
Towards Normalization by Evaluation for Lambek Calculus

Niccolò Veltri

Tallinn University of Technology, Estonia
niccolo@cs.ioc.ee

The syntactic calculus L of Lambek [8] is a deductive system which is primarily employed in
mathematical studies of sentence structure in natural language. From a logical perspective, it
provides a proof system for the multiplicative fragment of intuitionistic noncommutative linear
logic [2, 12], comprising only of the tensor product ⊗ and the two ordered implications � and
� as connectives.

The metatheory of the Lambek calculus has been thoroughly developed in the past decades,
in particular its categorical semantics by Lambek himself [9, 10]. The Lambek calculus enjoys
cut elimination [8] and various normalization procedures, e.g. by Hepple for the tensor-free
fragment [7] or more recently by Amblard and Retoré [5], aimed at the reduction of the proof-
search space and consequently the number of possible derivation of a given sequent. Various
diagrammatic calculi and proof nets for the Lambek calculus have also been proposed [14, 11].

In this work, we discuss the natural deduction presentaton of the Lambek calculus L, to-
gether with a calculus Lβη consisting of βη-long normal forms, i.e. derivations that do not
contain any redexes, and no further η-expansion is applicable. The calculus Lβη is a particular
fragment of the calculus of normal forms for intuitionistic noncommutative linear logic intro-
duced by Polakov and Pfenning [12]. The normalization algorithm, sending each derivation
in L to its βη-long normal form in Lβη, is an instance of normalization by evaluation [6, 3],
where the effective normalization procedure factors through a denotational Kripke model of the
syntactic calculus. A similar procedure, for the simpler case of the Lambek calculus without
tensor product, can be extrapolated from Polakov’s PhD thesis [13].

Lambek Calculus in Natural Deduction

The Lambek calculus L has formulae given by the grammar: A,B ::= p | A⊗B | B�A | A�B,
where p comes from a given set At of atomic formulae, ⊗ is a multiplicative conjunction (a.k.a.
tensor product), and � and � are left and right implications (a.k.a. left and right residuals,
or internal homs). Sequents in L are pairs Γ ` A, where Γ is an ordered (possibly empty) list
of formulae, called context, and A is a single formula. Derivations in L are generated by the
following inference rules:

A ` A ax Γ ` A ∆ ` B
Γ,∆ ` A⊗B I⊗

Γ ` A⊗B ∆0, A,B,∆1 ` C
∆0,Γ,∆1 ` C

E⊗

Γ, A ` B
Γ ` B �A

I�
A,Γ ` B

Γ ` A�B
I�

Γ ` B �A ∆ ` A
Γ,∆ ` B

E�
Γ ` A ∆ ` A�B

Γ,∆ ` B
E�

We write f : Γ ` A to indicate that f is a particular derivation of Γ ` A. We call Fma and Cxt
the sets of formulae and contexts, respectively.

Substitution, i.e. the cut rule, is admissible in L [8].

Γ ` A ∆0, A,∆1 ` C
∆0,Γ,∆1 ` C

cut

Towards Normalization by Evaluation for Lambek Calculus Veltri

Derivations in L can be identified modulo a certain βη-equivalence relation ∼, which we omit
from this extended abstract.

Canonical representatives of equivalence classes for the congruence ∼, i.e. βη-long normal
forms, can be organized in another calculus Lβη. Sequents in Lβη have two shapes, Γ ⇑ A and
Γ ⇓ A. In the literature on intuitionistic propositional logic (i.e. simply typed λ-calculus, via
Curry-Howard correspondence), derivations of Γ ⇑ A are called normal forms, while derivations
of Γ ⇓ A are called neutrals. Derivations in Lβη are generated by the following inference rules:

A ⇓ A ax
Γ ⇑ A ∆ ⇑ B
Γ,∆ ⇑ A⊗B I⊗

Γ ⇓ A⊗B ∆0, A,B,∆1 ⇑ C
∆0,Γ,∆1 ⇑ C

E⊗
Γ ⇓ p
Γ ⇑ p

sw⇓

Γ, A ⇑ B
Γ ⇑ B �A

I�
A,Γ ⇑ B

Γ ⇑ A�B
I�

Γ ⇓ B �A ∆ ⇑ A
Γ,∆ ⇓ B

E�
Γ ⇑ A ∆ ⇓ A�B

Γ,∆ ⇓ B
E�

Soundness of Lβη wrt. L is evident: each Lβη-derivation can be embedded into L via functions
emb⇑ : Γ ⇑ A → Γ ` A and emb⇓ : Γ ⇓ A → Γ ` A, which simply change ⇑ and ⇓ to ` and
erase all applications of the rule sw⇓.

