
Towards Formal Grammars As Institutions

Mikhail Barash and Magne Haveraaen

Bergen Language Design Laboratory, University of Bergen, Norway
mikhail.barash@uib.no, magne.haveraaen@uib.no

1 Introduction

Phrase structure grammars, introduced by Chomsky in 1950s, have found their applications
across many areas of computer science, especially in specification of syntax of programming
languages. Many specialized and extended grammar models have been used for this purpose:
Floyd argued [10] about the expressive power of context-free grammars soon after Chomsky’s
seminal paper, van Wijngaarden et al. [16] constructed a two-level grammar to specify syntax
and static semantics of Algol 68, Cleveland and Uzgalis [6] presented a two-level grammar that
additionally defined the dynamic semantics of Algol 68. Two-level grammars, as well as many
other grammar models are, however, computationally universal, which makes parsing algorithms
for them unpractical. This caused the research on formal grammars to focus primarily on the
family of context-free grammars and parsing algorithms for them.

Context-free grammars are a core component in many language-related tools, such as parsers,
compilers, Integrated Development Environments (IDEs), parser generators, and language
workbenches [9, 4]. While these tools start off of a grammar that specifies the syntax of
a programming language in question, they augment the grammar in order to solve the task
at hand. Thus, parsers may construct symbol tables or may annotate a grammar with type
information, IDEs may implement a special treatment for error recovery or may have type an-
notations different from what the underlying parser has, language workbenches may transform
grammars to equivalent syntax definitions in other formalisms [4], and so on. Despite the fact
these tools are ubiquitous, the interaction between grammars and such tools has not been sys-
tematically presented. Of interest are questions of grammar and tool co-evolution, grammar
reuse [7], composition [8], transformation [17].

Our proposal is to use the theory of institutions [11] to systematically explore the relationship
between various grammar formalisms. Institutions give a ground for structured mechanisms
to express augmentations of grammars (such as applying set-theoretic operations on them or
specifying grammar composition), and are instrumental to the study of modularity in grammar
specifications.

2 Institution of Abstract Syntax Grammars

Context-free grammars are tuples of the form G = (Σ, N,R, S), where Σ is a finite alphabet of
language symbols (“terminal symbols”), N is a finite alphabet of language constructs (“non-
terminal symbols”), R is a finite set of rules of the form A → α with A ∈ N , α ∈ (Σ ∪ N)∗,
and S ∈ N is the start symbol.

In this extended abstract, we consider a subclass of context-free grammars—abstract syntax
grammars—that allow trivial parsing: the right-hand side part of every rule starts with a unique
terminal symbol, that is, every rule is of the form A → σAα, with σA ∈ Σ, α ∈ (Σ ∪ N)∗,
A ∈ N . This setting allows us to lift our focus from the problem of parsing; we can then



Towards Formal Grammars As Institutions M. Barash, M. Haveraaen

extend the results discussed in the present extended abstract to the general case of context-free
grammars.

Example 1. Consider a language of arithmetic expressions in prefix notation; sample strings in
this language are “; int x ; int y ; sum (val x)(mul (val x)(val y))” and “; bool b; bool c
; sum (val b)(val c)”. This language can be defined by the following abstract syntax grammar.

S → ; E S | ε
E → int I integer variable declaration

| bool I Boolean variable declaration

| sum (E)(E) sum / disjunction

| mul (E)(E) multiplication / conjunction

| val I value of a variable

An institution [11, 12] is a tuple I = (Sig, F,M,�), where Sig is a category of morphisms,
F : Sig → Set is a functor of formulae, M : Sigop → CAT is a contravariant functor of
models, and � is a satisfaction relation, which for every object S of Sig defines a relation
�S⊆ M(Σ) × F (Σ), such that the following satisfaction relation holds: for every morphism

s : S → S ′ in Sig,
(
M(sop : S ′ ← S)

)
(µ′) �S ϕ ⇔ µ′ �S′

(
F (s : S → S ′)

)
(ϕ), where

µ′ is an object of M(S ′), and ϕ ∈ F (S).
We can construct various institutions based on a perspective in question. For example, Sig

can be a category of morphisms on the symbols of the grammar, M can represent the set of
strings generated by this grammars, and F can define the grammar formalism. The satisfaction
relation � shall then represent the fact that a string, which can be parsed according to an
original grammar, can also be parsed according to a modified grammar, based on a morphism
on an original grammar, which induces a corresponding morphism on a modified grammar.

