the calculus, rather than implicitly by a
𝜋-calculus style 𝜈-operator. Lastly, the drop construct ⌝𝑥⌜ removes the quotes of the name to
run the process within; this construct is thus similar to a process variable 𝑋 in e.g. HO𝜋.

Definition 2 (𝜌-calculus semantics). The semantics is given by the standard rules for parallel
composition and structural congruence (as in e.g. the 𝜋-calculus) plus the following rule for
communication:

[𝜌-com] 𝑥1 ≡𝒩 𝑥2
𝑥1(𝑦).𝑃 | 𝑥2 ⟨|𝑄|⟩ → 𝑃 {⌜𝑄⌝/𝑦}

∗Much of this work was done in collaboration with Hans Hüttel, Bjarke B. Bojesen and Alex R. Bendixen at
Aalborg University.

Lybech, S.

The name equivalence relation ≡𝒩 extends structural congruence to names, since names are
now structured terms. Lastly, the drop operation is performed by syntactic substitution (again
similar to process variables in HO𝜋):

⌝𝑥1⌜{⌜𝑃 ⌝/𝑥2} = 𝑃 if 𝑥1 ≡𝒩 𝑥2

The lack of a 𝜈-operator means that all names are globally visible, and this in turn affects
how barbed bisimulation may be defined for this calculus to facilitate comparison with other
calculi that do have this operator. Thus, Meredith and Radestock [5] define an 𝒩-restricted
observation predicate ↓𝒩, parametrised with a set 𝒩 of names, such that 𝑃 ↓𝒩 𝑥 only holds if 𝑃
is observable at 𝑥 and 𝑥 ∈ 𝒩. Their definition of (weak) barbed bisimulation is then standard,
except that it too must be parametrised accordingly, and the resulting notion of behavioural
equivalence is then called weak, 𝒩-restricted barbed bisimilarity, written ≈𝒩

↓ .

3 Encodability and separation
We shall now consider some encodability and separation results that characterise the relation-
ship between the 𝜌-calculus and other, more well-known calculi. The first concerns an encodingJ K ∶ 𝐴𝜋 → 𝜌, originally due to Meredith and Radestock [5]:

Theorem 1 (Meredith & Radestock). 𝑃1 ≈𝜋 𝑃2 ⟺ J𝑃1K ≈𝜙(fn(𝑃1))
↓ J𝑃2K

where ≈𝜋 is weak barbed bisimilarity in the asynchronous 𝜋-calculus, and 𝜙 ∶ 𝒩𝜋 → 𝒩𝜌 is
a translation of 𝜋-calculus names into 𝜌-calculus names using any suitable name generation
discipline (see e.g. [1] for an example).

The encoding works by firstly mapping each name in 𝑃1, 𝑃2 into 𝜌-calculus names, using a
suitable name generation discipline (the function 𝜙). (𝛎𝑥) 𝑃 is translated as an input 𝑝(𝑥).J𝑃 K,
representing a request for a fresh name, and the translation builds a distributed name generator
alongside the translated processes to serve such requests, by dynamically generating names from
a distinct name space that are ensured never to clash with the 𝜙-mapping. By restricting the
observation predicate to the 𝜙-translated set of free names in 𝑃1, it is thus ensured that none
of these dynamically generated names can be observed.1

However, the converse of this theorem does not hold: the 𝜋-calculus cannot encode the 𝜌-
calculus without introducing divergence. The proof of this relies on a separation result originally
due to Carbone and Maffeis [3], showing that their 𝑒𝜋-extension cannot be encoded into the
monadic 𝜋-calculus. 𝑒𝜋 is an extension of the monadic 𝜋-calculus that allows vectors of names
to appear in subject position of input and output. Let the match degree Md (ℒ) of a language
ℒ denote the least upper bound on the number of names that must be matched to yield a
reduction in ℒ, corresponding to the length of the vectors in subject position. Then Md (𝜋) = 1
and Md (𝑒𝜋) = ∞. The theorem was rederived by Gorla as follows: for two languages ℒ1, ℒ2,
if Md (ℒ1) > Md (ℒ2), then there is no encoding of ℒ1 into ℒ2 satisfying the validity criteria
proposed in [4]. It follows immediately that 𝑒𝜋 cannot be encoded in the 𝜋-calculus since
Md (𝑒𝜋) > Md (𝜋).

But the 𝜌-calculus can encode 𝑒𝜋: by using a suitable convention of name generation, we
can encode 𝑒𝜋-like name composition 𝑥1 ⋅𝑥2 ⋅…⋅𝑥𝑛 in the 𝜌-calculus by composing the processes

1Note that the original translation by Meredith and Radestock in [5] contains a subtle error, allowing two
𝜋-processes 𝑃1 and 𝑃2 to be created, such that 𝑃1 ≉𝜋 𝑃2 but where nevertheless J𝑃1K ≈𝜑(fn(𝑃1))

↓ J𝑃2K. We show
this in [1] along with an amended translation.