Normalization by Evaluation

Lβη is also complete wrt. L. The proof of completeness corresponds to the construction of a
normalization algorithm nbe, taking a derivation of Γ ` A and returning a derivation of Γ ⇑ A,
satisfying the two following properties, for all derivatons t, u : Γ ` A: (i) t ∼ u→ nbe t = nbe u;
(ii) t ∼ emb⇑ (nbe t). The procedure nbe is defined following the normalization by evaluation
(NbE) methodology: (i) Describe a Kripke model of L and its equational theory ∼. This
provides the existence of an element JtK in the model, for each derivation t in L, such that
JtK = JuK whenever t ∼ u; (ii) Construct a reification function sending an element of the Kripke
model to a normal form in Lβη, so that nbe t is defined as the reification of JtK.

The Kripke Model. It is the presheaf category SetCxt. Explicitly, an object P of the category
SetCxt is a Cxt-indexed family of sets: for any context Γ, P Γ is a set1. A morphism f between
P and Q in SetCxt is a natural transformation, i.e. a Cxt-indexed family of functions: for any
context Γ, f is a function between P Γ and Q Γ. We typically omit the index Γ, and simply
write f : P Γ→ Q Γ. The set of morphisms between P and Q is denoted P

·→ Q.
The category SetCxt is monoidal biclosed, with unit, tensor and internal homs given by2:

Î Γ = (Γ = 〈〉) (P ⊗̂Q) Γ = {Γ0,Γ1 : Cxt} × {Γ = Γ0,Γ1} × P Γ0 ×Q Γ1

(P �̂Q) Γ = {∆ : Cxt} → Q ∆→ P (Γ,∆) (Q �̂ P) Γ = {∆ : Cxt} → Q ∆→ P (∆,Γ)

The tensor and internal homs in SetCxt form two adjunctions: −⊗̂Q a Q�̂− and P ⊗̂− a −�̂P .
The monoidal biclosed category SetCxt is not completely suitable for the construction of

an algorithm satisfying the NbE specification (more on why later). In analogy with the case
of intuitionistic propositional logic with falsity and disjunction [1], we introduce a monad T
on SetCxt. For each presheaf P and context Γ, the elements of the set T P Γ are inductively
generated by the following constructors:

P Γ
T P Γ

η
Γ ⇓ A⊗B T P (∆0, A,B,∆1)

T P (∆0,Γ,∆1)
ET⊗

1We think of Cxt as a discrete category, which is why there is no mention of P ’s action of morphisms.
2We use Agda notation for the dependent sum and dependent product operations: (x : A) × B x and

(x : A)→ B x stand for
∑

x∈A B x and
∏

x∈A B x respectively. Curly brackets indicate implicit arguments.

2

Towards Normalization by Evaluation for Lambek Calculus Veltri

Interpretation of Syntax. Each formula A is interpreted as a presheaf JAK:

JpK = − ⇑ p JB �AK = JBK �̂ JAK JA⊗BK = T (JAK ⊗̂ JBK) JA�BK = JAK �̂ JBK

Notice the application of the monad T in the interpretation of ⊗. The interpretation of formulae
extends to contexts via the monoidal structure of SetCxt: J〈〉K = Î and JA,ΓK = JAK ⊗̂ JΓK. Each

derivation t : Γ ` A in L is interpreted as a natural transformation JtK : JΓK ·→ JAK3:

JaxK x = x JI⊗ t uK (γ, δ) = η (JtK γ, JuK δ)
JE� t uK (γ, δ) = JtK γ (JuK δ) JI� tK γ = λx. JtK (γ, x)
JE� t uK (γ, δ) = JuK δ (JtK γ) JI� tK γ = λx. JtK (x, γ)
JE⊗ t uK (δ0, γ, δ1) = run (T JuK (rmst (lmst (δ0, JtK γ), δ1)))

(1)

The map runA : T JAK ·→ JAK in (1) is a constructible natural transformation for “running”
the monad T on interpreted formulae, while rmst and lmst are the left and right strengths of T
wrt. the monoidal structure (̂I, ⊗̂).

The Normalization Function. The last phase of the NbE procedure is the extraction of nor-
mal forms from elements of the Kripke model. Concretely, this correponds to the construction
of a reification function ↓A: JAK ·→ − ⇑ A. In order to deal with the cases of the mixed-
variance connectives � and �, it is necessary to simultaneously define reification together with
a reflection procedure ↑A: − ⇓ A ·→ JAK, embedding neutrals in the presheaf model. This is
the crucial point were the interpretation of the tensor product JA⊗BK = T (JAK ⊗̂ JBK) works,
while a näıve interpretation JA⊗BK = JAK⊗̂JBK without the application of the monad T would
fail. With the latter interpretation, ↑A⊗B t would be required to have type (JAK ⊗̂ JBK) Γ,
which in turn will force us to split the context Γ = Γ0,Γ1 and provide elements of type JAK Γ0

and JBK Γ1. But this split is generally impossible to achieve, e.g. the neutral t could be a
variable of the form ax : A⊗B ⇓ A⊗B. This problematic splitting is avoided through the ap-
plication of the constructor ET⊗. This seems to be a general pattern for all positive connectives,
e.g. consider the case of falsity and disjunction in intuitionistic propositional logic [1, 4].

