
Clairvoyant Assertions∗

Ole Jørgen Abusdal1, Volker Stolz1, Violet Ka I Pun1, Crystal Chang Din2, and
Rohit Gheyi3

1 Western Norway University of Applied Sciences, Norway
{ojab,vsto,vpu}@hvl.no

2 University of Bergen, Norway
Crystal.Din@uib.no

3 Universidade Federal de Campina Grande, Brazil
rohit@dsc.ufcg.edu.br

Abstract

Refactorings can subtly change the behavior of software. Developers rely on unit tests
to track unanticipated changes of behavior. For some refactorings, additional assertions
can be introduced that increase the confidence in the refactored code. However, as this only
uncovers problems after they have been introduced, we propose here clairvoyant assertions
that predict the correctness of a refactoring, specifically, with respect to deadlocks. It is
our long-term goal to develop synergies between theorem-proving and runtime checking for
software development, where e.g. these assertions coincide with the necessary precondition
checks for a refactoring, and can partially be (automatically) discharged or carried forward
as runtime checks in case this is not possible.

A refactoring is a program transformation that must preserve the externally observable
behavior of a program while improving, by some measure, its internal structure. Refactoring is
a well established software engineering practise popularized by Fowler [2].

A possible strategy to check that a refactoring preserves behaviour is to introduce corre-
sponding assertions into the refactored code [1]. These assertions may fire e.g. when executing
unit tests and will give the developers feedback on the correctness of the refactoring, albeit only
after the fact. We improve on this and avoid wasted effort by proposing to introduce clairvoyant
assertions in the original code that predict the correctness of the refactoring, and could ideally
be discharged by a theorem-prover as part of checking the pre-conditions for the refactoring.

d = p.getDept();
m = d.getManager();
m = p.getManager();

(a) call site change

interface PersonI {
DeptI getDept();
PersonI getManager();
...

}

(b) interface change

class Person(DeptI d)
implements PersonI {
...
PersonI getManager() {
return d.getManager();

}
}

(c) class change

Figure 1: Hide Delegate
refactoring in ABS

We demonstrate our idea in the context of recent work [3] where
refactorings that are straightforward transformations in a sequential
setting such as in e.g. sequential Java code become perilous in the
concurrent actor-language ABS (“Abstract Behavioral Specification
language”)1 where some are shown to introduce deadlocks.

Deadlocks in general and in active-object based languages in par-
ticular have traditionally been studied from the perspective of a static
analysis. We study deadlocks through a rather natural program trans-
formation that introduces dynamic detection. Observing a refactored
program that had been transformed to detect deadlocks we carefully
extracted key information from the dynamic detection introduced and
used it to slightly alter the dynamic detection applied to the original
program in order to now also predict whether a particular refactoring,
if applied, would introduce a deadlock; assuming we had no deadlocks
any deadlock detection now would mean a detection in the refactored

∗This work is supported by DIKU through the “Modern Refactoring” project.
1https://abs-models.org/

https://abs-models.org/


Clairvoyant Assertions Abusdal, Stolz, Pun, Din and Gheyi

program. Let us briefly expland on what the deadlocks are with reference to a particular
refactoring applied in ABS.

c:Client p:Person d:Dept.

getDept()

getManager()

(a) before

c:Client p:Person d:Dept.

getManager()

getManager()

(b) after

Figure 2: Effect of
HideDelegate refactoring

The refactoring in question, Hide Delegate, can be seen in Fig. 1
where we show the before and after code at the same time by
showing what could be the output of a diff; the green parts are
added by the refactoring, the red parts are removed. Here a client
object c wishes to get a PersonI object through an intermediary
DeptI object d that p has access to. The refactoring moves this
operation from the call site in c (see fig. 1a) to the object p (see
Fig. 1c). For this transformation to be a refactoring it should in
a sense remain the same program as far as externally observable
changes. The refactoring accomplishes a decoupling; the Client no
longer needs to know of the Department. The change caused by
the refactoring, which is not seen in and of itself as externally ob-
servable, is the different call sequence seen in the sequence diagram
shown in Fig. 2. However we do not have enough information from
such a sequence diagram whether there will be a problem in ABS.

cog 1 cog 2

c

active

d

p

active

getManager()

getManager()

...

...

...

Figure 3: Objects
“running” concurrently

When we also consider the diagram show in Fig. 3 showing ad-
ditional runtime artifacts of ABS; how objects are partitioned into
concurrently running groups in which one object at a time can be
“active” while others are blocked. It becomes clear that an execution
would result in an attempted call chain as shown in the diagram will
produce a deadlock. Here we are showing the objects as circles that
are partitioned into squares; the squares represent the concurrent par-
titioning. A call from c to p will result in c blocking its concurrent
group and as such the code in p that wants to call d which resides in the same group as c will
remain stuck as d will not become “active” until c releases its hold on the group. We propose a
simple transformation that takes a program P and produces a program Ta(P ) that is equivalent
to P except that where P would deadlock Ta(P ) terminates with an assertion. Thus if we have
a transformation Tr that should be a refactoring and we know that P does not deadlock, we
can get a counterexample of whether Tr(P ) ∼ P through any observed deadlock termination
in Ta(Tr(P )). In that case Tr is not a refactoring as the transformation is non-preserving wrt.
observable behaviors. The technique of runtime checks is no new result and is seen in other
works to ensure safer refactorings [1].

A new development is to carefully analyse the assertions in Ta(Tr(P )) and when possible
reconstruct them in the form of a special transformation Tca such that if we write for a program

that executes the steps l and terminates with an assertions P ′ l
; ⊥ then our special transforma-

tion is such that Tca(P )
l
; iff. Ta(Tr(P ))

f(l)
; ⊥ where f is a function mapping steps in Tca(P )

to steps in Ta(Tr(P )). The assertions in Tca are what we dub clairvoyant assertions; predict
whether Tr can be safely applied to P . This is not something that we have shown possible
in general, but at least for the case of Hide Delegate we can produce such a transformation.
It remains to be seen whether other refactorings are admissible for a similar construction of
predictive assertions that will fire if the refactoring were to be applied.

References

[1] Anna Maria Eilertsen et al. Safer refactorings. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: (ISoLA’16), volume 9952

2



Clairvoyant Assertions Abusdal, Stolz, Pun, Din and Gheyi

of Lecture Notes in Computer Science, pages 517–531, 2016.

[2] Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison Wesley object
technology series. Addison-Wesley, 1999.

[3] Volker Stolz et al. Refactoring and active object languages. In Tiziana Margaria and Bernhard Stef-
fen, editors, Leveraging Applications of Formal Methods, Verification and Validation (ISoLA’20),
volume 12477 of Lecture Notes in Computer Science, pages 138–158. Springer, 2020.

3


