Towards Normalization by Evaluation for Lambek Calculus

Niccolò Veltri

Tallinn University of Technology, Estonia niccolo@cs.ioc.ee

The syntactic calculus **L** of Lambek [8] is a deductive system which is primarily employed in mathematical studies of sentence structure in natural language. From a logical perspective, it provides a proof system for the multiplicative fragment of intuitionistic noncommutative linear logic [2, 12], comprising only of the tensor product \otimes and the two ordered implications \checkmark and \searrow as connectives.

The metatheory of the Lambek calculus has been thoroughly developed in the past decades, in particular its categorical semantics by Lambek himself [9, 10]. The Lambek calculus enjoys cut elimination [8] and various normalization procedures, e.g. by Hepple for the tensor-free fragment [7] or more recently by Amblard and Retoré [5], aimed at the reduction of the proofsearch space and consequently the number of possible derivation of a given sequent. Various diagrammatic calculi and proof nets for the Lambek calculus have also been proposed [14, 11].

In this work, we discuss the natural deduction presentaton of the Lambek calculus \mathbf{L} , together with a calculus $\mathbf{L}_{\beta\eta}$ consisting of $\beta\eta$ -long normal forms, i.e. derivations that do not contain any redexes, and no further η -expansion is applicable. The calculus $\mathbf{L}_{\beta\eta}$ is a particular fragment of the calculus of normal forms for intuitionistic noncommutative linear logic introduced by Polakov and Pfenning [12]. The normalization algorithm, sending each derivation in \mathbf{L} to its $\beta\eta$ -long normal form in $\mathbf{L}_{\beta\eta}$, is an instance of *normalization by evaluation* [6, 3], where the effective normalization procedure factors through a denotational Kripke model of the syntactic calculus. A similar procedure, for the simpler case of the Lambek calculus without tensor product, can be extrapolated from Polakov's PhD thesis [13].

Lambek Calculus in Natural Deduction

The Lambek calculus **L** has formulae given by the grammar: $A, B ::= p | A \otimes B | B \not/ A | A \setminus B$, where p comes from a given set At of atomic formulae, \otimes is a multiplicative conjunction (a.k.a. tensor product), and \nearrow and \searrow are left and right implications (a.k.a. left and right residuals, or internal homs). Sequents in **L** are pairs $\Gamma \vdash A$, where Γ is an ordered (possibly empty) list of formulae, called context, and A is a single formula. Derivations in **L** are generated by the following inference rules:

$$\frac{\Gamma \vdash A \ \Delta \vdash B}{\Gamma \vdash B \not = A} \ \mathbf{a} \mathbf{x} \qquad \frac{\Gamma \vdash A \ \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \ I_{\otimes} \qquad \frac{\Gamma \vdash A \otimes B \ \Delta_{0}, A, B, \Delta_{1} \vdash C}{\Delta_{0}, \Gamma, \Delta_{1} \vdash C} \ E_{\otimes}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash B \not = A} \ I_{\nearrow} \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \searrow B} \ I_{\searrow} \qquad \frac{\Gamma \vdash B \not = A \ \Delta \vdash A}{\Gamma, \Delta \vdash B} \ E_{\checkmark} \qquad \frac{\Gamma \vdash A \ \Delta \vdash A \searrow B}{\Gamma, \Delta \vdash B} \ E_{\checkmark}$$

We write $f : \Gamma \vdash A$ to indicate that f is a particular derivation of $\Gamma \vdash A$. We call Fma and Cxt the sets of formulae and contexts, respectively.

Substitution, i.e. the cut rule, is admissible in \mathbf{L} [8].

$$\frac{\Gamma \vdash A \quad \Delta_0, A, \Delta_1 \vdash C}{\Delta_0, \Gamma, \Delta_1 \vdash C} \text{ cut }$$

Towards Normalization by Evaluation for Lambek Calculus

Derivations in **L** can be identified modulo a certain $\beta\eta$ -equivalence relation \sim , which we omit from this extended abstract.

Canonical representatives of equivalence classes for the congruence \sim , i.e. $\beta\eta$ -long normal forms, can be organized in another calculus $\mathbf{L}_{\beta\eta}$. Sequents in $\mathbf{L}_{\beta\eta}$ have two shapes, $\Gamma \Uparrow A$ and $\Gamma \Downarrow A$. In the literature on intuitionistic propositional logic (i.e. simply typed λ -calculus, via Curry-Howard correspondence), derivations of $\Gamma \Uparrow A$ are called *normal forms*, while derivations of $\Gamma \Downarrow A$ are called *neutrals*. Derivations in $\mathbf{L}_{\beta\eta}$ are generated by the following inference rules:

$$\begin{array}{cccc} & \overline{A \Downarrow A} \text{ ax } & \frac{\Gamma \Uparrow A & \Delta \Uparrow B}{\Gamma, \Delta \Uparrow A \otimes B} I_{\otimes} & \frac{\Gamma \Downarrow A \otimes B & \Delta_0, A, B, \Delta_1 \Uparrow C}{\Delta_0, \Gamma, \Delta_1 \Uparrow C} E_{\otimes} & \frac{\Gamma \Downarrow p}{\Gamma \Uparrow p} \text{ sw}_{\Downarrow} \\ & \frac{\Gamma, A \Uparrow B}{\Gamma \Uparrow B \nearrow A} I_{\nearrow} & \frac{A, \Gamma \Uparrow B}{\Gamma \Uparrow A \searrow B} I_{\searrow} & \frac{\Gamma \Downarrow B \nearrow A & \Delta \Uparrow A}{\Gamma, \Delta \Downarrow B} E_{\checkmark} & \frac{\Gamma \Uparrow A & \Delta \Downarrow A \searrow B}{\Gamma, \Delta \Downarrow B} E_{\checkmark} \end{array}$$

Soundness of $\mathbf{L}_{\beta\eta}$ wrt. \mathbf{L} is evident: each $\mathbf{L}_{\beta\eta}$ -derivation can be embedded into \mathbf{L} via functions $\mathsf{emb}_{\Uparrow} : \Gamma \Uparrow A \to \Gamma \vdash A$ and $\mathsf{emb}_{\Downarrow} : \Gamma \Downarrow A \to \Gamma \vdash A$, which simply change \Uparrow and \Downarrow to \vdash and erase all applications of the rule sw_{\Downarrow} .

Normalization by Evaluation

 $\mathbf{L}_{\beta\eta}$ is also complete wrt. **L**. The proof of completeness corresponds to the construction of a normalization algorithm nbe, taking a derivation of $\Gamma \vdash A$ and returning a derivation of $\Gamma \Uparrow A$, satisfying the two following properties, for all derivatons $t, u : \Gamma \vdash A$: (i) $t \sim u \rightarrow \mathsf{nbe} t = \mathsf{nbe} u$; (ii) $t \sim \mathsf{emb}_{\Uparrow}$ (nbe t). The procedure nbe is defined following the normalization by evaluation (NbE) methodology: (i) Describe a Kripke model of **L** and its equational theory \sim . This provides the existence of an element $\llbracket t \rrbracket$ in the model, for each derivation t in **L**, such that $\llbracket t \rrbracket = \llbracket u \rrbracket$ whenever $t \sim u$; (ii) Construct a reification function sending an element of the Kripke model to a normal form in $\mathbf{L}_{\beta\eta}$, so that nbe t is defined as the reification of $\llbracket t \rrbracket$.

The Kripke Model. It is the presheaf category $\mathsf{Set}^{\mathsf{Cxt}}$. Explicitly, an object P of the category $\mathsf{Set}^{\mathsf{Cxt}}$ is a Cxt-indexed family of sets: for any context Γ , $P \Gamma$ is a set¹. A morphism f between P and Q in $\mathsf{Set}^{\mathsf{Cxt}}$ is a natural transformation, i.e. a Cxt-indexed family of functions: for any context Γ , f is a function between $P \Gamma$ and $Q \Gamma$. We typically omit the index Γ , and simply write $f: P \Gamma \to Q \Gamma$. The set of morphisms between P and Q is denoted $P \to Q$.

The category $\mathsf{Set}^{\mathsf{Cxt}}$ is *monoidal biclosed*, with unit, tensor and internal homs given by²:

$$\widehat{\Gamma} \Gamma = (\Gamma = \langle \rangle) \qquad (P \widehat{\otimes} Q) \ \Gamma = \{\Gamma_0, \Gamma_1 : \mathsf{Cxt}\} \times \{\Gamma = \Gamma_0, \Gamma_1\} \times P \ \Gamma_0 \times Q \ \Gamma_1 \\ (P \widehat{\nearrow} Q) \ \Gamma = \{\Delta : \mathsf{Cxt}\} \to Q \ \Delta \to P \ (\Gamma, \Delta) \qquad (Q \widehat{\searrow} P) \ \Gamma = \{\Delta : \mathsf{Cxt}\} \to Q \ \Delta \to P \ (\Delta, \Gamma)$$

The tensor and internal homs in $\mathsf{Set}^{\mathsf{C}\mathsf{x}\mathsf{t}}$ form two adjunctions: $-\widehat{\otimes}Q \dashv Q\widehat{\setminus} - \text{ and } P\widehat{\otimes} - \dashv -\widehat{\nearrow}P$. The monoidal biclosed category $\mathsf{Set}^{\mathsf{C}\mathsf{x}\mathsf{t}}$ is not completely suitable for the construction of

The monoidal biclosed category Set^{Cxt} is not completely suitable for the construction of an algorithm satisfying the NbE specification (more on why later). In analogy with the case of intuitionistic propositional logic with falsity and disjunction [1], we introduce a monad Ton Set^{Cxt}. For each presheaf P and context Γ , the elements of the set $T P \Gamma$ are inductively generated by the following constructors:

$$\frac{P \Gamma}{T P \Gamma} \eta \qquad \qquad \frac{\Gamma \Downarrow A \otimes B \quad T P (\Delta_0, A, B, \Delta_1)}{T P (\Delta_0, \Gamma, \Delta_1)} E_{\otimes}^T$$

¹We think of Cxt as a discrete category, which is why there is no mention of P's action of morphisms.

