
Algebras for Effectful Program-Environment Interactions ∗

Niels F.W. Voorneveld

Tallinn University of Technology, Tallinn, Estonia
niels.voorneveld@taltech.ee

Programs never run in isolation. They are evaluated within an environment, which consists
of program modules, compilers, operating systems, hardware and human users. Programs
may invoke queries to such environments; operations which are resolved externally and can
be considered effectful. We will study a categorical way of interpreting the behaviour of such
effectful operations using algebras.

In the first part, we define how to describe denotations of programs and environments
interacting with each other using queries. Such interactions can then be modelled using monad-
comonad interaction laws as featured in [1]. In the second part, we will use algebras and
coalgebras to specify behaviour of programs and environments, and use the results from [2] to
describe whole systems of interacting components with a single algebra.

Denotational models for effect operations
Programs are seen as active components of computation, evaluating to a result. While being
evaluated, a program may invoke effectful operations given by a signature, also known as a
container. Such a signature of operations is given by a set S with elements op ∈ S each with
an associated arity ar(op) given by a set. When op ∈ S is invoked, it sends a request to the
environment: it asks the environment to choose and provide an element from the set ar(op).
Depending on the response, the program may continue in a variety of ways.

Such programs can be denoted by elements of a monad in the category of sets Set, in
particular the free monad TS over the endofunctor FSX = Σop∈SX

ar(op). This monad is
inductively defined, where its elements are either given by results 〈x〉 ∈ TSX where x ∈ X, or
requests with continuations op(c) ∈ TSX where op ∈ S and c : ar(op) → TSX. We are not
yet making any assumptions on how these operations should be resolved. We will see later on
how requests can be answered by both direct interaction with a stateful environment, or by a
quantitative assessment of possibilities using algebras.

Dually, we model an environment capable of answering queries from the signature S. We see
such an environment as passive, carrying an internal state which may change when something
interacts with the environment. We model this using a cofree comonad DS over the functor
GSY = Πop∈Sar(op)×Y . This comonad is coinductively defined, where each element b of DSY
contains an internal state εSY (b) ∈ Y and for each operation op ∈ S a response and continuation
op(b) ∈ ar(op)×DSY . Though in general, DSY contains any possible way of resolving queries,
we will later limit the possible behaviour patterns, either by communication with an even higher
environment, or by formulating concrete specifications of behaviour patterns using coalgebras.

Queries from programs modelled by TSX can be directly resolved by answers from environ-
ments modelled by DSY . For example, op(c) ∈ TSX raises query op, and b ∈ DSY can answer
with op(b) = (i, b′) ∈ ar(op) ×DSY , and the program will continue by evaluating c(i) ∈ TSX
in environment b′ ∈ DSY . We do this until the program provides a result 〈x〉 with x ∈ X, at

∗This work is based on collaborations and discussions with Tarmo Uustalu, partially featured in [2].
The author was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-
0001) and the Estonian Research Council grant PSG659.



Algebras for Effectful Program-Environment Interactions Niels Voorneveld

which point we can read the final state ε(b) ∈ Y from the environment. This gives a transfor-
mation dSX,Y : TSX ×DSY → X × Y , natural in both X and Y , known as a monad-comonad
interaction law [1]. This models an instance of direct program-environment interaction.

We would like to consider more general situations, for example when not all queries are
resolved, or when the interaction itself may invoke new queries to another environment higher
up. We take three signatures S, P,R, where a program may invoke queries from S, an environ-
ment can answer queries from P , and there may be residual queries from R to a higher-level
environment. The following definition is an instantiation of a more general definition in [1].

Definition 1. Given signatures S, P,R, a TR-residual monad-comonad interaction law between
TS and DP is a natural transformation φ : TSX ×DPY → TR(X × Y ) satisfying a unit and a
multiplication equation.

We can split a signature into two parts, resolving one part with an environment, and leaving
the other part untouched. We use the disjoint union + signatures to describe such a combination
of two signatures, and can formulate an interaction law dS,RX,Y : TS+RX ×DSY → TR(X × Y )
which only resolves queries from S. A TR-residual monad-comonad interaction law φ between
TS and DP can be build by composing a monad morphism mφ : TS → TP+R with the interaction
law dP,RX,Y : TP+RX×DPY → TR(X×Y ). Hence we can code up interaction laws using families
of programs denoted by Πop∈STP+R(ar(op)). Not all interaction laws can be build this way,
since some interaction laws may backtrack to an earlier environment state.

Using interaction laws, it is possible to create whole networks of interacting programs and
environments. We would like to talk about the behaviour of programs within such networks,
using algebras to formulate behavioural properties of those programs.

Algebraic descriptions of effect behaviour
The practicality of algebras is two-fold. Firstly, they can be used to abstractly describe networks
of environments, and use them to formulate stateful predicates on programs. Secondly, they may
be used to describe the behaviour of queries which cannot be directly resolved by a computation
in the environment, for instance probabilistic queries.

