
On the axiomatizability of priority III:
The return of sequential composition?

Luca Aceto1,2, Elli Anastasiadi2, Valentina Castiglioni2, Anna Ingólfsdóttir2, and
Mathias Ruggaard Pedersen2

1 Gran Sasso Science Institute, L’Aquila, Italy
2 ICE-TCS, School of Computer Science, Reykjavik University, Iceland

Abstract. Aceto et al., proved that, over the process algebra BCCSP with the
priority operator of Baeten, Bergstra and Klop, the equational theory of order-
insensitive bisimilarity is not finitely based. However, it has been noticed that
by substituting the action prefixing operator of BCCSP with BPA’s sequential
composition, the infinite family of equations used to show that non-finite axiom-
atizability result could be proved by a finite collection of sound equations. That
observation left as an open question the existence of a finite axiomatization for
order-insensitive bisimilarity over BPA with the priority operator. In this paper
we provide a negative answer to this question. We prove that, in the presence of
at least two actions, order-insensitive bisimilarity is not finitely based over BPA
with priority.

1 Introduction

Process algebras are a classic tool for reasoning about the behaviour of concurrent and
distributed systems. One important aspect of systems is that of a priority between ac-
tions. For example, an interrupt or shutdown action may be needed when a system dead-
locks or starts exhibiting erroneous behaviour, and likewise a scheduler needs to assign
priority to actions based on its scheduling policy. There have been various attempts in
the literature on process algebras at taking priority into consideration, see e.g., [10] for
an overview. Here we consider the approach taken in [5], where a priority operator is
introduced. This operator is based on an order between the actions that are available to
a system, and only allows an action to be performed if no other action with a higher
priority is possible at the given moment. For example, this allows interrupts to be given
priority over all other actions.

It was shown in [5, 7] that the priority operator admits a finite, ground-complete
equational axiomatization modulo bisimilarity, where ground-complete means that the
given set of axioms can prove all sound equations where the process terms do not have
variables. This result holds when the set of possible actions is finite. For an infinite set
of actions, it was proved in [2] that the priority operator admits no finite equational
axiomatization in the setting of the process algebra BCCSP, which consists of basic

? The work reported in this paper is supported by the project ‘Open Problems in the Equational
Logic of Processes’ (OPEL) of the Icelandic Research Fund (grant nr. 196050-051).

2

operators from CCS [15, 16] and CSP [12, 13]. Furthermore, a specific priority order
was exhibited for which no finite equational ground-complete axiomatization exists.

The results mentioned so far consider only a single, given priority order. One may
expect that if we consider order-insensitive bisimilarity, i.e. processes are bisimilar if
they are bisimilar for every priority order, then there are no sound equations of inter-
est that involve the priority operator. However, as shown in [3], this is not the case,
and there is no finite, ground-complete equational axiomation modulo order-insensitive
bisimilarity. In contrast to the previous result for fixed priority orders, this result holds
as long as there are at least two actions. We note that if this assumption is not satisfied,
then the priority operator becomes redundant. However, it was remarked in [3] that the
infinite family of equations that was used to show the above mentioned negative result
could be replaced by a single equation if one allows general sequential composition
rather than just action prefixing, thus invalidating the argument in this extended setting.

In this paper, we therefore consider the process algebra BPA [8], which is essentially
an extension of BCCSP with general sequential composition. We show that, also in this
setting, the priority order admits no finite, ground-complete equational axiomatization
modulo order-insensitive bisimilarity whenever there are at least two possible actions.
In order show this result, we make use of the notion of a configuration from [4], which
allows us to reason about the behaviour of an instantiation of a variable along its execu-
tion. The key part of the argument is to consider an infinite family of sound equations
relating variable-free terms where, at each step, the process has the possibility of termi-
nating, thus ensuring that the equations cannot be written as a sequential composition,
and then to show that this specific family of equations cannot be proved from a finite
number of axioms.

Outline of the paper: We start by reviewing background notions in Section 2. Sec-
tion 3 comes with technical results necessary to reason on the semantics of open process
terms. In Section 4 we provide the properties necessary to ensure that order-insensitive
bisimilarity behaves coinductively. Our main result is in Section 5 where we prove that
the order-insensitive bisimilarity is not finitely based over BPA with the priority opera-
tor. Finally, we draw some conclusions and discuss future work in Section 6.