²We use Agda notation for the dependent sum and dependent product operations: $(x : A) \times B x$ and $(x : A) \to B x$ stand for $\sum_{x \in A} B x$ and $\prod_{x \in A} B x$ respectively. Curly brackets indicate implicit arguments.

Towards Normalization by Evaluation for Lambek Calculus

Interpretation of Syntax. Each formula A is interpreted as a presheaf [A]:

$$\llbracket p \rrbracket = - \Uparrow p \qquad \llbracket B \nearrow A \rrbracket = \llbracket B \rrbracket \widehat{\nearrow} \llbracket A \rrbracket \qquad \llbracket A \otimes B \rrbracket = T \left(\llbracket A \rrbracket \widehat{\otimes} \llbracket B \rrbracket\right) \qquad \llbracket A \searrow B \rrbracket = \llbracket A \rrbracket \widehat{\curvearrowleft} \llbracket B \rrbracket$$

Notice the application of the monad T in the interpretation of \otimes . The interpretation of formulae extends to contexts via the monoidal structure of $\mathsf{Set}^{\mathsf{Cxt}}$: $\llbracket\langle \rangle \rrbracket = \widehat{\mathsf{I}}$ and $\llbracket A, \Gamma \rrbracket = \llbracket A \rrbracket \widehat{\otimes} \llbracket \Gamma \rrbracket$. Each derivation $t: \Gamma \vdash A$ in \mathbf{L} is interpreted as a natural transformation $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket^3$:

The map $\operatorname{run}_A : T \llbracket A \rrbracket \to \llbracket A \rrbracket$ in (1) is a constructible natural transformation for "running" the monad T on interpreted formulae, while **rmst** and **lmst** are the left and right strengths of T wrt. the monoidal structure $(\widehat{I}, \widehat{\otimes})$.

The Normalization Function. The last phase of the NbE procedure is the extraction of normal forms from elements of the Kripke model. Concretely, this correponds to the construction of a *reification* function $\downarrow_A: \llbracket A \rrbracket \to - \uparrow A$. In order to deal with the cases of the mixedvariance connectives \checkmark and \backslash , it is necessary to simultaneously define reification together with a *reflection* procedure $\uparrow_A: - \Downarrow A \to \llbracket A \rrbracket$, embedding neutrals in the presheaf model. This is the crucial point were the interpretation of the tensor product $\llbracket A \otimes B \rrbracket = T (\llbracket A \rrbracket \otimes \llbracket B \rrbracket)$ works, while a naïve interpretation $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \otimes \llbracket B \rrbracket$ without the application of the monad T would fail. With the latter interpretation, $\uparrow_{A \otimes B} t$ would be required to have type $(\llbracket A \rrbracket \otimes \llbracket B \rrbracket) \Gamma$, which in turn will force us to split the context $\Gamma = \Gamma_0, \Gamma_1$ and provide elements of type $\llbracket A \rrbracket \Gamma_0$ and $\llbracket B \rrbracket \Gamma_1$. But this split is generally impossible to achieve, e.g. the neutral t could be a polication of the constructor E_{\bigotimes}^T . This seems to be a general pattern for all positive connectives, e.g. consider the case of falsity and disjunction in intuitionistic propositional logic [1, 4].

$$\begin{array}{rclcrcl} \downarrow_p t & = t & & \uparrow_p t & = \mathsf{sw}_{\Downarrow} t \\ \downarrow_{B \not A} t & = I_{\not /} (\downarrow_B (t (\uparrow_A \mathsf{ax}))) & & \uparrow_{B \not /A} t & = \lambda_x. \uparrow_B (E_{\not /} t (\downarrow_A x)) \\ \downarrow_{A \searrow B} t & = I_{\searrow} (\downarrow_B (t (\uparrow_A \mathsf{ax}))) & & \uparrow_{A \searrow B} t & = \lambda_x. \uparrow_B (E_{\searrow} (\downarrow_A x) t) \\ \downarrow_{A \otimes B} t & = \mathsf{run}^{\uparrow} (T (\lambda(x, y). I_{\otimes} (\downarrow_A x) (\downarrow_B y)) t) & & \uparrow_{A \otimes B} t & = E_{\otimes}^T t (\eta (\uparrow_A \mathsf{ax}, \uparrow_B \mathsf{ax})) \end{array}$$

The reflection function \uparrow_A can also be used for the definition of an element $\operatorname{fresh}_{\Gamma} : \llbracket \Gamma \rrbracket \Gamma$, for each context Γ .

