
Certifying Time Complexity of Agda Programs Using
Complexity Signatures

Hans Hüttel Christian Bach Møllnitz Johannes Elgaard
Simon Rannes hans@cs.aau.dk christianmoellnitz@gmail.com

joha4270@gmail.com sqrannes@gmail.com

Department of Computer Science, Aalborg University, Denmark

1 Introduction
This paper relates to the line of work that attempts to verify fundamental algorithms in computer science
by means of certified implementations. Coppello showed that the merge sort algorithm is correct [1]. In
a series of papers, Firsov built certified implementations of central algorithm in formal language theory
in the dependently typed functional language Agda. In [3], it was shown by Firsov and Uustalu that the
CYK algorithm for context-free parsing is correct.

This line of work deals with termination and correctness; performance is a lesser concern and to a
certain extent is left unexamined which is arguably failing to certify one of the most important charac-
teristics. This is especially noteworthy, since the CYK algorithm has low polynomial-time complexity
which in itself shows that the class of context-free languages is a subclass of P.

All of these approaches reason about time complexity by significantly altering the code to be anal-
ysed. With [9] and [2] the cost is included in the syntax of the solution language, andwith [5] a translation
to a complexity specific language is performed.

In this paper we introduce an approach based on what we call complexity signatures and is inspired
by Gurr [4] who shows how complexity may be viewed as a monad constructor. The Timed monad that
we introduce allows us to not modity the implementation itself but to reason about the time complexity
of an algorithm by only annotating functions. Both our implementation and the complexity analysis are
carried out within Agda [6].

2 Complexity analysis of the CYK algorithm using the Timedmonad
The goal of our approach is to embed computational cost into the code, while operating on what is
recognizably the same code. We do this by taking the signature of a function and replacing every function
it calls with a complexity annotated variant.

The underlying mechanism behind complexity signatures is that of changing a given value, a, to be
associated with its own cost, by putting it in a pair (a, n), where n is the time it has taken to produce
this value. Functions operating on those values then sum the time taken to produce its parameters and
increment it by some cost, based on how expensive the function itself is.

For this, we introduce the monadic type Timed, representing a value a of type A produced in n time.
data Timed (A : Set) : Set where
time : ℕ → A → Timed A
First we introduce the prime operator (_′). It converts a value into one produced in zero time. The

implementation calls time and corresponds to the usual monad function return.
_′ : {A : Set}→ A → Timed A
x ′ = time 0 x



easychair: Running title head is undefined. easychair: Running author head is undefined.

We also define the bind operator, which in this monad increments the complexity of a given function
by n.

_»=_ : {A B : Set}→ Timed A → (A → Timed B)→ Timed B
_»=_ (time n x) fn = fn x ′′′ n

We count computation steps by means of the lift function. It converts a function into a function that
takes timed arguments and produces its result in the time of its argument plus one, Tlif t = TA + TB + 1
– thereby counting the number of function calls.
lift : {A B C : Set}→ (A → B → Timed C)→ (Timed A→ Timed B→ Timed C)
lift = lift′′ ◦ lift′

Our version of the CYK algorithm follows that of Valiant [8]. Given a CFG G in Chomsky Normal
Form, we define a dot product on n-dimensional vectors of sets of nonterminals VG inG and then use this
to define matrix multiplication. The algorithm will, given an input string w = w1…wn, form an n × n
matrixA such thatAii contains the set of nonterminals that can immediately derivewi. We then compute
the elements A,A2, A3… , An. At the kth step, the entry Ak

ij contains precisely the set of nonterminals
that derive the substring wi…wj . We have that w ∈ L(G) iff A1n contains the start symbol S.

In Agda we define Element as being a list of nonterminal symbol and define the union, _∪ _ as
two Elements appended with duplicates removed. A function crucial to the algorithm is _∙_, which
calculates the product of two elements in the matrix by finding matching nonterminal symbols that match
rules in the language. Its time-annotated version is defined below. Note that we split the definition in
two.
_∙′_ : {n : ℕ}→ Vec ℤ n → Vec ℤ n → Timed ℤ
[] ∙′ [] = 0ℤ′
(x ∶∶xs) ∙′ (y ∶∶ys) = (x ′ *′′ y ′) +′′ (xs ∙′ ys)

_∙′′_ : {n : ℕ}→ Timed (Vec ℤ n)→ Timed (Vec ℤ n)→ Timed ℤ
_∙′′_ = lift′′ _∙′_
Based on this definition of dot product, we can now define matrix multiplication in our setting. To do
this, we define the union operator, and an auxiliary function⇒_◦_ that determines which rules could be
applied in a row and column. Along with our library of complexity certified matrix operations we can
now define a specialized matrix multiplication _⊗_ operator that operates on matrices whose entries are
sets of nonterminals. Its time-annotated version is
_⊗′_ : {n m j : ℕ}→ (suc n) × (suc m)→ (suc m) × (suc j)
→ Timed ((suc n) × (suc j))