Due to the space limitations, the full proofs of our technical results can be found in
the Appendix.

2 Background

In this section we review some preliminary notions on operational semantics and equa-
tional logic. Since our work naturally builds on [3, 4] we will use the notation from
those papers as much as possible.

BPAΘ: syntax and semantics The syntax of process terms in BPAΘ, namely BPA [8]
enriched with the priority operator [5], is generated by the following grammar

t ::= a | x | t · t | t+ t | Θ(t),

with a ranging over a set of actions A, x ranging over a countably infinite set of vari-
ables V and t ranging over process terms. A process term is closed if no variable occurs

3

(r1)
a

a−→>

√√ (r2)
p

a−→>

√√

p · q a−→> q
(r3)

p
a−→> p

′

p · q a−→> p
′ · q

(r4)
p

a−→>

√√

p+ q
a−→>

√√ (r5)
q

a−→>

√√

p+ q
a−→>

√√ (r6)
p

a−→> p
′

p+ q
a−→> p

′ (r7)
q

a−→> q
′

p+ q
a−→> q

′

(r8)
p

a−→>

√√
∀ b > a . p

b−→>6
Θ(p)

a−→>

√√ (r9)
p

a−→> p
′ ∀ b > a . p

b−→>6
Θ(p)

a−→> Θ(p′)

Table 1: Operational semantics of processes in BPAΘ .

in it. We shall refer to closed process terms simply as processes. We let P denote the
set of BPAΘ processes and let p, q, . . . range over it.

We use the structural operational semantics framework [18] to equip processes with
a semantics. A literal, or open transition, is an expression of the form t

a−→ t′ for some
process terms t, t′ and action a ∈ A. It is closed if both t, t′ are processes. The in-
ference rules for sequential composition ·, alternative nondeterministic choice + and
priority Θ are reported in Table 1. We remark that the semantics of Θ is based on a
strict partial order > on A, called the priority order, which justifies the parametriza-
tion of the derived transition relation with respect to >. For simplicity, given a, b ∈ A,
we write a > b for (a, b) ∈ >. To deal with sequential composition in the absence of
deadlock and empty process (see, e.g., [8, 19]), we introduce the termination predicate
−→>

√√
⊆ P × A. Intuitively, t a−→>

√√
means that t can terminate successfully in one

step by performing action a. A substitution σ is a mapping from variables to process
terms. It extends to process terms, literals and rules in the usual way and it is closed if
it maps every variable to a process. We denote by σ[x 7→ u] the substitution that maps
each occurrence of the variable x into the process term u and behaves like σ over all
other variables. The inference rules in Table 1 induce a unique supported model [11]
corresponding to the A-labelled transition system (P,A,−→>,−→>

√√
) whose transition

relation −→> (respectively, predicate −→>

√√
) contains exactly the closed literals (respec-

tively, predicates) that can be derived by structural induction over processes using the
rules in Table 1.

As usual, we write p a−→> p
′ for (p, a, p′) ∈ −→>, p −→> p

′ if p a−→> p
′ for some

a ∈ A, and p a−→>6 if there is no p′ s.t. p a−→> p
′. For k ∈ N, we write p −→k

> p
′ if there

are p0, . . . , pk s.t. p = p0 −→> · · · −→> pk = p′. Furthermore, for a sequence of actions
s = a1 . . . an, we write p s−→> p

′ to mean that p a1−−→> p1
a2−−→> · · · pn−1

an−−→> p
′ for

some processes p1, . . . , pn−1.
We associate two classic measures with each process: its depth and its norm. As

usual, they express, respectively, the length of a longest and a shortest sequence of
transitions that are enabled for the process (we refer the interested reader to Appendix A
for the formal definitions and their relations with the priority order).

For p ∈ P, the set of initial actions of p with respect to > is defined as

A>(p) = {a | p
a−→> p

′, p′ ∈ P} ∪ {a | p a−→>

√√
}.

4

We extend this notion to sequences of transitions by letting Ak>(p) =
⋃
p−→k

>p
′ A>(p

′)

and A∗>(p) =
⋃
k∈NAk>(p) be, respectively, the set of actions that are enabled with re-

spect to > at depth k and at some depth. We say that action a is maximal with respect
to > if there is no b ∈ A s.t. b > a. We can restrict this notion to the set of actions
that are enabled for a process. Given a process p, we say that an action a ∈ A∗>(p) is
maximal in p, or locally maximal, with respect to > if there is no b ∈ A∗>(p) s.t. b > a.
If A∗>(p) = {a} then a is locally maximal with respect to >.

