Monitoring Hyperproperties with Circuits *

Antonis Achilleos!, Elli Anastasiadi!, and Adrian Francalanza?

! ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
2 Department of Computer Science, University of Malta Msida, Malta
antonios@ru.is, e11i19@ru.is, adrian.francalanza@um.edu.mt,

Abstract
We define Hyper-pHML and its semantics over sets of traces. We then propose a

monitorable fragment of that logic and we present a monitoring model that can be used
to monitor specifications in that fragment in a sound and complete way.

1 Introduction

The field of runtime verification revolves around the effort to provide methods for checking
whether a system satisfies its intended specification at runtime. This is done through a com-
puting device called a monitor that observes the current run of a system in the form of a trace
[3, 10]. Runtime monitoring has recently been extended to the setting of concurrent systems
[1, 6, 4, 13] with several attempts to specify properties over sets of traces, and the consequent
adaptation of the monitoring setup [5, 9, 2].A centerpiece in this line of work has been the
specification logic Hyper-LTL [7]. Intuitively Hyper-LTL allows for existential and universal
quantification over a set of traces (which describes the set of observed system runs). The prop-
erties over one trace are stated in LTL, with open trace variables, and then made dependent
on properties of other traces via the quantification.

We define the specification logic Hyper-pHML, as a counterpart to Hyper-LTL, due to the
good behaviors of pHML with respect to monitorability (namely the easiness of monitors to be
mapped to it and virse-versa, along with the easiness to define complete fragments of it) [1, 11].
However, just like Hyper-LTL, Hyper-uHML can define dependencies over different traces,
which intuitively causes extra delays in the processing of traces as the properties observed
on one of them can impact what is expected for another. In existing research, the runtime
verification of such properties, is dealt with via a plethora of modifications and assumptions
made over the monitoring setup, such as being able to restart an execution or having access to
all executions of a system.

In our case we define monitors engineered for a very restricted fragment of the specification
language, by utilizing circuit-like structures to combine verdicts over different traces. The
fragment of the logic restricts the amount of quantification that can be applied to the single
trace properties and thus limits the dependencies between them. This naturally induces circuits
with monitors from [1] as input nodes and simple kinds of gates at the higher levels, with
the resulting structure belonging to the complexity class ACj, which is considered a class of
problems that can be solved efficiently using parallel computation [12]. This monitor model
keeps the processing-at-runtime cost bounded by a constant, while still providing correctness
guarantees.

The properties for which we obtain monitors, are properties over sets of traces and thus
they are not bound by whether those traces are produced by the same system (something that

*The work reported in this paper is supported by the projects ‘Open Problems in the Equational Logic of
Processes’ (OPEL) (grant 196050-051) and the project “MoVeMnt: Mode(1)s of Verification and Monitorability”
(grant no 217987) of the Icelandic Research Fund.

mailto:antonios@ru.is
mailto:elli19@ru.is
mailto:adrian.francalanza@um.edu.mt

Monitoring hyperproperties with circuits Anastasiadi

would bring this logic closer to CTL), although such an assumption can add extra layers of
semantic meaning to the trace properties.

2 The logic

Syntax: Our logic is defined in the style of Hyper-LTL defined in [7]. The quantification
among traces remains the same, but the language in which local trace properties are stated is
uwHML. We consider the following restriction to a multi-trace SHML logic (the safety fragment
of uHML [1]), with no alternating quantifiers, called Hyper!-sHML. We can similarly define
the CHML (co-safety) fragment, and the HML fragment.

Definition 1. Our formulae are constructed by the following grammar:
¢ € Hyper' -sHML ::= 3,4 | Vat | pUp | oMy,

and ¢ stands for a formula in SHML. w is a trace variable from an infinite supply of trace
variables V. The existential and universal quantification happens over a common, finite set of
infinite traces T which is defined over a set of actions ACT. U and M stand for the regular V
and A boolean connectives, and can only be used at the top level in formulae. Their use allows
us to keep the synthesis function below clearer.

Example 1. Over the set of actions {a, b}, the formula ¥ [a]££ N3, [b](max x.([a]ff A [b]z))
states that none of the traces in T start with a, and at least one trace in T starts with b, but
never encounters a.

Semantics: The semantics of Hyper-uHML is given over a set of traces 7. It suffices to
define the extension of pHML linear-time semantics ([1]) to the Hyper-uHML semantics which
is done in the style of Hyper-LTL. The semantics of Hyper!-SHML can be inferred thus as a
syntactic subset of Hyper-uHML.

Remark 1. We note here that the more interesting hyperproperties in the literature requite
at least two quantifiers to be stated. Some of them might be able to be projected into the
Hyper'-sHML fragment, but this procedure is not formally yet defined, or trivial. Thus, our
main purpose would be to extend the monitors, and not project formulate case-by-case onto this
fragment. The main objective of this fragment and the following synthesis for it is to establish
a baseline which we will attempt to in future work, to capture more intricate formulae.