_⊗′_ = MatrixMultiplicationBase Element _∙′′_
In our proof of the correctness of the CYK algorithm, we start by certifying the complexity of _∪′_with
∪′-cost-proof. This is the used as justification to prove ∙′-cost-proof, that the complexity of the
individual operations is based on the size of the elements, and therefore the total number of rules. Here,
Agda can not guarantee termination and we have to insert the Terminating flag. Finally,⊗-cost-proof,
shows that the complexity bound of it is similar to that of the matrix multiplication defined in the ma-
trix library, with the complexity of the two nested tabulate′s, matrixToRow′ and matrixToColumn′
functions added on top of the complexity of the _∙′_ operator.
⊗-cost-proof : {n m j : ℕ}→ (m1 : n × m)→ (m2 : m × j)
→ cost (m1 ⊗′ m2) ≤ n * (j * (m * (№nonterminals * 2 +
№nonterminals * №nonterminals * (№nonterminals + №rules)) +

2



easychair: Running title head is undefined. easychair: Running author head is undefined.

n + m * suc j))
⊗-cost-proof m1 m2 = matrix-multiply-cost-proof _∙′_
(№nonterminals * 2 + №nonterminals * №nonterminals
* (№nonterminals + №rules)) ∙′-cost-proof m1 m2

We show that our CYK implementation has a time complexity of O(n ⋅ j ⋅m ⋅ (nt ⋅ 2+ nt ⋅ nt ⋅ (nt + nr)) +
n + m ⋅ sucj) which since j = n = m, simplifies to O(n4). Because of our simple approach to transitive
closure we never reduce recognition to a single multiplication and therefore we have to perform nmatrix
multiplications, so the total complexity is O(n5).

3 Conclusion
We have shown how to verify the CYK algorithm. Our implementation in Agda uses a matrix library; the
definition of our certified functions can be almost identical to normal functions written in Agda, and that
the only mandatory alteration requirement is the need to encapsulate the return type in a Timed monad.

Our approach makes the code itself less convoluted. However, unlike the other approaches men-
tioned, every annotated function needs to have its complexity certified separately, as the proof of the
complexity of a composite function need proofs of the complexity of each constituent function.

The manual nature of proving complexity means that a complexity bounds correctness relies on the
programmer to annotate correctly. A proof that a function has a complexity of (n) is formulated such
that it will also prove that the complexity is (n2). It is possible to use the library for certifying the Θ
of a complexity bound, but not always practical if the runtime varies depending on the value of input
parameters, not just their size.

References
[1] E.. Copello, A. Tasistro & B. Bianchi (2014): Case of (Quite) Painless Dependently Typed Programming:

Fully Certified Merge Sort in Agda. In F.Pereira, editor: Proc. of SBLP 2014, LNCS 8771, Springer, pp.
62–76, doi:10.1007/978-3-319-11863-5_5.

[2] N.A. Danielsson (2008): Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Struc-
tures. SIGPLAN Not. 43(1), p. 133–144, doi:10.1145/1328897.1328457.

[3] D. Firsov & T. Uustalu (2014): Certified CYK parsing of context-free languages. J. Log. Algebr. Meth. Pro-
gram. 83(5-6), pp. 459–468, doi:10.1016/j.jlamp.2014.09.002.

[4] D. J. Gurr (1990): Semantic frameworks for complexity. Ph.D. thesis, University of Edinburgh, UK.
[5] B. Hudson (2016): Computer-Checked Recurrence Extraction for Functional Programs. Masters Thesis, Wes-

leyan University.
[6] U. Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D. thesis,

Dept. of Comp. Sci. and Engineering, Chalmers University of Technology, Sweden.
[7] M. Sipser (2013): Introduction to the Theory of Computation. Cengage Learning.
[8] L. G. Valiant (1975): General Context-Free Recognition in Less than Cubic Time. J. Comput. Syst. Sci. 10(2),

p. 308–315, doi:10.1016/S0022-0000(75)80046-8.
[9] P. Wang, D. Wang & A. Chlipala (2017): TiML: A Functional Language for Practical Complexity Analysis

with Invariants. Proc. ACM Program. Lang. 1(OOPSLA), doi:10.1145/3133903.

3

http://dx.doi.org/10.1007/978-3-319-11863-5_5
http://dx.doi.org/10.1145/1328897.1328457
http://dx.doi.org/10.1016/j.jlamp.2014.09.002
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1145/3133903

	Introduction
	Complexity analysis of the CYK algorithm using the =0mu=0muTimed monad
	Conclusion