↓p t = t
↓B�A t = I� (↓B (t (↑A ax)))
↓A�B t = I� (↓B (t (↑A ax)))
↓A⊗B t = run⇑ (T (λ(x, y). I⊗ (↓A x) (↓B y)) t)

↑p t = sw⇓t
↑B�A t = λx. ↑B (E� t (↓A x))
↑A�B t = λx. ↑B (E� (↓A x) t)
↑A⊗B t = ET⊗ t (η (↑A ax, ↑B ax))

The reflection function ↑A can also be used for the definition of an element freshΓ : JΓK Γ, for
each context Γ.

The normalization function nbe : Γ ` A → Γ ⇑ A is then definable as the reification of
the interpretation of a derivation t : Γ ` A in the Kripke model: nbe t = ↓A (JtK freshΓ).
Here we consider the interpretation JtK : JΓK Γ → JAK Γ, which we can apply to freshΓ : JΓK Γ.
Intuitively, the element freshΓ gives an intepretation to all the free variables in t. Since JtK = JuK
for all t ∼ u, then the function nbe sends ∼-related derivations in L to equal derivations, i.e.
nbe t = nbe u whenever t ∼ u.

A normalization function internal to L can be defined by postcomposing nbe with emb⇑.
The resulting procedure is correct whenever each derivation t is ∼-equivelent to its normal
form emb⇑ (nbe t). Following the standard NbE strategy [3, 1], correctness can be proved using
logical relations.

3In the E⊗ case, applications of the natural isomorphisms of unitality and associativity of (̂I, ⊗̂) are omitted.

3

Towards Normalization by Evaluation for Lambek Calculus Veltri

Acknowledgements. This work was supported by the Estonian Research Council grant
PSG659 and by the ESF funded Estonian IT Academy research measure (project 2014-
2020.4.05.19-0001).

References

[1] Abel, A., Sattler, C.: Normalization by evaluation for call-by-push-value and polarized lambda cal-
culus. In: Komendantskaya, E. (ed.) Proceedings of the 21st International Symposium on Principles
and Practice of Programming Languages, PPDP 2019, ACM, article 3, 12 pp. (2019).

[2] Abrusci, V. M.: Noncommutative intuitionistic linear logic. Math. Log. Quart. 36(4), pp. 297–318,
(1990).

[3] Altenkirch, T., Hofmann, M., Streicher, T.: Categorical reconstruction of a reduction free normal-
ization proof. In: Pitt, D. H., Rydeheard, D. E., Johnstone,P. T. (eds.) CTCS 1995. LNCS, v. 953,
pp. 182–199. Springer (1995).

[4] Altenkirch, T., Dybjer, P., Hofmann, M., Scott., P. J.: Normalization by evaluation for typed
lambda calculus with coproducts. In: Proceedings of 16th IEEE Annual Symposium on Logic in
Computer Science, LICS 2001, IEEE Comput. Soc., pp. 303–310 (2001).

[5] Amblard, M., Retoré, C: Normalization and sub-formula property for Lambek with product and
PCMLL – Partially Commutative Multiplicative Linear Logic. arXiv eprint 1402.0474 (2014). Avail-
able at https://arxiv.org/abs/1402.0474.

[6] Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed lambda-calculus.
In: Proceedings of 6th IEEE Annual Symposium on Logic in Computer Science, LICS 1991, IEEE
Comput. Soc., pp. 203–211 (1991).

[7] Hepple, M.: Normal form theorem proving for the Lambek calculus. Proceedings of the 13th In-
ternational Conference on Computational Linguistics, COLING 1990, v. 2, pp. 173–178 (1990).
Available at https://www.aclweb.org/anthology/C90-2030/.

[8] Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65(3), pp. 154–170
(1958).

[9] Lambek, J.: Deductive systems and categories I: Syntactic calculus and residuated categories. Math.
Syst. Theory 2(4), pp. 287–318 (1968).

[10] Lambek, J.: Deductive systems and categories II: Standard constructions and closed categories.
In P. Hilton (ed.), Category Theory, Homology Theory and Their Applications I. LNM, vol. 86,
pp. 76–122. Springer (1969).

[11] Lamarche, F., Retoré, C.: Proof nets for the Lambek calculus – an overview. Third Roma
Workshop: Proofs in Linguistic Categories 1998, pp. 241–262 (1998). Available at https://hal.

archives-ouvertes.fr/inria-00098442

[12] Polakow, J., Pfenning, F.: Natural deduction for intuitionistic non-communitative linear logic. In:
Girard, J-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 295–309. Springer (1999).

[13] Polakow, J.: Ordered linear logic and applications. Carnegie Mellon University (2001).

[14] Roorda, D.: Proof nets for Lambek calculus. J. Log. Comput. 2(2), pp. 211–231 (1992).

4

https://arxiv.org/abs/1402.0474
https://www.aclweb.org/anthology/C90-2030/
https://hal.archives-ouvertes.fr/inria-00098442
https://hal.archives-ouvertes.fr/inria-00098442