Order-insensitive bisimulation With the priority operator, the set of transitions that
are enabled for each process depends on the considered priority order on A. There-
fore, any bisimulation relation over BPAΘ processes will also depend on the priority
order. In [3], along all such bisimulations, the authors introduced the notion of order-
insensitive bisimilarity,↔∗, formally defined as the intersection over all priority orders
of the related bisimulation relations. Since ↔∗ disregards the particular order that is
considered, it can be used to study general properties of processes and thus developing
a general equational theory for BPAΘ.

Definition 1 (Order-insensitive bisimulation, [3]). Let > be any priority order. A bi-
nary symmetric relation R ⊆ P × P is a bisimulation with respect to > if whenever
pRq then (i) ∀ p a−→> p

′ there is q a−→> q
′ s.t. p′Rq′, and (ii) ∀ p a−→>

√√
also q a−→>

√√

holds. We say that p, q are bisimilar with respect to >, denoted by p ↔> q, if pRq
holds for some bisimulation R with respect to >. We say that p, q are order-insensitive
bisimilar, denoted by p↔∗ q, if p↔> q holds for all priority orders.

It is not hard to prove that, since the inference rules in Table 1 respect the GSOS
format [9],↔> and↔∗ are congruences over BPAΘ processes. However, as discussed
in [3],↔∗ does not inherit the coinductive nature of bisimilarity. Consider, for instance,
the processes p = a · b + a · c + a · (b + c) and q = p + a · Θ(b + c). Notice that if
b > c then a · Θ(b + c)↔> a · b, if c > b then a · Θ(b + c)↔> a · c, and if b, c are
incomparable with respect to > then a · Θ(b + c)↔> a · (b + c). Therefore, we have
that p↔∗ q. However, q a−→> Θ(b+ c) for each order >, but there is no p′ s.t. p a−→> p

′

and p′↔∗ Θ(b+ c).
Henceforth, whenever > is the empty order, we simply omit the subscript.

Equational logic An axiom system E is a collection of process equations t ≈ u over
the language BPAΘ, such as those presented in Table 2. An equation t ≈ u is derivable
from an axiom system E, notation E ` t ≈ u, if there is an equational proof for it
from E, namely if it can be inferred from the axioms in E using the rules of equational
logic, which are reflexivity, symmetry, transitivity, substitution and closure under BPAΘ
contexts. We refer the interested reader to Table 4 in Appendix D.4 for a complete
presentation of such rules.

The process equation t ≈ u is said to be sound with respect to↔∗ if σ(t)↔∗ σ(u)
for all closed substitutions σ. For simplicity, if t ≈ u is sound, then we write t↔∗ u.
An axiom system is sound modulo ↔∗ if and only if all of its equations are sound
modulo↔∗. Conversely, we say thatE is ground-complete modulo↔∗ if p↔∗q implies
E ` p ≈ q for all processes p, q. We say that ↔∗ is finitely based, if there is a finite

5

C1 x+ y ≈ y + x S1 (x · y) · z ≈ x · (y · z)
C2 (x+ y) + z ≈ x+ (y + z) S2 (x+ y) · z ≈ (x · z) + (y · z)
C3 x+ x ≈ x

P1 Θ(Θ(x) + y) ≈ Θ(x+ y)
P2 Θ(x) +Θ(y) ≈ Θ(x) +Θ(y) +Θ(x+ y)
P3 Θ(x · y) ≈ Θ(x) ·Θ(y)
P4 Θ(x · y + x · z + w) ≈ Θ(x · y + w) +Θ(x · z + w)

Table 2: Some axioms of BPAΘ .

axiom system E s.t. E ` t ≈ u iff t↔∗ u. Finally, notice that the notion of depth can
be extended to equations by letting depth (t ≈ u) = max{depth (t) ,depth (u)}.

3 Relation between open and closed operational behaviour

Our purpose in the remainder of this paper is to verify whether the axiomatization for
order-insensitive bisimilarity is finitely based over BPAΘ. To address this question it is
fundamental to establish a correspondence between the behavior of open terms and the
semantics of their closed instances, with a special focus on the role of variables. In fact,
the equational theory is defined over process terms, whereas the semantic properties
can be verified only on their closed instances. In this section, we provide the notions
and theoretical results necessary to establish the desired behavioral correspondence.

