A Decentralized Analysis of Multiparty Protocols

Bas van den Heuvel and Jorge A. Pérez
University of Groningen, The Netherlands

This extended abstract summarizes a new approach to the analysis of the protocols that are
essential in concurrent and distributed software. These protocols ensure a correct communi-
cation between independent programs. The important but difficult challenge is ensuring that
communicating programs never violate the protocol and never get stuck in a deadlock. The
work we describe here is currently under submission [21].

In this work, we focus on Multiparty Session Types (MPST) [12], in which protocols describe
multiparty interactions from a vantage point. Consider the following motivating example,
a recursive authorization protocol, involving three participants: a Client, a Server, and an
Authorization service. The protocol specifies that the Server requests the Client to login, upon
which the Authorization service mediates in the verification of the Client’s password.

Multiparty Session Types In MPST, protocols are formally specified as global types. The
following global type defines the just-described authorization protocol, with participants Client
(‘¢’), Server (‘s’), and Authorization service (‘a’):

G = rec X .5 — ¢ {Iogin . ¢ — a{passwd(str) . a — s{auth(bool) . X}},}

quit . ¢ — a{quit . end}

The global type Gauh specifies a recursive protocol on the recursion variable X (‘rec X’). Then,
the global type stipulates a message from s to ¢ (‘s — ¢’), where s can choose between sending
the label login or the label quit. The rest of the protocol depends on this initial choice by s.
In the case of login, ¢ sends to a the label passwd, along with a string value (‘(str)’). Then, a
sends to s the label auth, along with a boolean value (‘(bool)’). Finally, the protocol starts over
with a call on the recursion variable X. If s initially chooses quit, ¢ forwards the quit label to
a, after which the protocol ends (‘end’).

The theory of MPST analyzes implementations of global types as message-passing processes.
An implementation of a global type consists of a network of individual processes, each of which
implements the role of one of the global type’s participants. We call these individual processes
the global type’s participant implementations. The analysis of MPST theory involves verifying
the correctness of these networks of participant implementations. In this context, correctness
follows from three essential properties: protocol fidelity (processes interact as stipulated by the
global type), communication safety (no errors or mismatches in messages), and deadlock freedom
(processes never get stuck waiting for each other). Verifying these properties is a challenging
problem, which is further complicated by two salient features in message-passing concurrency,
motivated in the context of our running example protocol:

e Delegation: the Client asks another participant, such as a Password manager, to act on
their behalf;

o [Interleaving: a single process implements the roles of both the Server and the Authoriza-
tion service.

MPST has been widely studied, from both foundational and applied angles [3, 6, 13, 18,
1, 2,19, 7, 14, 15]. Most works derived from the original theory by Honda et al. [11] define



A Decentralized Analysis of Multiparty Protocols Van den Heuvel and Pérez

behavioral type systems for a w-calculus to ensure protocol fidelity and communication safety.
In the absence of delegation and interleaving, deadlock freedom is easy because the analysis
only concerns single-threaded processes. However, in their presence, deadlock freedom becomes
much harder, addressed only by some works [3, 16, §].

Coordination and Topology In our work, we take on the challenge of verifying the cor-
rectness and deadlock freedom of networks of participant implementations of global types,
including support for delegation and interleaving. The particulars of networks of communicat-
ing processes are informed by the way in which their interactions are coordinated. There are
two salient approaches [17]|, which we motivate by analogies by Van der Aalst [22]:

e Orchestration, where a coordinator process ensures that all participants follow the protocol
as intended, like the conductor of an orchestra;

e Choreography, where the processes directly follow the protocol without external coordi-
nation, like dancers individually dancing together to perform a global scenario.

The analysis of MPST falls under the choreography-based approach: each process is in-
formed about their role in an implementation directly from the global type, interacting directly
with each other without the support of an external coordinator. The coordination of networks
of processes also has consequences for the topologies that these networks can be in. Orches-
trated coordination imposes a centralized network topology, because all participating processes
must connect to an additional, central component. However, topologies in choreographed coor-
dination can range from centralized to decentralized, because the involved processes can connect
directly to each other.

Dancing Shoes: A Decentralized Implementation In our work, we analyze decentralized
implementations of global types. In particular, we work with implementations in a 7w-calculus
with asynchronous communication, and use a binary session type system to verify the correct-
ness of these implementations leveraging on existing results. Each of a global type’s participant
implementations has one particular channel on which they can send and receive protocol mes-
sages. Given a global type, we project the global type onto each of its participants, resulting in
a binary session type for type checking the behavior of each of the participant implementations.

