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This extended abstract summarizes a new approach to the analysis of the protocols that are
essential in concurrent and distributed software. These protocols ensure a correct communi-
cation between independent programs. The important but difficult challenge is ensuring that
communicating programs never violate the protocol and never get stuck in a deadlock. The
work we describe here is currently under submission [21].

In this work, we focus on Multiparty Session Types (MPST) [12], in which protocols describe
multiparty interactions from a vantage point. Consider the following motivating example,
a recursive authorization protocol, involving three participants: a Client, a Server, and an
Authorization service. The protocol specifies that the Server requests the Client to login, upon
which the Authorization service mediates in the verification of the Client’s password.

Multiparty Session Types In MPST, protocols are formally specified as global types. The
following global type defines the just-described authorization protocol, with participants Client
(‘¢’), Server (‘s’), and Authorization service (‘a’):

G = rec X .5 — ¢ {Iogin . ¢ — a{passwd(str) . a — s{auth(bool) . X}},}

quit . ¢ — a{quit . end}

The global type Gauh specifies a recursive protocol on the recursion variable X (‘rec X’). Then,
the global type stipulates a message from s to ¢ (‘s — ¢’), where s can choose between sending
the label login or the label quit. The rest of the protocol depends on this initial choice by s.
In the case of login, ¢ sends to a the label passwd, along with a string value (‘(str)’). Then, a
sends to s the label auth, along with a boolean value (‘(bool)’). Finally, the protocol starts over
with a call on the recursion variable X. If s initially chooses quit, ¢ forwards the quit label to
a, after which the protocol ends (‘end’).

The theory of MPST analyzes implementations of global types as message-passing processes.
An implementation of a global type consists of a network of individual processes, each of which
implements the role of one of the global type’s participants. We call these individual processes
the global type’s participant implementations. The analysis of MPST theory involves verifying
the correctness of these networks of participant implementations. In this context, correctness
follows from three essential properties: protocol fidelity (processes interact as stipulated by the
global type), communication safety (no errors or mismatches in messages), and deadlock freedom
(processes never get stuck waiting for each other). Verifying these properties is a challenging
problem, which is further complicated by two salient features in message-passing concurrency,
motivated in the context of our running example protocol:

e Delegation: the Client asks another participant, such as a Password manager, to act on
their behalf;

o [Interleaving: a single process implements the roles of both the Server and the Authoriza-
tion service.

MPST has been widely studied, from both foundational and applied angles [3, 6, 13, 18,
1, 2,19, 7, 14, 15]. Most works derived from the original theory by Honda et al. [11] define
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behavioral type systems for a w-calculus to ensure protocol fidelity and communication safety.
In the absence of delegation and interleaving, deadlock freedom is easy because the analysis
only concerns single-threaded processes. However, in their presence, deadlock freedom becomes
much harder, addressed only by some works [3, 16, §].

Coordination and Topology In our work, we take on the challenge of verifying the cor-
rectness and deadlock freedom of networks of participant implementations of global types,
including support for delegation and interleaving. The particulars of networks of communicat-
ing processes are informed by the way in which their interactions are coordinated. There are
two salient approaches [17]|, which we motivate by analogies by Van der Aalst [22]:

e Orchestration, where a coordinator process ensures that all participants follow the protocol
as intended, like the conductor of an orchestra;

e Choreography, where the processes directly follow the protocol without external coordi-
nation, like dancers individually dancing together to perform a global scenario.

The analysis of MPST falls under the choreography-based approach: each process is in-
formed about their role in an implementation directly from the global type, interacting directly
with each other without the support of an external coordinator. The coordination of networks
of processes also has consequences for the topologies that these networks can be in. Orches-
trated coordination imposes a centralized network topology, because all participating processes
must connect to an additional, central component. However, topologies in choreographed coor-
dination can range from centralized to decentralized, because the involved processes can connect
directly to each other.

Dancing Shoes: A Decentralized Implementation In our work, we analyze decentralized
implementations of global types. In particular, we work with implementations in a 7w-calculus
with asynchronous communication, and use a binary session type system to verify the correct-
ness of these implementations leveraging on existing results. Each of a global type’s participant
implementations has one particular channel on which they can send and receive protocol mes-
sages. Given a global type, we project the global type onto each of its participants, resulting in
a binary session type for type checking the behavior of each of the participant implementations.

Because the participant implementations each only have a single channel for communica-
tion, we cannot connect them directly to each other to form a decentralized process network.
Instead, we leverage on the global type to generate router processes (simply routers), that en-
able the participant implementations to communicate directly with each other. We generate
a router for each participant, such that it redirects the communications on the single chan-
nel of the participant’s implementation over several channels, one for every other participant,
according to the participant’s role in the global type. The routers then serve to “wrap” each
participant implementation, forming a routed implementation. The resulting routed implemen-
tations can then be connected directly to each other, such that together they correctly realize
the protocol specified by the global type. The configurations of networks of connected routed
implementations are arbitrary, subsuming both centralized and decentralized topologies.

As they are synthesized from global types, routers do not change the behavior of participant
implementations. We can look at routers in the context of Van der Aalst’s analogy between
dancers and choreographies of communicating processes: the participant implementations are
barefoot dancers, and the routers provide them with the appropriate dancing shoes to perform
their dance. More concretely, Figure 1 (left) illustrates a choreography of the routed imple-
mentations of the participants of Guh: once wrapped in an appropriate router, the participant
implementations can be connected directly to each other.
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Figure 1: Given processes P, (), and R implementing the roles of ¢, s, and a, respectively,
protocol Guuh can be realized as a choreography (our approach, left) and as an orchestration
(previous works, right).

Relative Projection and Dependencies To ensure that routed implementations conform
to their global type, we again rely on the binary session type system. To verify the behavior on
the channels that connect routed implementations, we use another form of projection: relative
projection. Relative projection projects the global type onto pairs of participants, resulting
in a view of the protocol that is relative only to these two participants. We use this relative
view of the protocol as a binary session type to type check the communications on the channel
connecting the routed implementations of this pair of participants.

A challenge in relative projection is the possibility of encountering non-local choices: choices
made by other participants that affect the protocol between the two involved participants.
We handle this by explicitely recording such non-local choices during relative projection as
dependencies, informing the involved participants that they need to coordinate on the result of
these non-local choices.

Related Work Its natural support for decentralized process networks is the distinguishing
feature of our work with respect to similar prior works based on binary session type systems.
Caires and Pérez [4] use centralized process networks: they connect each participant implemen-
tation to an additional orchestrator process derived from the global type. Carbone et al. [5]
define a type system to validate choreographies of participant implementations using global
types, but their deadlock freedom result relies on an encoding in which they also add a central
orchestrator process. Compare the realizations of Gau, in Figure 1 as a decentralized (our
approach, left) and as a centralized (prior works, right) process network.

Both these works crucially rely on orchestration, because they leverage on binary session
type systems that only admit tree-shaped process networks. Hence, these type systems do
not support the cyclic process networks needed for decentralization. Our work overcomes this
obstacle by relying on a type system that does admit cyclic process networks: APCP [20].
APCP ensures deadlock freedom for well-typed processes by relying on annotations on types
that prevent circular dependencies, such that processes never get stuck waiting for each other.

Other approaches to analyzing coordinations of interacting processes include using Petri
nets. For example, Fossati et al. [10] express multiparty session protocols as free choice Petri
nets [9], relying on classical results to prove protocol conformance and progress results for
process implementations of such protocols.
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