2

Lybech, S.

within the names. Assume that 𝑋𝑖 is the process within the 𝑥𝑖’th name; then we can define

⌜𝑋1⌝ ⋅ ⌜𝑋2⌝ ⋅ … ⋅ ⌜𝑋𝑛⌝ ≜ ⌜𝑋1 | 𝑋2 | … | 𝑋𝑛⌝

which can be extended to vectors of arbitrary length. This composition can be performed at
runtime through the 𝜌-calculus’ lift operator, and we can thus encode 𝑒𝜋 input and output
operations with 𝑛-ary subjects as follows:

J𝑥1 ⋅ … ⋅ 𝑥𝑛(𝑦).𝑃 K𝑎 ≜ 𝑎 ⟨|⌝𝑥1⌜ | … | ⌝𝑥𝑛⌜|⟩ | 𝑎(𝑣).𝑣(𝑦).J𝑃 K𝑎+J𝑥1 ⋅ … ⋅ 𝑥𝑛<𝑧>K𝑎 ≜ 𝑎 ⟨|⌝𝑥1⌜ | … | ⌝𝑥𝑛⌜|⟩ | 𝑎(𝑣).𝑣 ⟨|⌝𝑧⌜|⟩

where we assume all the names 𝑥𝑖 are implemented as quoted processes ⌜𝑋𝑖⌝; and where the
parameter 𝑎 is an internal name that is chosen fresh for each translation, and 𝑎+ is derived
from 𝑎 by a suitable convention of name incrementation, that is ensured to never cause a name
clash.2 The remaining operators are as in the encoding of the 𝜋-calculus. Thus, for 𝑒𝜋-processes
𝑃1, 𝑃2 we have the following result:

Theorem 2. 𝑃1 ≈ 𝑃2 ⟺ J𝑃1K ≈𝜙(fn(𝑃1))
↓ J𝑃2K

The proof is similar to that for the 𝜋-calculus translation; see [2] and [5] for details. The
key point is that the 𝑎 names are generated by the translation, and are therefore not in the set
of free names of 𝑃1. Thus, they are unobservable by the ↓𝜙(fn(𝑃1)) predicate.

Corollary 1. There is no encoding J K ∶ 𝜌 → 𝜋 satisfying the validity criteria of [4].

This is proved by contradiction: if such an encoding existed, it could be composed with the
encoding of 𝑒𝜋 in the 𝜌-calculus to yield an encoding of 𝑒𝜋 into the 𝜋-calculus, in contradiction
of the aforementioned theorem by Gorla [4].

Another result relates the 𝜌-calculus to other higher-order calculi such as CHOCS [11] and
HO𝜋. Both of these can encode the lazy 𝜆-calculus such that 𝜆-variables 𝑥 are translated
as process variables; this is a natural extension of the name invariance criterion of [4] for
higher-order calculi. But even though the 𝜌-calculus can encode the 𝜋-calculus, and thus,
through Milner’s encoding [6], the 𝜆-calculus, there is no encoding satisfying the aforementioned
criterion:

Theorem 3. There is no valid encoding J K ∶ 𝜆 → 𝜌 satisfying that J𝑥K =⌝𝜙 (𝑥) ⌜
Details of the proof are given in [1]; the crucial detail is that there is no means in the

𝜌-calculus to alter a process once it has been quoted: it can only be dropped. This means we
cannot control the order of evaluation of more than two terms, e.g. J𝑒1𝑒2𝑒3K, which thus allows
us to derive a contradiction; either of operational correspondence or divergence reflection. From
this, we immediately obtain a similar corollary of separation w.r.t. HO𝜋:

Corollary 2. There is no valid encoding J K ∶ ℋ → 𝜌 satisfying that J𝑋K =⌝𝜙 (𝑋) ⌜.
Interestingly, this separation result does not seem to derive from any difference in the higher-

order nature of these calculi, but rather from the absence of a scoped, dynamic name binding
construct [𝑥/𝑦] (as in CHOCS), or a mechanism for abstraction/application (as in HO𝜋). If
either of these constructs were added to the 𝜌-calculus, then it would indeed become possible
to create an encoding of the 𝜆-calculus, satisfying the aforementioned criteria.

2Note that this encoding disregards the ordering of names within the name vector, due to the commutativity
of parallel composition. However, this is acceptable since the separation result for 𝑒𝜋 by [4] only relies on the
match degree, i.e. the number of names in the vector, and not their ordering.

3

Lybech, S.

References
[1] Alexander R. Bendixen, Bjarke B. Bojesen, and Stian Lybech. Encodability and typability of

reflective higher-order languages. Technical report, Department of Computer Science, Aalborg
University, January 2021.

[2] Alexander R. Bendixen, Bjarke B. Bojesen, and Stian Lybech. Typing reflection in higher-order
psi-calculi. Technical report, Department of Computer Science, Aalborg University, June 2021.

[3] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic synchronisation in pi-
calculus. Nordic Journal of Computing, 10(2):70–98, 2003.

[4] Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031–1053, 2010.

[5] L.G. Meredith and Matthias Radestock. A reflective higher-order calculus. Electronic Notes
in Theoretical Computer Science, 141(5):49 – 67, 2005. Proceedings of the Workshop on the
Foundations of Interactive Computation (FInCo 2005).

[6] Robin Milner. Functions as processes. Mathematical structures in computer science, 2(2):119–141,
1992.

[7] Robin Milner. The polyadic 𝜋-calculus: a tutorial. In Logic and Algebra of Specification, pages
203–246. Springer Berlin Heidelberg, 1993.

[8] Davide Sangiorgi. Expressing mobility in process algebras: first-order and higher-order paradigms.
PhD thesis, University of Edinburgh, 1993.

[9] Davide Sangiorgi. From 𝜋-calculus to higher-order 𝜋-calculus — and back. In M. C. Gaudel and
J. P. Jouannaud, editors, TAPSOFT’93: Theory and Practice of Software Development, pages
151–166. Springer Berlin Heidelberg, 1993.

[10] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge
university press, 2003.

[11] Bent Thomsen. A calculus of higher order communicating systems. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL’ 89, POPL’89,
pages 143–154, New York, NY, USA, 1989. ACM Press.

4

	Introduction
	The Reflective Higher-Order calculus
	Encodability and separation