Because the participant implementations each only have a single channel for communica-
tion, we cannot connect them directly to each other to form a decentralized process network.
Instead, we leverage on the global type to generate router processes (simply routers), that en-
able the participant implementations to communicate directly with each other. We generate
a router for each participant, such that it redirects the communications on the single chan-
nel of the participant’s implementation over several channels, one for every other participant,
according to the participant’s role in the global type. The routers then serve to “wrap” each
participant implementation, forming a routed implementation. The resulting routed implemen-
tations can then be connected directly to each other, such that together they correctly realize
the protocol specified by the global type. The configurations of networks of connected routed
implementations are arbitrary, subsuming both centralized and decentralized topologies.

As they are synthesized from global types, routers do not change the behavior of participant
implementations. We can look at routers in the context of Van der Aalst’s analogy between
dancers and choreographies of communicating processes: the participant implementations are
barefoot dancers, and the routers provide them with the appropriate dancing shoes to perform
their dance. More concretely, Figure 1 (left) illustrates a choreography of the routed imple-
mentations of the participants of Guh: once wrapped in an appropriate router, the participant
implementations can be connected directly to each other.



A Decentralized Analysis of Multiparty Protocols Van den Heuvel and Pérez

P Q
router router

orchestrator

router
P

Figure 1: Given processes P, (), and R implementing the roles of ¢, s, and a, respectively,
protocol Guuh can be realized as a choreography (our approach, left) and as an orchestration
(previous works, right).

Relative Projection and Dependencies To ensure that routed implementations conform
to their global type, we again rely on the binary session type system. To verify the behavior on
the channels that connect routed implementations, we use another form of projection: relative
projection. Relative projection projects the global type onto pairs of participants, resulting
in a view of the protocol that is relative only to these two participants. We use this relative
view of the protocol as a binary session type to type check the communications on the channel
connecting the routed implementations of this pair of participants.

A challenge in relative projection is the possibility of encountering non-local choices: choices
made by other participants that affect the protocol between the two involved participants.
We handle this by explicitely recording such non-local choices during relative projection as
dependencies, informing the involved participants that they need to coordinate on the result of
these non-local choices.

Related Work Its natural support for decentralized process networks is the distinguishing
feature of our work with respect to similar prior works based on binary session type systems.
Caires and Pérez [4] use centralized process networks: they connect each participant implemen-
tation to an additional orchestrator process derived from the global type. Carbone et al. [5]
define a type system to validate choreographies of participant implementations using global
types, but their deadlock freedom result relies on an encoding in which they also add a central
orchestrator process. Compare the realizations of Gau, in Figure 1 as a decentralized (our
approach, left) and as a centralized (prior works, right) process network.

Both these works crucially rely on orchestration, because they leverage on binary session
type systems that only admit tree-shaped process networks. Hence, these type systems do
not support the cyclic process networks needed for decentralization. Our work overcomes this
obstacle by relying on a type system that does admit cyclic process networks: APCP [20].
APCP ensures deadlock freedom for well-typed processes by relying on annotations on types
that prevent circular dependencies, such that processes never get stuck waiting for each other.

Other approaches to analyzing coordinations of interacting processes include using Petri
nets. For example, Fossati et al. [10] express multiparty session protocols as free choice Petri
nets [9], relying on classical results to prove protocol conformance and progress results for
process implementations of such protocols.

Acknowledgments We thank the reviewers for their useful feedback. This work is partially
supported by the Netherlands Organization for Scientific Research (NWO) under the VIDI
Project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).



A Decentralized Analysis of Multiparty Protocols Van den Heuvel and Pérez

References

(1

2]

3l

(4]

(5]

(6]

(7]

18]

Bl

[10]

[11]

[12]

[13]

[14]

Franco Barbanera and Mariangiola Dezani-Ciancaglini. Open Multiparty Sessions. FElectronic
Proceedings in Theoretical Computer Science, 304:77-96, September 2019. arXiv:1909.05972,
doi:10.4204/EPTCS.304.6.

Andi Bejleri, Elton Domnori, Malte Viering, Patrick Eugster, and Mira Mezini. Comprehensive
Multiparty Session Types. The Art, Science, and Engineering of Programming, 3(3):6:1-6:59,
February 2019. doi:10.22152/programming- journal.org/2019/3/6.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini,
and Nobuko Yoshida. Global Progress in Dynamically Interleaved Multiparty Sessions. In
Franck van Breugel and Marsha Chechik, editors, CONCUR 2008 - Concurrency Theory, Lec-
ture Notes in Computer Science, pages 418-433, Berlin, Heidelberg, 2008. Springer. doi:
10.1007/978-3-540-85361-9_33.