3 The monitors

Syntax of the Monitors The collection CMON of circuit monitors is the set of terms gener-
ated by the following grammar:

M € Cnon = \/[mly AR | Mv M | MAM
m = yes, no, end | a.m | m+n | rec z.m | x

The notation [m]; corresponds to the parallel dispatch of k identical monitors m, where k
is the number of available traces. As this is part of a circuit definition, this operation induces
a family of circuits that are the monitor. Just like in circuit theory then, the circuit used for a
particular instance of the problem is selected based on the amount of available input nodes (in
our case traces).

Monitoring hyperproperties with circuits Anastasiadi

Semantics: The semantics of circuit monitors is given over a set of traces T. Each tracet € T
is assigned a set of identical (regular) monitors that correspond to the local properties to be
verified. These monitors run in parallel (in the sense of parallel monitors in [1]), and monitors
assigned to the same trace observe identical events, while the set of monitors assigned to another
trace also run in parallel but completely isolated from other traces. The monitors communicate
their verdicts with the appropriate higher level gates of the circuit when those verdicts are
reached. The top level of this syntax defines a circuit-like structure, that inputs verdicts from
the bottom layer monitors and processes them though logical gates. The processing of verdicts
is defined as (we only present the case of large or and and gates the small ones can be inferred
from those): A[m] is evaluated to yes, if all monitors are in a yes state, to no, if for at least
one monitor is evaluate to no, and to end, if none of the above happens, but all m monitors
reach some verdict. The evaluation of \/[m]) is symmetric, and the evaluation of the V and A
gates over them is following the same rules.

3.1 Synthesis

Given a formula ¢ in Hyper'-sHML, We synthesize a circuit monitor M for it,over the set of
traces T, through the following recursive function Syn(—) : Hyper!-sHML —CMON.

Definition 2 (Circuit Monitor Synthesis).

Syn(3rp) = \/[m((p)}m with ¢ € SHML | Syn(Va.p) = /\[m(g@)]|T| whith ¢ € SHML
Syn(e1 U pa) = Syn(p1) V Syn(ps) | Syn(pr Mpa) = Syn(pr) A Syn(ps)
Where m(—) is the monitor synthesis function for SHML defined in [1].

Soundness: The correctness of the synthesis function can be obtained by straightforward
induction on the form of ¢. Since SHML formulae always have a violation complete monitor,
we can extend this result to:

Proposition 1. For a formula ¢ € Hyper'-sHML, we have that Syn(p) is a violation complete
monitor for it.

The above result can also be easily extended to the relevant notions of completeness, for
different fragments of Hyper-pHML.

Future work: We expect that the fragment Hyper'-sHML is maximal towards violation
completeness, which means that any monitor in CMON is monitoring for a formula in Hyper®-
SHML. Towards proving this, we aim to define a sound synthesis, from monitors to formulae in
Hyper!'-sHML. However, the ultimate goal of this work, is to extend the amount of monitorable
properties, by allowing at least one level of alternating quantifiers. If the maximality result is
true for these monitors, which we believe to be the case, then the only way to do so would be by
augmenting the monitor syntax. Our approach to this extension would be allowing a notion of
synchronization rounds among the monitors (or respectively a round of communication). This
would enable more complex processing of sets of traces, as now we would be able to infer some
information for properties of a given trace, based on the ones monitored for on a different one.
However, the analysis of communications among the monitors is a complicated extension, as
their exact content plays a significant role to our understanding of the system, as well as the
processing at runtime cost. We plan to implement this therefore by utilizing dynamic epistemic
logic [8] in order to perform this extension formally and soundly.

Monitoring hyperproperties with circuits Anastasiadi

References

(1

2]
3l

(4]

[5]
(6]
(7l
(8]
(9]

(10]

(11]
(12]

(13]

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingélfsdéttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proceedings of the
ACM on Programming Languages, 3(POPL):52:1-52:29, 2019.

Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hyperproperties in
hyperltl. 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pages 239-252, 2016.
Ezio Bartocci, Ylies Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In Paul Gastin and Frangois Laroussinie, editors, CONCUR
2010 - Concurrency Theory, pages 162-176, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproperties. In
2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages 162-174, 2018.

Ian Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto. Reliability and
fault-tolerance by choreographic design. In PrePost@iFM, 2017.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In 2008 21st IEEE Computer
Security Foundations Symposium, pages 51-65, 2008.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic Logic. Springer
Publishing Company, Incorporated, 1st edition, 2007.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring hyper-
properties. pages 190-207, 09 2017.

Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario Della
Monica, and Anna Ingdlfsdéttir. A foundation for runtime monitoring. In Shuvendu K. Lahiri
and Giles Reger, editors, Runtime Verification - 17th International Conference, RV 2017, volume
10548 of Lecture Notes in Computer Science, pages 8-29. Springer, 2017.

Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. Monitorability for the hennessy—milner
logic with recursion. Formal Methods in System Design, 51, 08 2017.

Johan Hastad. Computational Limitations of Small-Depth Circuits. MIT Press, Cambridge, MA,
USA, 1987.

Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible choreographies: A
monitors-as-memories approach. In Proceedings of the 19th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’17, page 127-138, New York, NY, USA, 2017.
Association for Computing Machinery.

	Introduction
	The logic
	The monitors
	Synthesis

