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1 Introduction

Sound static analyzers can be used to verify computer programs [3, 7]; however,
the analyzer itself is a complicated program that should not be trusted blindly.
When used in safety-critical settings, manual checking of the analysis results
might be neccessary [5]. The review of analysis results is not a simple process, as
the user may not understand how the result was computed. Empirical studies
suggest that poor explainability of analysis results is an as serious obstacle as
false positives in preventing the wider adoption of static analysis tools [2, 6, 8].

Successful analysis of programs written in a real-world programming language
needs a sophisticated analyzer. With each additional programming language
feature, the analysis tool grows in complexity, requiring more helper analyses
that increase the probability of bugs in the analyzer. Novel solutions are needed
to make analysis tools easier to implement, use and work with.

In this paper, we embrace the demand for the analyzer to communicate its
behavior to the user. As an example, we show how to provide the user with
interval expression in addition to the resulting interval values. When the result is
unexpected, such analysis expressions provide a valuable middle ground between
the complete behavior of the analyzer and the behavior of the program under
analysis. The expressions help the end-user by exposing the relevant part of
the computation that leads to unexpected values. For error verification, coun-
terexample witnesses [1] may be generated based on the inspection of expression
information to minimize the set of paths required to reach an error state.

Providing expression information also helps the analysis developer since
inspecting the entire trace of fixpoint computation is still a tedious activity.
Generalizing the approach allows analyses to be decomposed into multiple stages
where each analysis behavior may be viewed separately. The proposed method fits
into the general framework of meta-abstract interpretation described by Cousot
et al. [4]. We get either online or offline meta-abstract interpretation – depending
on whether the generation of expressions may reference their evaluation.
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2 Interval expressions

Given a functional approach [9] analysis where the domain consists of an arbitrary
"helper" analysis domain H and the box domain, we extend the domain to include
interval expression information:

D1 “ H ˆ pVarÑ E7qK ˆ pVarÑ IqK

For abstract expressions we use values in the form joinpXq P E7 where X P 2E is
a set of expressions defined using the following grammar:

E ::“ rN,D1,Vars |FpE˚q | J

The ordering is defined as joinpXq Ď joinpY q :“ J P Y _ X Ď Y . The variable
rn, d, xs refers to the value of the program variable x in program point n in
context d. Furthermore, an expression can be unknown (J) or an n-ary function
from the set F together with its argument expressions. It is assumed that F
contains interval constants as nullary functions.

This analysis can be implemented directly using the functional approach.
The naive approach has several downsides. First, a buggy analysis may output

inconsistent expressions and interval values. Furthermore, a function would be
analyzed for each expression and value at the start point, i.e., context, not only
for each distinct value. This is excessive as the analyzed program can only access
the numeric value – not the way values were computed – and therefore cannot
behave differently based on it. Thus, we only store interval values as the context
so that the expressions at the start of the function will have literal values.

As a solution, we use three kinds of constraint system variables to reduce
unnecessary re-computation. First, helper domain variables ru, ds1 with values
from the domain H. Second, expression map variables ru, ds2 with values from
the domain pVarÑ E7qK, and finally, interval map variables ru, ds3 with values
from the domain pVarÑ IqK.

Interval values for all v P N are computed from interval expression by evalua-
tion. Thus guaranteeing that they will agree w.r.t. the solution.

rv, ds3 Ě λx. vrv, ds2pxqw
7

V pλ pu, d
1, yq. ru, d1s3pyqq

The constraints for each CFG edge e “ pu, l, vq P E are as follows:

prv, ds1, rv, ds2q Ě vew7ppru, ds1, ru, ds3q, dq

Constraints related to function calls can be constructed analogously. Note that
the transfer function does not get the expression component as a parameter and
does not contribute directly to the interval component. Also, the current calling
context is passed on to the function so that it is able to reference variables for this
context in the expression component. The calling context may not be used for
any other purpose. Implementation of such a constraint system in a side-effecting
framework can be achieved by extending the "helper" analysis.



3 Multi-stage analyses using expressions

Real-world programming languages and real-world programs often use many
features in combination: multi-threading, dynamic memory, function pointers,
structs, arrays, linked-lists, integers, etc. The meaning of each such feature might
be easy to explain in isolation, but together they are complicated. It is not always
easy to see why the analysis gives unexpected results if other features are used
in conjunction. Keep in mind that the analyzed program might be buggy, the
analyzer itself might be buggy, or the analysis precision might be insufficient.

We can reformulate our scheme as a method for separating the analysis into
multiple stages where the intermediate results are inspectable. The idea is to limit
the expression function symbols F to CFG edge labels and subsequent analysis
domain literals. Additionally, we only use a single variable for each program point
Var “ t‚u and only use ‚ as the context in the constraint system. The result
of the analysis can be interpreted as a CFG and may be analyzed further at a
later stage. This way, the use of some language features, e.g., pointers, may be
eliminated from the code. The general goal is to make each stage simple so that
it is easier to explain, implement correctly, and hopefully also prove correct.

Since CFG transformations may be too limiting to cover all use cases, we
also propose constraint system transformations As opposed to CFG edges, con-
straints can depend on several variables, and side-effecting constraints can also
affect multiple variables. For example, side-effecting constraint systems can be
used to analyze multi-threaded programs by handling global variables flow-
insensitivity [10].
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