3.1 From open to closed transitions. . .

Assume a term t, a closed substitution σ, a process p, an action a and a priority order
>. We aim at investigating how to derive a transition of the form σ(t)

a−→> p, as well
as a predicates σ(t) a−→>

√√
, from the behavior of t and of σ(x) for each variable x

occurring in t. In particular we are interested in relating the initial behavior of σ(t)
with the behavior of closed instances of variables occurring in it.

The simplest case is a direct application of the operational semantics in Table 1: if
action a is maximal with respect to >, then σ(t) a−→> p can be inferred directly by
t
a−→> t

′, for some term t′ with σ(t′) = p. Similarly, for transition predicates.

Lemma 1. Let t, t′ be process terms, let a be an action with maximal priority with
respect to >. Then for all substitutions σ it holds that:

1. If t a−→>

√√
then σ(t) a−→>

√√
.

2. If t a−→> t
′ then σ(t) a−→> σ(t

′).

Next we deal with variables. It may be the case, for instance, that the term t is of the
form t = x · u for some term u. Clearly, the behavior of σ(t), and thus the derivation
of σ(t) a−→> p, will depend on the behavior of σ(x). However, we remark that there is
not a unique derivation method. The set of initial actions of σ(t) does not depend, in

6

general, solely on those of σ(x), but also on the structure of the process into which x is
mapped, and by the occurrence of x in t. For instance, for t = x · u we can distinguish
two main situations:

(I) Suppose σ(x) = a, so that σ(x) a−→>

√√
. This would give σ(t) a−→> p for p =

σ(u), namely p is a closed instance of a subterm of t. Therefore, the transition for
σ(t) could be expressed in term of a closed instance of an open transition for t,
as t −→> t

′. However, notice that the action that is performed cannot be obtained
from the term t as it depends solely on the substitution applied to x. Hence, we
will need a formal way to express that the label of the transition depends on x.

(II) Suppose σ(x) = a · b, so that σ(x) a−→> b. Clearly, σ(t) will have to mimic
such behavior, and thus σ(t) a−→> p with p = b · σ(u). Notice that process p
subsumes what’s left of the behavior of σ(x). Then the transition for σ(t) cannot
be inferred by a closed substitution instance of an open transition of the form
t
a−→> t

′, since the structure of t′ cannot be known until the substitution σ(x) has
occurred. Hence, we will need a formal way to express that to reach a subterm of
t we need to follow a sequence of transitions performed by x.

For a formal development of the analysis in the above-mentioned cases, we exploit
the method proposed in [4] and provide an auxiliary operational semantics tailored
for expressing the behavior of process terms resulting from that of closed substitution
instances for their variables.

Firstly we introduce the notion of configuration over BPAΘ terms, which stems
from [4]. Configurations are syntactic terms defined over a set of variables Vd = {xd |
x ∈ V} disjoint from V and BPAΘ terms. Briefly, we use the variable xd to express that
the closed instance of x has started its execution, but has not terminated yet.

Definition 2 (BPAΘ configuration). The collection of BPAΘ configurations is given
by the grammar:

c ::= t |xd | c · t |Θ(c),

where t is a BPAΘ term and xd ∈ Vd.

Notice that the grammar above guarantees that each configuration contains at most
one occurrence of a variable in Vd, say xd, and if such occurrence is in the scope of
sequential composition, then xd must occur as the first symbol in the composition.

Define the set of variable labels Vs = {xs | x ∈ V}, disjoint from V and assume
any priority order >. We then introduce two auxiliary relations xs−−→>, x−→>, and the
auxiliary predicate x−→>

√√
, whose operational semantics is given in Table 3, and that

allow us to express how the initial behavior of a term can be derived from that of the
variables occurring in it. Informally, the labels allow us to identify the variable that
is inducing that particular transition. Moreover, t x−→> t′ (resp. t x−→>

√√
) is used to

describe the derivation of a transition σ(t) a−→> σ(t′) (resp. of the validity of predi-
cate σ(t) a−→>

