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Abstract

We construct a category of stream transducers over an arbitrary monoidal category and
we characterize it in terms of final coalgebras. Stream transducers capture the notion of
an iterated process which holds memory states Mt and reacts to streams of inputs Xt by
producing outputs Yt. In the cartesian setting, they coincide with the well-studied notion
of causal function on streams. In the probabilistic setting, they correspond to controlled
stochastic processes.

1 Introduction

Monoidal categories provide an algebra of processes that compose sequentially and in parallel.
This algebra is abstract enough that it can deal with multiple paradigms of computation in
a unified fashion. The category of sets and functions gives semantics to the typed lambda
calculus [16]. The category of sets and relations formalises database queries [3]. Categories of
Markov kernels are used for probabilistic programming [6, 10], Hilbert spaces and linear maps
for quantum computing [1]. Moreover, monoidal categories have a practical graphical calculus
which allows us to reason about parallel programs formally using string diagrams [14,24].

Stream-based (or dataflow) computation [12, 28] deals with processes that, at each time
t = 0, 1, . . ., receive an input Xt and produce an output Yt. The processes must be causal: the
output Yt can only depend on the inputs X0, . . . , Xt. Dataflow programming has applications
in control systems [12], data science [20] and text processing [9], among others.

The coalgebraic approach to stream-based computation [13, 27] defines stream functions as
coKleisli morphisms of the list comonad List+ : CN → CN defined on objects by List+(X)n :=∏n

t=0Xt. However, it is not trivial to extend this comonad to other important non-cartesian
categories such as the category of stochastic functions: a counit and comultiplication for this
comonad are natural if and only if the monoidal product is cartesian.

The question, thus, becomes: given a paradigm of computation represented by a monoidal
category, how to construct its corresponding stream-based paradigm?

Contributions. Our first contribution is the definition of the category of stream transducers
StreamC over any monoidal category (C,⊗). These capture the notion of an iterated process
which holds memory states Mt and reacts to streams of inputs Xt by producing outputs Yt.
Our second contribution is the characterisation of the hom-sets of StreamC as final coalgebras.
In cartesian categories, our construction recovers the coalgebraic definitions of [25, 27]. In the
category of stochastic functions, our construction captures the notion of discrete stochastic
process [23].

∗Elena Di Lavore, and Mario Román were supported by the European Union through the ESF Estonian IT
Academy research measure (project 2014-2020.4.05.19-0001).



Stream-based Computation in Monoidal Categories Di Lavore, de Felice, Román

Related work. The cartesian case has been studied extensively using coalgebras [13, 27].
Our approach generalizes that of [25] and relates it to the coalgebraic approach [11,21,27]. The
definition of stream transducers already appeared in [22], where they were called infinite combs.

2 Stream transducers

A stream transducer is a process described by a sequence of morphisms f0, f1, f2 . . . that
represent its action ft : Mt−1 ⊗ Xt → Yt ⊗Mt at time t = 0, 1, 2, . . . At each step t ∈ N, the
stream transducer takes an input Xt and, together with the stored memory Mt−1, produces
some output Yt and writes to the memory Mt. The memory is initially empty, with M−1 := I
being the unit of the monoidal category.

Definition 2.1 (Stream transducers). Let (C,⊗, I) be a monoidal category. A stream trans-
ducer between two sequences of objects in C representing inputs X0, X1, . . . and outputs
Y0, Y1, . . . , is a sequence of objects M0,M1, . . . together with a sequence of morphisms

〈Mn | fn : Mn−1 ⊗Xn → Yn ⊗Mn〉n∈N where, by convention, M−1 := I.

We say two transducers are equal when, for every natural number n ∈ N, they are equal
under the equivalence relation generated by 〈Mt | (ht−1 ⊗ id); ft〉 = 〈M ′t | ft; (id⊗ ht)〉 for any
ht : Mt →M ′t and ft : Xt ⊗M ′t−1 → Yt ⊗Mt, with t = 0, . . . , n.

Proposition 2.2 (see [22]). Stream transducers over a monoidal category (C,⊗, I) form a
category StreamC. This is, moreover, a symmetric monoidal category with feedback (as in [8,
15, 26]) when C is symmetric.

The full construction is detailed in [22], where stream transducers are called infinite combs.
The cartesian case was first studied by Sprunger and Katsumata [25], who called them stateful
morphism sequences.

Coalgebraic characterisation. Classically, type-variant streams have a neat coinductive
definition that says “a stream with types A = A0, A1, A2, . . . is an element of A0 together with
a stream with types A1, A2, A3, . . .”. That is, streams are the greatest fixpoint of the equation
of functors Str = Id × Str, which expands to Str(A0, A1, . . .) = A0 × Str(A1, A2, . . .). This
fixpoint is then computed to be Str(A) =

∏∞
n∈N An.

