
Polylogic
Mikkel Kragh Mathiesen

University of Copenhagen, Copenhagen, Denmark
mkm@di.ku.dk

Abstract

Negation in logic programming is often awkward, requiring workarounds like stratified
negation or negation by failure. We propose polylogic as an alternative that supports
general negation while respecting solution multiplicities. The theory has an algebraic
semantics in terms of De Morgan spaces, a new lattice-like structure over a module. Despite
this significant increase in power, polylogic can be realised in any Prolog system that
supports constraint handling rules. In particular, we present a SWI-Prolog library which
corresponds to the standard model of a De Morgan space.

Introduction The common treatment of negation in logic programming, exemplified by ISO
Prolog, is negation by failure: ¬P succeeds exactly once if a proof search for P finds no results,
otherwise ¬P fails. Even when succeeding no logical variables are instantiated and the answer
contains no information about how ¬P is true. This kind of negation is rather ill-behaved. It
satisfies few of the equations that we normally expect from negation and is considered impure
by virtue of being able to, for example, check whether a logical variable is instantiated.

Other solutions like stratified negation[1] provide a more coherent treatment, but places
strict requirements on its use and is typically found in very specialised logic languages like
Datalog.

We propose polylogic as a general approach to negation that properly tracks the evidence
involved in deducing negative conclusions. Additionally, polylogic provides a framework for
dealing efficiently with multiplicities, negated or otherwise.

Polylogic Consider a standard Prolog-like logic with 0 (false), ⊤ (true), + (disjunction) and ∧
(conjunction). We use 0 and + rather than ⊥ and ∨ since disjunction and conjunction in Prolog
behave more like a semiring than a lattice. Polylogic extends this logic with new constructs
⊥, ∨, ¬ and −. The idea is that 0 and + are not actually ‘false‘ and ‘disjunction‘, but ‘no
evidence‘ and ‘addition of evidence‘ respectively. Truth is negated using ¬ while evidence is
negated using −. Proper falsity and disjunction are now provided by ⊥ and ∨.

Altogether polylogic has primitives 0, ⊤ and ⊥; and operations +, −, ∧, ∨ and ¬. A
statement represents a truth value and some amount of evidence for that conclusion. A truth
value consists of both examples and counter-examples to an assertion.

• + combines evidence by taking both sides into account.
• − turns evidence for into evidence against and vice versa.
• ∧ combines truth, such that two examples yield an example and any other combination

yields a counter-example.
• ∨ combines truth, such that two counter-examples yield a counter-example and any other

combination yields an example.
• ¬ negates truth by turning examples into counter-examples and vice versa.

In particular:

Polylogic Mikkel Kragh Mathiesen

• 0 is no evidence at all.
• ⊤+⊥ is both evidence for an example and a counter-example.
• −⊤ is evidence against an example.
• ⊤−⊥ is evidence for an example and evidence against a counter-example.

Any natural number n can be interpreted as a proposition by taking the sum of n copies of
⊤. Negative integers are interpreted similarly, but using − to negate the result. With this we
can write nP = n ∧ P for any integer n and proposition P to denote the n-fold sum of copies
of P .

Examples As an example of why this is useful take the well-known conundrum in classical
logic regarding the statement “all birds can fly”. A penguin enters and a contradiction ensues.
In polylogic it is safe to admit the fact “all birds can fly” as long as one separately asserts
the fact “but penguins do not fly”. Specifically we take the phrasing “but penguins do not
fly” as evidence for penguins not flying and evidence against penguins flying. This last piece
of evidence cancels out with the evidence from the general statement, leaving us only with
evidence for penguins not flying.

Another example demonstrates how multiplicities are handled. Suppose we make a query
path(a, b) ∧ path(b, c) on a database containing path(a, b) + ¬path(a, b) + 3path(b, c). The
answer is then:

path(a, b) ∧ path(b, c) = (⊤+⊥) ∧ 3⊤ = 3(⊤ ∧⊤) + 3(⊥ ∧⊤) = 3⊥+ 3⊥ = 6⊥

In this way we correctly count all the ways of deriving a contradiction.