√√
) in the case described in item (I) above: σ(x) performs action a and

terminates, and in doing so it enables the execution of the subprocess σ(t′), besides
triggering the a-transition. Conversely, the auxiliary transition t xs−−→> c is used to deal
with the case described in item (II) above: σ(x) started its execution, but since it has

7

(a1)
x

xs−−→> xd
(a2)

x
x−→>

√√

(a3)
t
xs−−→> c

t · u xs−−→> c · u
(a4)

t
x−→> t

′

t · u x−→> t
′ · u

(a5)
t
x−→>

√√

t · u x−→> u

(a6)
t
xs−−→> c

t+ u
xs−−→> c

(a7)
t
x−→> t

′

t+ u
x−→> t

′ (a8)
t
x−→>

√√

t+ u
x−→>

√√

(a9)
t
xs−−→> c

Θ(t)
xs−−→> Θ(c)

(a10)
t
x−→> t

′

Θ(t)
x−→> Θ(t′)

(a11)
t
x−→>

√√

Θ(t)
x−→>

√√

Table 3: Inference rules for the auxiliary transition relations. The symmetric versions of rules
a6–a8 have been omitted.

not terminated yet, there is no subterm of t that can be used as target of the open tran-
sition. Thus, we use the configuration c to store the yet-to-terminate behavior of σ(x).
In the case of item (II), we would have c = xd · u, and since σ(x) a−→> b, we would let
σ[xd 7→ b](c) = b · σ(u).

The following lemma formalizes the intuitions above. To avoid conflicts with any
possible occurrence of the priority operator, we focus only on transitions labeled with
actions that are (locally) maximal with respect to the chosen priority operator >. This
type of transition will be sufficient for our purposes in the rest of the paper.

Lemma 2. Let t be a process term, x a variable, σ a substitution and a ∈ A be maximal
with respect to >. Then:

1. If t x−→>

√√
and σ(x) a−→>

√√
, then σ(t) a−→>

√√
.

2. If t x−→> t
′ and σ(x) a−→>

√√
, then σ(t) a−→> σ(t

′).
3. If t xs−−→> c and σ(x) a−→> p for some process p, then σ(t) a−→> σ[xd 7→ p](c).

We will sometimes need to extend the third case of Lemma 2 to sequences of tran-
sitions. The following lemma allows us to do so by proceeding inductively.

Lemma 3. Let σ be a closed substitution. If t xs−−→> c and σ(x) −→n
> p is such that all

actions taken along the transitions from σ(x) to p are maximal with respect to >, then
σ(t) −→n

> σ[xd 7→ p](c).

3.2 . . . and back again

So far we have provided a way to derive the initial behavior of a term from the open
transitions available for it, in particular when determined by variables. Our aim is now
to obtain a converse result: knowing that σ(t) a−→> p, we want to derive its possible
sources in the behavior of t and of the closed instances of the variables occurring in t.

Firstly, we remark that, since before we were working with process terms, no occur-
rence of a priority operator due to substitutions could have been foreseen. Therefore,

8

to avoid conflicts, we have limited our attention to actions that were (locally) maxi-
mal with respect to the considered priority order. However, we now start from σ(t) and
therefore we can properly relate the behavior of variables to their potential occurrence
in the scope of a priority operator. To this end, we introduce an extended version of the
relation /l from [3], relating a variable x and a term t with respect to the natural number
l ∈ N, notation x /l t, if x occurs unguarded in t in the scope of l-nested applications
of the priority operator.

Definition 3 (Relation /l). The relations /l, for l ∈ N, between variables and terms
are defined as the least relations satisfying the following constraints:

1. x /0 x;
2. if x /l t then x /l t+ u and x /l u+ t;
3. if x /l t then x /l t · t′;
4. if x /l t then x /l+1 Θ(t).

If x /l t, for some l ∈ N, we shall say that x is enabled in t.

As stated by the following lemma, there is a close relation between x being enabled
in t and the auxiliary transition t xs−−→> c. We write t = t1 � t2 to mean that either
t = t1 or t = t1 · t2, i.e., t1 may possibly be sequentially followed by t2.

Lemma 4. Assume a variable x, a term t and a natural number l ∈ N. Then, x /l t if
and only if t xs−−→> �l(xd) where �l(xd) is a configuration of the form

�l(xd) = Θ(· · ·Θ︸ ︷︷ ︸
l times

(xd � tl+1)� tl) . . .)� t1.