Luis Caires and Jorge A. Pérez. Multiparty Session Types Within a Canonical Binary Theory,
and Beyond. In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed Objects,
Components, and Systems, Lecture Notes in Computer Science, pages 74-95. Springer International
Publishing, 2016. doi:10.1007/978-3-319-39570-8_6.

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schiirmann, and Philip Wadler. Co-
herence Generalises Duality: A Logical Explanation of Multiparty Session Types. In Josée De-
sharnais and Radha Jagadeesan, editors, 27th International Conference on Concurrency The-
ory (CONCUR 2016), volume 59 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 33:1-33:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CONCUR.2016.33.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On Global Types and
Multi-Party Session. Logical Methods in Computer Science, 8(1), March 2012. doi:10.2168/
LMCS-8(1:24)2012.

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global types
with internal delegation. Theoretical Computer Science, 807:128-153, February 2020. doi:10.
1016/j.tcs.2019.09.027.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238-302, February 2016. doi:10.1017/S0960129514000188.

Jorg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge University Press, January
1995.

Luca Fossati, Raymond Hu, and Nobuko Yoshida. Multiparty Session Nets. In Matteo Maffei and
Emilio Tuosto, editors, Trustworthy Global Computing, Lecture Notes in Computer Science, pages
112-127, Berlin, Heidelberg, 2014. Springer. doi:10.1007/978-3-662-45917-1_8.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 08, pages 273-284, San Francisco, California, USA, January 2008.
Association for Computing Machinery. doi:10.1145/1328438.1328472.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
Journal of the ACM, 63(1), March 2016. doi:10.1145/2827695.

Raymond Hu, Andi Bejleri, Nobuko Yoshida, and Pierre-Malo Denielou. Parameterised Multiparty
Session Types. Logical Methods in Computer Science, Volume 8, Issue 4, October 2012. doi:
10.2168/LMCS-8(4:6)2012.

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty Session Program-
ming With Global Protocol Combinators. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 9:1-9:30, Dagstuhl, Germany, 2020. Schloss


http://arxiv.org/abs/1909.05972
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.22152/programming-journal.org/2019/3/6
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/978-3-662-45917-1_8
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012

A Decentralized Analysis of Multiparty Protocols Van den Heuvel and Pérez

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Dagstuhl-Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.ECO0P.2020.9.

Rupak Majumdar, Nobuko Yoshida, and Damien Zufferey. Multiparty motion coordination:
From choreographies to robotics programs. Proceedings of the ACM on Programming Languages,
4(OOPSLA):134:1-134:30, November 2020. doi:10.1145/3428202.

Luca Padovani, Vasco Thudichum Vasconcelos, and Hugo Torres Vieira. Typing Liveness in Multi-
party Communicating Systems. In Eva Kiihn and Rosario Pugliese, editors, Coordination Models
and Languages, Lecture Notes in Computer Science, pages 147162, Berlin, Heidelberg, 2014.
Springer. doi:10.1007/978-3-662-43376-8_10.

C. Peltz. Web services orchestration and choreography. Computer, 36(10):46-52, October 2003.
doi:10.1109/MC.2003.1236471.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming. In Peter Miiller, editor, 31st FEuro-
pean Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 24:1-24:31, Dagstuhl, Germany, 2017. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECO0P.2017.24.

Alceste Scalas and Nobuko Yoshida. Less is more: Multiparty session types revisited. Proceedings
of the ACM on Programming Languages, 3(POPL):30:1-30:29, January 2019. Revised, extended
version at https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf. doi:
10.1145/3290343.

Bas van den Heuvel and Jorge A. Pérez. Deadlock Freedom for Asynchronous and Cyclic Process
Networks. Electronic Proceedings in Theoretical Computer Science, 347:38-56, October 2021.
arXiv:2110.00146, doi:10.4204/EPTCS.347.3.

Bas van den Heuvel and Jorge A. Pérez. A Decentralized Analysis of Multiparty Protocols.
arXi:2101.09058 [cs], June 2021. arXiv:2101.09038.

W. M. P. van der Aalst. Orchestration. In Ling Liu and M. Tamer Ozsu, editors, Encyclo-
pedia of Database Systems, pages 2004—-2005. Springer US, Boston, MA, 2009. doi:10.1007/
978-0-387-39940-9_1197.


https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1145/3428202
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
http://arxiv.org/abs/2110.00146
https://doi.org/10.4204/EPTCS.347.3
http://arxiv.org/abs/2101.09038
https://doi.org/10.1007/978-0-387-39940-9_1197
https://doi.org/10.1007/978-0-387-39940-9_1197