Example 2. Consider a language L1 of nested balanced parentheses, where each parenthesis
additionally has an index, and consider a variation L0 of this language, where the indexes are
insignificant. An example of a valid string in the language L1 is (a(bb)(cc)a), and an example of
a valid string in L0 is (a(bc)(de)f ). The language L1 abstracts well-formed XML documents, and
L0 abstracts XML documents where opening and closing tags are not necessarily matched, but
documents are still well-formed tree structures. In an institution, let F represent a specification
of a grammar that defines the language L1, M represent a set of terms for a grammar that
defines L0. Then � represents the fact that a string, which can be parsed according to a
grammar for L0, can also be parsed according to a grammar for L1.

This same institution can be used to explore a correspondence between grammars for an
untyped and a typed version of a language for arithmetical expressions from Example 1. There,
a morphism on grammar rules would specify how rules of the original grammar have to be
changed in order to incorporate the typing information directly. We anticipate that polynomi-
ally parsable extensions of context-free grammars, such as conjunctive [13], Boolean [14], and
grammars with contexts [5], can be of a benefit in this setting.

Other institutions may be constructed to explore modular grammar specifications and lan-
guage composition [8]. Yet another direction is to construct institutions for morphisms on the
symbols of the grammar considered together with bananas [1]; this would allow exploring the
setting of language evolution [8].

2



Towards Formal Grammars As Institutions M. Barash, M. Haveraaen

Using Syntactic Theory Functors [12] would enable creating syntactic structuring mecha-
nisms for a given grammar specification formalism in order to, for example, extend signatures
or change notation in arbitrary ways; this would allow combining “incompatible” layers of
morphisms.

Considering language tools on top of the institutions will enable treating tools first-class. It
would be possible to translate the behaviour of the tools between institutions, or compose tools’
behaviour: given a language L defined by grammar G, a tool T based on G, and an evolved
language L′ defined by a modified grammar G′ = τ(G), then the tool T ′ for L′ could be obtained
by performing a composition-like1 operation on tool T and the grammar G′. Conversely, given
an evolved tool T ′ and an original grammar G, the tool for G can be obtained as follows:
T = T ′ ◦ τop.

References

[1] J. Andersen, C. Brabrand, D. R. Christiansen, Banana Algebra: Compositional syntactic language
extension. Sci. Comput. Program. 78:10. 1845–1870. 2013.

[2] M. Barash, Programming language specification by a grammar with contexts. NCMA 2013. 51–67.

[3] M. Barash, A New Life for Legacy Language Definition Approaches? STAF Workshops 2020.
75–84.

[4] M. Barash, Vision: The Next 700 Language Workbenches, SLE 2021, to appear.

[5] M. Barash, A. Okhotin, An extension of context-free grammars with one-sided context specifica-
tions. Inf. Comput. 237. 268–293. 2014.

[6] J. Cleaveland, R. Uzgalis, Grammars for programming languages. Elsevier. 1977.

[7] T. Cleenewerck, K. Czarnecki, J. Striegnitz, M. Völter, Evolution and Reuse of Language Specifi-
cations for DSLs (ERLS). ECOOP Workshops 2004. 187–201.

[8] S. Erdweg, P. G. Giarrusso, T. Rendel, Language composition untangled. LDTA 2012. 7.

[9] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, et al., Evaluating and comparing
language workbenches: Existing results and benchmarks for the future. Comput. Lang. Syst. Struct.
44. 24–47. 2015.

[10] R. W. Floyd, On the nonexistence of a phrase structure grammar for ALGOL 60. Commun. ACM
5(9). 483–484. 1962.

[11] J. A. Goguen, R. M. Burstall, Institutions: Abstract Model Theory for Specification and Program-
ming. J. ACM 39(1). 95–146. 1992.

[12] M. Haveraaen, M. Roggenbach, Specifying with syntactic theory functors. J. Log. Algebraic Meth-
ods Program. 113. 100543. 2020.

[13] A. Okhotin, Conjunctive Grammars. J. Autom. Lang. Comb. 6(4). 519–535. 2001.

[14] A. Okhotin, Boolean grammars. Inf. Comput. 194(1). 19–48. 2004.

[15] A. Okhotin, On the existence of a Boolean grammar for a simple programming language. AFL
2005.

[16] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, Cornelis H. A. Koster, et al., Revised Report
on the Algorithmic Language ALGOL 68. Acta Informatica 5. 1–236. 1975.

[17] V. Zaytsev, A. H. Bagge, Parsing in a Broad Sense. MoDELS 2014. 50–67.

1This operation should be more expressive than a mere composition, which is not well-defined since the
morphism τ is not surjective.

3


	Introduction
	Institution of Abstract Syntax Grammars