De Morgan spaces We now introduce the algebraic structure into which polylogic is inter-
preted. Fix a ring R. A De Morgan space1 comprises

• An R-module M

• A commutative monoid object C = (M,∧,⊤)

• A commutative monoid object D = (M,∨,⊥).
• An isomorphism of monoids ¬ : C ∼= D.

If an element x : M behaves classically in the sense that x ∧ x = x ∨ x we say that x is
consistent. In this case we define x2 = x ∧ x = x ∨ x.

A De Morgan space must satisfy the following equations whenever both sides are defined.

• ¬¬x = x

• x2 ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

• x2 ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Models For any distributive lattice L let FM(|L|) be the free module generated by elements
of L. Extend the lattice operations linearly and the result is a De Morgan space. In particular,
the initial lattice {⊥,⊤} generates what we shall call the ‘standard model’ of a De Morgan
space. All elements in this model have the form α · ⊥ + β · ⊤ where α, β : K. A consistent
element has either α = 0 or β = 0. Intuitively, these are the elements that are not both true
and false at the same time.

1A more apt name for this structure might be linear lattice, but that is unfortunately already used for an
unrelated concept.

2

Polylogic Mikkel Kragh Mathiesen

Not all models arise in this manner. Even the behaviour of the generators ⊥ and ⊤ is to
some degree up for discussion. By the axioms we have ⊤∧⊤ = ⊤, ⊤∧⊥ = ⊥ and ⊥∧⊤ = ⊥,
but the value of ⊥ ∧ ⊥ can be freely chosen. In the standard model we have ⊥ ∧ ⊥ = ⊥.
Other interesting choices include ⊥∧⊥ = −⊤, where ∧ behaves like multiplication of complex
numbers, and ⊥ ∧⊥ = 0, where conjunction ‘bottoms out‘.

Implementation Polylogic can be implemented in Prolog with constraint handling rules[4].
The basic idea is to declare a constraint scale/2. An active constraint of the form scale(m,n)
corresponds to the proposition m⊤ + n⊥. For instance, the query discussed earlier with the
result 6⊥ would be reported as scale(0, 6). Note how using constraints to count multiplicities
is not only more expressive, but also more efficient; no need to generate ‘true‘ n times when
scale(n, 0) is available.

Our implementation realises the standard De Morgan algebra, so the simplification for
conjunctions looks as follows:

scale(M1, N1), scale(M2, N2) <=> scale(M1 * M2, M1 * N2 + M2 * N1 + N1 * N2).

The implementation of ¬ is slightly complicated, but essentially ¬P runs the goal P and then
exchanges the two components of scale.

The primary export of the polylogic library is ¬. Other operations can be derived from it,
such as disjunction P ∨Q which is simply defined as ¬(¬P ∧ ¬Q).

Polylogic interacts well with the rest of Prolog. Code using only the pure fragment of
Prolog works seamlessly, but will of course not produce negated results. A library like CLP(Z)
has a rich enough interface to allow writing a thin wrapper that generates both examples
and counter-examples. Aggregation predicates like findall will disregard constraints, so the
polylogic library defines poly_findall which collects multiplicities and negations properly.

Related work Polylogic is closely related to the notion of polyset [3]. In fact, a predicate
of one argument that uses polylogic constructs can be thought of a polyset. The algebraic
semantics and the implementation techniques also generalise smoothly to polysets.

There exist a plethora of generalisations of lattices. They generally seek to maintain idem-
potency, whereas polylogic eschews idempotency in favour of linearity. Probably the most
similar structure is a bilattice [2], operating with both truth and knowledge similar to our truth
and evidence. There is no concept of negative knowledge, though, and negation therefore works
differently.

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level.

Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995.
[2] Melvin Fitting. Bilattices and the semantics of logic programming. J. Log. Program., 11(2):91–116,

June 1991.
[3] Fritz Henglein and Mikkel Kragh Mathiesen. Module theory and query processing (extended ab-

stract). In Proc. Mathematically Structured Functional Programming (MSFP), MSFP ’20, 2020.
[4] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and application.

05 2004.

3