Algebras can be used to formulate quantitative predicates for effectful programs [3]. This
generalises yes-or-no questions such as: “Does this program produce an even number?”, to more
open-ended question such as: “How long does it take before...” or “What is the probability
that...”. Concretely, we use a monad algebra over TS ; a function α : TSA → A over some set
of answers A, satisfying a unit and multiplication equation. Monad algebras α over TS are
in bijection with families of local functions α̂ ∈ Πop∈S(Aar(op) → A). Moreover, we can lift
predicates on results P : X → A to predicates on programs α ◦ TS(P ) : TSX → A. Examples:

Time: We can model execution time by using a signature S = {tick} with one query of arity
{∗} (so only one possible response to the query). TSX is isomorphic to N ×X, and we
can define an algebra α : N× N→ N using addition (coincidentally a free algebra).

Probability: We can model probabilistic programs using a single binary operation S = {por} of
arity {0, 1}. The set TSX contains binary trees, which we give the algebra P : TS [0, 1]→
[0, 1] over the real number interval [0, 1], locally defined using (a, b) 7→ (a+ b)/2.

Environments may be specified using comonad coalgebras over DP ; a function β : B → DPB
over some set of generators B satisfying a co-unit and co-multiplication equation. These gener-
ate patterns of behaviour; possible ways environments can react to queries. Comonad coalgebras
β over DP are in bijection with families of local functions β̂ ∈ Πop∈P (B → ar(op)×B) specifying
both the responses to and resulting state after a query.

2



Algebras for Effectful Program-Environment Interactions Niels Voorneveld

Input: We model any possible way of responding to a query P : {read} of arity ar(read) = D.
This can be done using infinite streams DN, with a coalgebra β : DN → DPD

N given by
the local function f 7→ (f(0), λn.f(n+ 1)) (which is a cofree coalgebra).

Global store: Now let us read and write from a persistent global store, with a signature P =
{read} ∪ {writen : n ∈ D} which adds to read a set queries writen of arity {∗}. We define
the coalgebra over D, with local functions: read′ : n 7→ (n, n) and write′m : n 7→ (∗,m).

In [2], it was observed that interaction laws could be used to merge algebra with coalgebras,
constructing an algebra describing the whole system. In particular:

Definition 2 ([2]). Given a residual monad-comonad interaction law φX,Y : TSX ×DPY →
TR(X × Y ), we can merge a monad algebra α : TRA → A with a comonad coalgebra
β : B → DPB, getting a monad algebra mφ(α, β) : TS(AB)→ AB .

The carrier contains A-valued predicates on the state space B, hence it can lift A-valued
predicates on X×B to A-valued predicates on TSX×B. In a sense, given some post-condition
X ×B → A, the resulting algebra computes a weakest precondition TSX ×B → A.

As a simple example, given the empty signature ∅, the free monad T∅ is the identity monad.
We have only one monad algebra id : T∅B→ B over the Booleans B = {>,⊥}, which is given by
the identity function. Using the interaction law dSX,Y : TSX×DSY → X×Y = T∅(X × Y ), we

can transform any coalgebra β : B → DSB into an algebra mdS (id, β) : TS(BB) → BB . Here,
BB is isomorphic to the powerset P(B), and can be seen as the set of predicates for B.

More nuanced examples can be constructed using local definitions of algebras and coalgebras,
and monad morphisms to model the interaction laws. For instance we have two examples:

Costly interactions: Using the time taken algebra on N×X from the time example, we can
add a notion of cost to any interaction with an environment, for instance tracking the
number of times the state of a global store is accessed.

Probabilistic responses: Using the probability algebra, we can model environments which
give probabilistically weighted answers, e.g. given by streams of distributions.

The above gives us a way to wrap up the behaviour of entire networks of program-
environment interactions into a single algebra, which allows us to efficiently describe relevant
verification properties for the components of the network, including the programs that generate
interaction laws. Moreover, with tools from domain theory, we can model general recursive
programs too, which with the results from [3] gives rise to notions of behavioural equivalence.

In this talk, we will delve into the theory behind these descriptions, and go over a variety
of examples of algebraic models for program environment interactions, both in their abstract
categorical form and using explicit program codes for generating them.

References

[1] Shin-ya Katsumata, Exequiel Rivas, and Tarmo Uustalu. Interaction laws of monads and comonads.
2020. Thirty-Fifth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[2] Tarmo Uustalu and Niels F. W. Voorneveld. Algebraic and coalgebraic perspectives on interaction
laws. In Programming Languages and Systems - 18th Asian Symposium, APLAS 2020, volume
12470 of Lecture Notes in Computer Science, pages 186–205. Springer, 2020.

[3] Niels Voorneveld. Quantitative logics for equivalence of effectful programs. Electronic Notes in
Theoretical Computer Science, 347:281 – 301, 2019. Proceedings of the Thirty-Fifth Conference on
the Mathematical Foundations of Programming Semantics.

3