In the same vein, “a stream transducer from X = X0, X1, . . . to Y = Y0, Y1, . . . is a process
from X0 to Y0 communicating along a channel with a stream transducer from X1, X2, . . . to
Y1, Y2, . . .”. That is, stream transducers are the greatest fixpoint of the equation of profunc-
tors Stream = hom � Stream, where the binary operation � describes composition along a
channel. The above equation expands to

Stream(X; Y) =

∫ M

hom(X0, Y0 ⊗M)× Stream(M ⊗X1, X2, . . . ;Y1, Y2, . . .). (1)

We can then compute an explicit formula for stream transducers applying Adamek’s theorem [2].

Theorem 2.3. The set of stream transducers from X0, X1, . . . to Y0, Y1, . . . is the greatest
fixpoint of Equation (1). This fixpoint is explicitly given by

Stream(X0, X1, . . . ;Y0, Y1, . . .) = lim
n

∫ M0,...,Mn n∏
t=0

hom(Xt ⊗Mt−1, Yt ⊗Mt) (2)

where, by convention, M−1 := I is the monoidal unit.
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The formula in Equation (2) deserves an explanation. We are describing a process in n
stages, and letting n go to infinity as we take a limit. The integral sign is a coend [18, 19],
which can be read as an existential quantifier. A representative element of this coend is a list
of n morphisms ft : Xt⊗Mt−1 → Yt⊗Mt for some choice of n ‘memory channels’ M0, . . . ,Mn,
which are objects of C.

3 Examples

Cartesian streams. Our first example serves as a sanity check: in a cartesian monoidal cate-
gory C, our definition recovers the usual notion of stream [25,27]. Indeed, in the cartesian case,
the universal property of the cartesian product simplifies the fixpoint equation to Equation (3).

Stream(X; Y) = hom(X0, Y0)× Stream(X0 ×X1, X2, . . . ;Y1, Y2, . . .). (3)

Theorem 3.1. The greatest fixpoint of Equation (3) is given by

Stream(X; Y) =
∏
n∈N

hom(X0 × . . .×Xn, Yn). (4)

Remark 3.2. The category StreamC, when C is cartesian monoidal, coincides with the coK-
leisli category for a comonad List+ : CN → CN defined by List+(X)n :=

∏n
i=0Xi, which is

analogous to the coalgebraic causal stream functions of [27]. A stream with types X0, X1, . . .
can be recovered as a stream transducer with no inputs. That is, an element of the set
Stream(1, 1, . . . ;X0, X1, . . .).

Stochastic processes. Let Stoch be the category of stochastic functions, i.e. the Kleisli
category of the finite distribution monad D : Set→ Set. A stochastic process is usually defined
as a sequence of random variables indexed by time [23]; that is, a sequence of distributions
pn ∈ D(Y0 × · · · × Yn) that are compatible under marginalisation, pn+1;πY0,...,Yn

= pn. We
give a slightly more general notion that allows for the stochastic process to be controlled by an
input.

Definition 3.3 (Stochastic process). Let X = X0, X1, . . . and Y = Y0, Y1, . . . be families of sets.
A stochastic process from X to Y is a sequence of functions, fn : X0×· · ·×Xn → D(Y0×· · ·×Yn)
for each n ∈ N, such that fn coincides with the marginal distribution of fn+1 on the first n
variables. In other words, fn+1 ; πY0,...,Yn

= πX0,...,Xn
; fn.

Proposition 3.4. Stochastic processes form a category StochProc with composition and iden-
tities defined component-wise by composition and identities in Stoch.

Stochastic processes are precisely stream transducers in the category of stochastic functions.

Theorem 3.5. There exists an isomorphism of categories StochProc ∼= StreamStoch.

4 Conclusion and future work

We defined a category whose morphisms are stream transducers and we characterized it in terms
of final coalgebras. We recovered the usual notion of stream transducers in the cartesian case [25,
27]. In the case of the category of stochastic functions, we recovered a notion of controlled
stochastic process [23]. This category could be used as semantics for probabilistic stream-
based programming languages [12, 28]. We would like to investigate what this construction
corresponds to in the case of other monoidal categories, like those of partial maps [7], non-
deterministic maps [4] and quantum processes [1, 5].
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[2] Jǐŕı Adámek. Free algebras and automata realizations in the language of categories. Commen-
tationes Mathematicae Universitatis Carolinae, 015(4):589–602, 1974. URL: http://eudml.org/
doc/16649.

[3] Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical conjunctive queries. In Dan R. Ghica
and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic, CSL 2018,
September 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 13:1–13:23. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.13.
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A Appendix

A.1 Omitted proofs

Theorem A.1 (Previous theorem 3.1). Let C be a cartesian monoidal category. The set of
stream transducers over C is characterized by

Stream(X0, X1, . . . ;Y0, Y1, . . .) =
∏
n∈N

hom(X0 × . . .×Xn, Yn). (5)

Proof sketch. We apply the universal property of the cartesian product to simplify the hom-
profunctor. We then apply the technique of Yoneda reduction [18] to simplify the coend ex-
pression.

Stream(X0, X1, . . . ;Y0, Y1, . . .)