The notation �l(xd) abstracts away from the trailing tl+1, . . . , t1. This choice is
due to mere simplification purposes and does not impact the technical development of
our results. In fact, the beaviour of the terms tl+1, . . . , t1 and their closed instances will
never play a role in such results, as only the behavioural properties of closed instances
of xd will be of interest. We remark also that�0(xd) denotes a configuration containing
an occurrence of xd which does not occur in the scope of a priority operator.

We are now ready to derive the behavior of the term t and that of the closed instances
of the variables occurring in t, from the transitions enabled for σ(t).

Proposition 1. Let t be a process term, σ a closed substitution, a an action and p a
process. Then:

1. If σ(t) a−→>

√√
then

(a) either t a−→>

√√
;

(b) or there is a variable x such that t x−→>

√√
and σ(x) a−→>

√√
.

2. If σ(t) a−→> p then one of the following applies:
(a) there is a process term t′ such that t a−→> t

′ and σ(t′) = p;
(b) there is a process term t′ and a variable x such that t x−→> t

′, σ(x) a−→>

√√
and

σ(t′) = p;

9

(c) there is a variable x, a natural number l ∈ N, and a process q such that
t
xs−−→> �l(xd), σ(x)

a−→> q and �l(q) = p.

Assume a process term t and suppose that depth (t) = k for some k ∈ N. Clearly,
given any closed substitution σ we will have that depth (σ(t)) = n for some n ≥ k. In
particular, whenever n is strictly greater than k we can infer that at least one variable
occurring in t has been mapped into a process defined via the sequential composition
operator. To conclude this section, we extend Proposition 1 to sequences of transitions
of an arbitrary length.

To this end, we introduce the following notation: let w ∈ (A ∪ V)∗ be a string
w = α1 . . . αh in which each αi can be either an action or a variable. Then, given a
substitution σ, we write t s1...sh−−−−−→>,w t

′ if there are process terms t0, . . . , th such that
t = t0, t′ = th, and, for all i ∈ {1, . . . , h},

– si ∈ A∗;
– if αi ∈ V , then ti−1

si−−→> ti and σ(αi)
si−−→>

√√
;

– if αi ∈ A, then si = αi and ti−1
αi−−→> ti.

Finally, we write |s1 . . . sh| for the length of s1 . . . sh.

Proposition 2. Let t be a process term, σ a closed substitution, n ∈ N and p a process.
If σ(t) −→n

> p then:

1. there exist a process term t′ and a string w ∈ (A ∪ V)∗ and s1 . . . sh ∈ A∗ such
that t s1...sh−−−−−→>,w t

′, σ(t′) = p and |s1 . . . sh| = n;
2. or t s1...sh−−−−−→>,w t

′ for some w ∈ (A∪V)∗ and s1 . . . sh such that |s1 . . . sh| = k <
n, and there are a variable x, a natural number l ∈ N and a process q, such that
t′

xs−−→> �l(xd), σ(x) −→n−k
> q and �l(q) = p.

The following result allows us to establish whether the behavior of two bisimilar
process terms is determined by the same variable. Moreover, it guarantees that such a
variable is enabled in one term if and only if it is enabled in the other one.

Theorem 1. Assume that A contains at least two actions, a and b. Let x be a variable.
Consider two process terms t and u such thatA∗(t) ⊆ {a} and t↔∗ u. Whenever there
is t′ such that t −→k t′, for some k ∈ N, and x/l t′, for some l ∈ N, then there is u′ such
that u −→k u′ and x /m u′ for some m ∈ N. Moreover, l = 0 if and only if m = 0.

4 Determinate processes

As outlined in Section 2, ↔∗ cannot be defined coniductively, contrary to the other
bisimulation relations. However, in this section we identify a class of processes for
which the coinductive reasoning on↔∗ can be at least partially recovered, and which
will be useful later on.

Definition 4 (Determinate process). Let p be a process. We say that p is uniformly
determinate if |A(p)| = 1, and for all processes p1 and p2 such that p −→ p1 and
p −→ p2, we have norm (p1) = norm (p2) = 1 and p1 ↔∗ p2. Then, for each k ∈ N,
we say that p is uniformly k-determinate if whenever p −→k p′ then p′ is uniformly
determinate.