The normalization function $\mathsf{nbe} : \Gamma \vdash A \to \Gamma \Uparrow A$ is then definable as the reification of the interpretation of a derivation $t : \Gamma \vdash A$ in the Kripke model: $\mathsf{nbe} \ t = \downarrow_A (\llbracket t \rrbracket \mathsf{fresh}_{\Gamma})$. Here we consider the interpretation $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \Gamma \to \llbracket A \rrbracket \Gamma$, which we can apply to $\mathsf{fresh}_{\Gamma} : \llbracket \Gamma \rrbracket \Gamma$. Intuitively, the element fresh_{Γ} gives an interpretation to all the free variables in t. Since $\llbracket t \rrbracket = \llbracket u \rrbracket$ for all $t \sim u$, then the function nbe sends ~-related derivations in \mathbf{L} to equal derivations, i.e. $\mathsf{nbe} \ t = \mathsf{nbe} \ u$ whenever $t \sim u$.

A normalization function internal to **L** can be defined by postcomposing nbe with emb_{\uparrow} . The resulting procedure is correct whenever each derivation t is ~-equivelent to its normal form emb_{\uparrow} (nbe t). Following the standard NbE strategy [3, 1], correctness can be proved using logical relations.

³In the E_{\otimes} case, applications of the natural isomorphisms of unitality and associativity of $(\widehat{I}, \widehat{\otimes})$ are omitted.

Acknowledgements. This work was supported by the Estonian Research Council grant PSG659 and by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

References

- Abel, A., Sattler, C.: Normalization by evaluation for call-by-push-value and polarized lambda calculus. In: Komendantskaya, E. (ed.) Proceedings of the 21st International Symposium on Principles and Practice of Programming Languages, PPDP 2019, ACM, article 3, 12 pp. (2019).
- [2] Abrusci, V. M.: Noncommutative intuitionistic linear logic. Math. Log. Quart. 36(4), pp. 297–318, (1990).
- [3] Altenkirch, T., Hofmann, M., Streicher, T.: Categorical reconstruction of a reduction free normalization proof. In: Pitt, D. H., Rydeheard, D. E., Johnstone, P. T. (eds.) CTCS 1995. LNCS, v. 953, pp. 182–199. Springer (1995).
- [4] Altenkirch, T., Dybjer, P., Hofmann, M., Scott., P. J.: Normalization by evaluation for typed lambda calculus with coproducts. In: Proceedings of 16th IEEE Annual Symposium on Logic in Computer Science, LICS 2001, IEEE Comput. Soc., pp. 303–310 (2001).
- [5] Amblard, M., Retoré, C: Normalization and sub-formula property for Lambek with product and PCMLL – Partially Commutative Multiplicative Linear Logic. arXiv eprint 1402.0474 (2014). Available at https://arxiv.org/abs/1402.0474.
- [6] Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed lambda-calculus. In: Proceedings of 6th IEEE Annual Symposium on Logic in Computer Science, LICS 1991, IEEE Comput. Soc., pp. 203–211 (1991).
- [7] Hepple, M.: Normal form theorem proving for the Lambek calculus. Proceedings of the 13th International Conference on Computational Linguistics, COLING 1990, v. 2, pp. 173–178 (1990). Available at https://www.aclweb.org/anthology/C90-2030/.
- [8] Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65(3), pp. 154–170 (1958).
- [9] Lambek, J.: Deductive systems and categories I: Syntactic calculus and residuated categories. Math. Syst. Theory 2(4), pp. 287–318 (1968).
- [10] Lambek, J.: Deductive systems and categories II: Standard constructions and closed categories. In P. Hilton (ed.), Category Theory, Homology Theory and Their Applications I. LNM, vol. 86, pp. 76–122. Springer (1969).
- [11] Lamarche, F., Retoré, C.: Proof nets for the Lambek calculus an overview. Third Roma Workshop: Proofs in Linguistic Categories 1998, pp. 241–262 (1998). Available at https://hal. archives-ouvertes.fr/inria-00098442
- [12] Polakow, J., Pfenning, F.: Natural deduction for intuitionistic non-communitative linear logic. In: Girard, J-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 295–309. Springer (1999).
- [13] Polakow, J.: Ordered linear logic and applications. Carnegie Mellon University (2001).
- [14] Roorda, D.: Proof nets for Lambek calculus. J. Log. Comput. 2(2), pp. 211–231 (1992).