= {by Theorem 2.3}∫ M

hom(X0, Y0 ×M)× Stream(M ×X1, X2, . . . ;Y1, Y2, . . .)

∼= {by the universal property of the product}∫ M

hom(X0, Y0)× hom(X0,M)× Stream(M ⊗X1, X2, . . . ;Y1, Y2, . . .)

∼= {simplify the coend using a Yoneda reduction [18]}
hom(X0, Y0)× Stream(X0 ×X1, X2, . . . ;Y1, Y2, . . .)

(6)

By Lambek’s theorem [17], the final coalgebra of a functor is also its greatest fixpoint. By
Adamek’s theorem [2], the final coalgebra of a functor can be computed as the projective limit
of applying the functor repeatedly to a terminal object.
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Theorem A.2 (Previous theorem 3.5). There exists an isomorphism of categories StochProc ∼=
StreamStoch. Stochastic processes are precisely stream transducers on the category of stochas-

tic functions.

Proof sketch. The memory channels will contain all the previous inputs and outputs: Mt =
X0 × · · · × Xt × Y0 × . . . Yt. We use that every family of functions describing a stochastic
process gives rise to a family of distributions cn : X0 × · · · ×Xn × Y0 × · · · × Yn−1 → Yn, called
conditional distributions in the context of Markov categories [10]. In order to show that this
actually defines a bijection, we need to use some properties of this factorization and properties
of the coend that describes streams that we do not detail here.

A.2 Coend Calculus

Coend calculus is the name given to the a branch of category theory that describes the behaviour
of certain colimits called coends. We follow the standard presentation of coend calculus from
[18].

Definition A.3. Coends are defined as the coequalizers of the action of morphisms on both
arguments of a profunctor.

coend(P ) := coeq

( ∐
f : B→A P (A,B)

∐
X∈C P (X,X)

)
.

Coends are usually denoted with a superscripted integral, drawing on an analogy with the
classical calculus. ∫ X∈C

P (X,X) := coend(P )

Proposition A.4 (CoYoneda reduction). Let C be any category and let F : C → Set be what
is usually called a co-presheaf; the following isomorphism holds for any given object A ∈ C.∫ X∈C

hom(X,A)× FX ∼= FA.

Following the analogy with classical analysis, the hom works as a Dirac’s delta.

Proposition A.5 (Fubini rule). Coends commute between them; that is, there exists a natural
isomorphism∫ X1∈C ∫ X2∈C

P (X1, X2, X1, X2) ∼=
∫ X2∈C ∫ X1∈C

P (X1, X2, X1, X2).

In fact, they are both isomorphic to the coend over the product category,∫ (X1,X2)∈C×C

P (X1, X2, X1, X2).

Following the analogy with classical analysis, coends follow the Fubini rule for integrals.

6



Stream-based Computation in Monoidal Categories Di Lavore, de Felice, Román

A.3 Profunctors

Definition A.6. A profunctor from a category A to a category B is a functor P : Aop×B→ Set.

Definition A.7 (Sequential composition). Two profunctors P : Aop × B → Set and Q : Bop ×
C→ Set compose sequentially into a profunctor P �Q : Aop × C→ Set defined by

(P �Q)(A,C) :=

∫ B∈B

P (A,B)×Q(B,C).

The hom-profunctor hom : Aop×A→ Set that returns the set of morphisms between two objects
is the unit for sequential composition. Sequential composition is associative up to isomorphism.

Definition A.8 (Parallel composition). Two profunctors P : Aop
1 ×B1 → Set and Q : Aop

2 ×B2 →
Set compose in parallel into a profunctor P ×Q : Aop

1 × Aop
2 × B1 × B→ Set defined by

(P ×Q)(A,A′, B,B′) := P (A,B)×Q(A′, B′).

Definition A.9 (Communicating profunctor composition). Let A,B,C be categories and let B
have a monoidal structure. Two profunctors P : Aop×B→ Set and Q : Bop×C→ Set compose
communicating along B into the profunctor (P �Q) : Aop × B× Bop × C→ Set defined by

(P �Q)(A,B;B′, C) :=

∫ M

P (A,B ⊗M)×Q(M ⊗B′, C).

The profunctors hom(I, •) : B → Set and hom(•, I) : Bop → Set are left and right units with
respect to communicating composition. The communicating composition of three profunctors
P : Aop × B→ Set, Q : Bop × C→ Set and R : Cop × D→ Set is associative up to isomorphism
and a representative can be written simply by (P �Q�R) : Aop×B×Bop×C×Cop×D→ Set,
where both B and C are assumed to have a monoidal structure.

A.4 Stochastic functions

Definition A.10. The finite distribution commutative monad D : Set → Set is associates to
each set the set of finite-support probability distributions over that set.

D(X) :=

p : X → [0, 1]

∣∣∣∣∣∣ #{x | p(x) > 0} <∞; and
∑

p(x)>0

p(x) = 1

 .

We call Stoch to the symmetric monoidal kleisli category of the finite distribution monad.
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