
A Solver for Generalised Parikh Images of Regular
Languages

Amanda Stjerna and Philipp Rümmer
Uppsala University, Sweden

1 Introduction
Parikh images have a wide application within automata, including for the solving of string
constraints in automata-based solvers such as Ostrich [2]. While it is possible to compute
the Parikh image of an automaton by adapting the method for CFGs of [4], this method
produces clauses with many existentially quantified variables which are costly to eliminate.
This makes many real-world applications intractable. Furthermore, applications like Unicode
require automata with symbolic labels to handle their large alphabets, increasing the number of
variables even more. Finally, automata-based string solvers compute Parikh images on products
of automata, derived from conjunctions of string constraints. Using [4] this would require the
up-front computation of the product before its Parikh image, running the risk of an exponential
blow-up.

Addressing these concerns, we introduce a lazy approach to the computation of Parikh
images of products of automata that also generalises operations on labels. This allows us to
extend the computation of Parikh images to handle symbolic transition labels ergonomically,
while also allowing us to interleave the computations of the Parikh image of a product and
the product itself. This allows both calculations to inform each other, thereby eliminating
unnecessary work. Moreover, the scheme allows us to learn interesting facts (in the form of
implied clauses) about the problem.

Based on these insights, we present a work-in-progress tool to solve linear constraints on
symbolic automata with counters, aka Parikh automata, amounting to constraints on the Parikh
image of their product. We are able to generate both a Presburger formula representing the
image and find satisfying assignments within it.

2 Background
Formally, the Parikh map over a context-free language Σ = {a1, . . . , ak} is defined as in [3]:

ψ : Σ∗ → Nk

ψ(s) = [#a1(s),#a2(s), . . . ,#ak(s)]

That is, ψ(s) is a vector of the number of occurrences of each character in the language for
a given string s. For example, for Σ = {a, b}, we would have ψ(abb) = [1, 2].

We define the image of this map, the Parikh image, of some subset of the language A ⊆ Σ∗

as:

ψ(A) = {ψ(x)|x ∈ A}

Thus, we would have ψ({ab, abb}) = {[1, 1] , [1, 2]}. An interesting property of this map is
that it can always be expressed as a symbolic Presburger formula.



easychair: Running title head is undefined. easychair: Running author head is undefined.

2.1 Generalised Parikh Images
Another way of viewing the Parikh map is as a monoid homomorphism p : (Σ∗, ·, ϵ) → (ZΣ,+, 0⃗),
where · is the string concatenation operation, the objects of the right-hand-side monoid are
character counts, and + is element-wise vector addition. Note that while the left monoid does
not commute, the right one does.

This viewpoint enables us to generalise the Parikh map further to arbitrary monoid mor-
phisms h : Σ∗ → M where M is a commutative monoid. It then follows from the universal
mapping property that any such morphism h can also be expressed in terms of the Parikh map,
as h′ ◦ p.

An example is computing the length of a string, which is expressed in terms of the Parikh
map by summing the individual character counts of the vector: h′ : (ZΣ,+, 0⃗) → (Z,+, 0) =
x⃗ →

∑
i∈Σ xi. More generally, this approach extends to multiple counters to produce Parikh

automata with one such counter per symbol in the language, as used in implementations of
many string constraints [1].

3 Lazy Computation of Parikh Images for Regular Lan-
guages

The calculus is based on four principles: linear equations to preserve flow through the au-
tomaton, case-splitting when there are multiple possible paths a run can take, propagation of
connectedness constraints, and materialisation of products. Notably, ensuring connectedness
of a run in the presence of cycles is the computationally most difficult constraint to enforce, as
the flow equations of any loop will self-balance.

Starting with the automaton shown to the left in figure 1, we seek a satisfying assignment
as an illustration of our calculus.

Figure 1: Left to right: the starting automaton, the automaton with its corresponding linear equations,
and the solution. Note the replacement of the existentially quantified transition variables with character
count constants, and the introduction of a linear equation across the edge for d representing a choice
between either an a or a d. Transitions with a zero value are not used in the solution.

0

1
a

2d

b

c

0

1
a: a

2d: 1 - a

b: b

c: a

0

1
a: 0

2d: 1

b: 0

c: 0

In this case, our calculus will introduce a free integer constant per character (a, b, c, and
d). It will then introduce equations preserving flow through the automaton corresponding to
how many times that transition is used in a run. Each transition will be given an existentially
quantified variable in these equations, and each of our target variables is constrained to the
sum of the transitions where it occurs as a label. This corresponds to the first portion of the
formula described in [4], but crucially misses the constraints to ensure connectedness in the
presence of cycles. Instead, we enforce this constraint lazily.

Note that this formulation allows us to propagate information between terms of a product
before materialising it to exclude infeasible parts of a product from the computation.

Before computation begins, our prover performs reasoning on the flow equations to simplify
them into d + a = 1 ∧ c = a. This leaves us with a choice of two paths for our run so we

2



easychair: Running title head is undefined. easychair: Running author head is undefined.

execute a case split: Split: a ≤ 0 | a > 0. The split is performed as close to the initial state as
possible and favours deselecting an edge by constraining its corresponding term to be 0. The
linear inequalities of the flow equations will ensure that the choice selects precisely one of the
upper and lower paths.

Since choosing the d transition over a disconnects a loop, the b transition, from the initial
state, we evaluate the rule Propagate-Connected to add the constraint b = 0 and exclude the
unreachable b from our run. Afterwards we can subsume the propagator for the connectedness
constraint as all loop transitions terms are negative, and our run is therefore guaranteed to be
connected. This leaves us with an automaton with just one nonzero transition, as seen in the
rightmost image of figure 1.

As there is just one automaton left, there are no products to materialise and so the calcu-
lation is complete. We present the assignment a = b = c = 0, d = 1. To find the Parikh image
rather than an assignment, we would iteratively query our calculus for partial solutions and
perform quantifier elimination on the free constants.

References
[1] Taolue Chen et al. “A Decision Procedure for Path Feasibility of String Manipulating

Programs with Integer Data Type”. In: ATVA 2020. Vol. 12302. 2020, pp. 325–342. doi:
10.1007/978-3-030-59152-6_18.

[2] Taolue Chen et al. “Decision procedures for path feasibility of string-manipulating pro-
grams with complex operations”. In: POPL 3 (2019), pp. 1–30.

[3] Dexter C. Kozen. Automata and computability. New York: Springer, 1997. isbn: 0387949070.
[4] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. “On the Complexity of

Equational Horn Clauses”. In: CADE. 2005, pp. 337–352.

3

https://doi.org/10.1007/978-3-030-59152-6_18

	Introduction
	Background
	Generalised Parikh Images

	Lazy Computation of Parikh Images for Regular Languages