10

Thus, a process is uniformly k-determinate if whenever it takes k steps, it ends up in
a process that only has one available action, and in which all immediate successors have
norm 1 and are order-insensitive bisimilar. This notion of uniformly k-determinacy is
preserved by order-insensitive bisimilarity.

Lemma 5. If p↔∗ q and p is uniformly k-determinate for all 1 ≤ k < depth (p), then
so is q.

The next Proposition shows that if p and q are order-insensitive bisimilar as well as
uniformly k-determinate for all k less than some n, then every sequence of n transitions
that p can do can be matched by q such that p and q end up in processes that are again
order-insensitive bisimilar.

Proposition 3. Let p and q be two processes such that p↔∗ q and there is an n ∈ N
such that p and q are uniformly k-determinate for all k < n. Suppose that p −→n p′ for
some p′. Then there is a process q′ such that q −→n q′ and p′↔∗ q′.

Note that Proposition 3 can also be proved for a weaker notion of determinacy, but
we need the current, stronger definition for the subsequent development.

5 Order-insensitive bisimilarity is not finitely based over BPAΘ

This section is devoted to our main result, namely that order-insensitive bisimilarity has
no finite, ground-complete axiomatization in the setting of BPAΘ. Our proof strategy
will be the following:

1. We define the property of uniform Θ-n-dependency: a process has this property
if, through a sequence of n transitions among processes of norm 1, it can reach a
process which is Θ-dependent in the sense of [3], namely its set of initial actions
varies with the considered priority order.

2. We prove that by choosing n large enough, given a process pwhich is uniformlyΘ-
n-dependent and a finite set of axioms E, if E ` p ≈ q, then q must be uniformly
Θ-n-dependent.

3. We provide an infinite family of sound equations in which one side is uniformly
Θ-n-dependent, but the other one is not. In light of item 2, this means that such
a family of equations cannot be derived by a finite set of axioms and it must be
included in the axiomatization, which is therefore infinite.

We actually start by defining the family of equations. To this end, we make use of
the following processes, which are defined for each n ∈ N as

Pn = An(a) +An(b) +An(a+ b),

where A0(p) = p and An(p) = a · An−1(p) + a. Intuitively, the process Pn must at
the top level decide whether it will end up in a, b, or a + b after n steps. After making
this choice, it can take up to n a-transitions, and at each step it can choose whether
to terminate or to continue. The possibility of termination at each step is crucial, since

11

it means that the process cannot be written just with sequential composition modulo
bisimilarity.

The family of equations that we consider is then

{Pn +An(Θ(a+ b)) ≈ Pn | n ∈ N}. (1)

Proposition 4. For every n ∈ N, the equation Pn +An(Θ(a+ b)) ≈ Pn is sound.

Next we formalize the uniform Θ-n-dependency property. As previously outlined,
this is based on the notion of Θ-dependent process from [3].

Definition 5 (Θ-dependent process, [3]). A process p is Θ-dependent if there exist
priority orders >1 and >2 such that A>1

(p) 6= A>2
(p).

Intuitively, a process isΘ-dependent if its possible behaviour depends on the choice
of priority order. For example, Θ(a + b) is Θ-dependent, since we can find a priority
order that only allows it to make a a-transition, and another priority order that only
allows it to make a b-transition. On the other hand, Θ(a) is not Θ-dependent, since no
matter what priority order we choose, it can only do a a-transition.

Uniform Θ-n-dependency is an extension of Θ-dependency from [3], in that it re-
quires first that it is possible to take a sequence of n transitions and end up in a process
that is Θ-dependent, and furthermore it mandates that at each step along the way, the
process has a norm of 1.

Definition 6. A process p is uniformlyΘ-n-dependent if there are processes p1, . . . , pn
such that p = p0 → p1 → · · · → pn, the process pn is Θ-dependent, and for all
0 ≤ k < n we have norm (pk) = 1.

We remark that the processes on the right-hand side of equations in (1) do not enjoy
this property, whereas those on the left-hand side are uniformly Θ-n-dependent.

The following proposition tells us that Θ-n-dependency is preserved by closed in-
stantiations of sound equations whose depth is smaller than n and that satisfy some
determinacy constraints.

Proposition 5. Let σ be a closed substitution and let t and u be process terms such
that t ↔∗ u and A∗(t) = {a}. Assume a natural number n ∈ N such that n >
max{depth (t) ,depth (u)} and σ(t) is uniformly k-determinate for all 1 ≤ k ≤ n−1.
If σ(t) is uniformly Θ-n-dependent, then so is σ(u).

