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1 Main goal

Our overall goal is to develop a high-level language that unifies concepts from IoT and robotic
languages. These concepts include dynamicity, autonomy, as well as safety, security, and privacy
of multi-robot missions that act in IoT augmented environments. We will discuss language
paradigms and language constructs that are suitable in this setting. We take the executable
multi-robot mission specification languages as our starting point and reference from the robotic
side. They allow specifying mission goals, navigation and manipulation constraints including
timing constraints. From this perspective IoT provides a dynamic knowledge environment for
mission completion. OrCcad [9] is one example of such a robotic language designed for real-time
control of robot actions. This language as well as other coordination languages for robotics
and IoT are based on event systems and state machines. Orchestration of robot systems,
for instance as provided by the Resh language [1], is also a relevant perspective to program
complex multi-robot applications. The most prominent high-level control systems used for the
Robot Operating System (ROS and ROS2) are SMACC [14] (an event-driven, asynchronous,
behavioral state machine library for real-time ROS applications written in C++, utilizing the
Boost Statechart Library), BehaviorTree.CPP [11] (hierarchical and having more expressive
power than traditional FSMs) and SMACH [13] (hierarchical state machines). There might
be others with more narrow focus but they are currently not widely adopted by the robotics
community. Ada [12] and SPARK [10] are available for ROS(/2), and SPARK was used in [15].
We are interested in a high-level modeling language useful for integration of IoT, robots, and
distributed system designs, and supported by modular specification and verification techniques.
In particular we will look at the active object paradigm because it comes with a built-in support
of autonomous objects, has proved relevant for modeling of IoT systems [7], and supports
compositional verification. We are aiming at a language that, on the one hand, is expressive
enough to unequivocally specify necessary aspects of multi-robot mission orchestration, and on
the other hand, has a simple and compositional semantics to support efficient verification and
provability. This combination represents a challenge in the current robotics research landscape.
We will focus on high-level, object-oriented modelling of robotic and IoT systems. The language
should be executable and allow straight forward translation into more low-level languages. This
will allow prototyping and testing of components at an early program development state, and
combining them with assurance measures such as model checking and deductive verification.
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2 Introduction

Provability of IoT and robotic systems depends on the language used to model the system,
its semantics, the kind of system properties to prove, and the techniques used to verify them.
One may take a bottom/up approach, starting with a low-level language or one may take a
top-down approach, starting with a more abstract language with an expressiveness suitable for
IoT/robotic systems. Such a language can be used to model IoT and robotic systems, and if
the language is executable, it can be used for simulation and prototyping of IoT systems. From
a practical engineering viewpoint, such a high-level language being imperative with standard
mechanisms such as object-orientation, IoT and robotic models made in the language can easily
be translated to more low-level languages that are natively used in the domain. The second
approach also has the advantage that one can define the language and its semantics so that it
is amenable to semantic analysis and verification. Our work follow the second approach.
The active object paradigm (AOP) provides a natural way of modelling service-oriented compu-
tations, in general, and IoT systems in particular, letting one IoT device correspond to one (or
more) active objects. AOP covers the fundamental aspects of IoT systems, such as distribution
of concurrent units communicating by message passing, where each unit can run on a device
with limited processing power and limited storage. This paradigm supports asynchronous as
well as synchronous communication. Each active object is autonomous with its own processor
and process queue, and with local scheduling control of the queue [3]. The notion of concurrent
object groups, which allow several active objects to be seen as a single object with its own
interface [5], allows modelling of robot systems composed of several concurrent objects, be it a
robot with internal concurrent parts or a robot swarm with many robots and possibly IoT de-
vices. Since active objects may represent IoT devices, extending this paradigm to robot agents
and their functional components seems a natural option.
A number of different language combinations based on the active object paradigm are explored
in [7], and in particular the setting with cooperative scheduling through suspension but without
the mechanism of futures. The latter is identified as the most attractive one for IoT systems.
The analysis of robotic languages shows that the same core concepts are relevant also for
programming multi-robot applications, and the constructs for abstract mission description can
be built on top of them. The semantic of this language paradigm is mathematically simple,
avoiding issues such as aliasing problems, heap management, and the synchronization problems
with shared variable systems. A lightweight operating system suffices as a computation platform
since process control is built into the language itself. As the hardware of IoT devices and robots
range from units with very limited storage, battery, and processing power to much more powerful
ones, it is useful to have a language with subsets corresponding to different levels of hardware
capabilities. This can be achieved by limiting the synchronization and call mechanisms.
We have defined virtual machines for different versions of the semantics, defined in rewriting
logic. This setting provides prototyping tools as well as model checking tools. Furthermore, it
supports distributed heterogeneous networks [4], dynamic software updates, by asynchronous
runtime upgrades of code, where each object may upgrade its software independently of other
objects [6]. This added layer of semantic complexity caused by dynamic updates may be sup-
ported by an operational semantic framework to support modularity of the semantic definition
as suggested in [2].
With respect to formal analysis, we have developed methods for static modular analysis of safety,
security, and privacy properties, and we have developed tool-oriented verification methods. In
particular, compositional reasoning of software updates is supported provided old invariants are
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not violated, and reasoning about software evolution is supported even when old invariants are
violated [8]. We here want to extend earlier work to include robotic systems and integration of
robotic systems and IoT.
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