The final ingredient that we need for our main result is a way of relating arbitrary
processes to the processes of the form Pn.

Definition 7 (Summand, [3]). We say that p is a summand of q, denoted by p v∗ q, if
there exists a process r such that p+ r↔∗ q.

The point of this definition is that any process p such that p v∗ Pn must be of a
specific form that inherits many of the features of Pn. In particular, such a process must
be k-determinate for all k less than n.

12

Lemma 6. Let p be a process and assume p v∗ Pn for some n ∈ N. Then p is uniformly
k-determinate for all 1 ≤ k < n.

We now arrive at our main theorem, which states that for n large enough, if p and q
are summands of Pn, that can be proved equivalent from a finite set of sound equations,
and p is Θ-n-dependent, then q must also be Θ-n-dependent.

Theorem 2. Assume that A contains at least two actions. Let E be a set of sound
process equations of depth less than n, and let p and q be closed processes such that
p, q v∗ Pn and E ` p ≈ q. If p is uniformly Θ-n-dependent, then q is also uniformly
Θ-n-dependent.

As the left-hand side of the equations in (1) is Θ-n-dependent while the right-hand
side is not, we can directly conclude that for each n, the nth instance of the family of
equations in (1) cannot be proved using the infinite collection of all sound equations
whose depth is smaller than n.

Corollary 1. IfA has at least two actions, then there is no finite set of sound equations
E such that all sound process equations can be derived from E.

6 Conclusions

In this work we have studied the finite axiomatizability of the equational theory of
order-insensitive bisimilarity over the language BPA enriched with the priority operator
Θ. As previous similar work suggested, also in this setting, the collection of sound,
closed equations is not finitely based in the presence of at least two actions, despite the
fact that the sequential composition operator allows one to write more complex axioms
than action prefixing. We proved this negative result using an infinite family of closed
equations suggested in [3] and showing that no set of sound equations of bounded depth
can derive them all.

Finding an infinite (ground-)complete equational axiomatization of order-insensitive
bisimilarity is an interesting avenue for future research. We also plan to study whether
one can give a finite basis for the equational theory of order-insensitive bisimilarity
using auxiliary operators, as has been done for bisimilarity for a variety of process al-
gebras in the past [1,5,8]. In that study, we would be interested in developing a minimal
set of auxiliary operators and in investigating their expressiveness.

Finally, we would like to investigate some algorithms, and their complexity, for
checking order-insensitive bisimilarity of (loop-free) finite labelled transition systems.
It is known that bisimilarity over such systems is P -complete [6], and, moreover, using
the Paige-Tarjan algorithm [17] each↔> can be checked inO(m log n), wherem is the
number of transitions and n is the number of states. A naive algorithm for ↔∗ would
then check ↔> for all the possible partial orders > over A. Assuming that |A| = k,
there are 2k2/4+3k/4+O(log k) possible partial orders (see [14] for the result on the number
of posets over sets with k elements). Clearly, from these results we can obtain an upper
bound on the complexity of ↔∗. It would be then interesting to look for the lower
bounds on the complexity of deciding order-insensitive bisimilarity and for heuristics
that might lead to algorithms that improve on the naive one, as for some orders >1, >2

the computations made to check↔>1
could be partially re-used to check↔>2

.

13

References

1. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Information and
Computation 111(1), 1–52 (1994), https://doi.org/10.1006/inco.1994.1040

2. Aceto, L., Chen, T., Fokkink, W., Ingólfsdóttir, A.: On the axiomatizability of priority. In:
ICALP (2). Lecture Notes in Computer Science, vol. 4052, pp. 480–491. Springer (2006)

3. Aceto, L., Chen, T., Ingólfsdóttir, A., Luttik, B., van de Pol, J.: On the ax-
iomatizability of priority II. Theor. Comput. Sci. 412(28), 3035–3044 (2011).
https://doi.org/10.1016/j.tcs.2011.02.033

4. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Nain, S.: Bisimilarity is not finitely
based over BPA with interrupt. Theor. Comput. Sci. 366(1-2), 60–81 (2006).
https://doi.org/10.1016/j.tcs.2006.07.003

5. Baeten, J.C., Bergstra, J.A., Klop, J.W.: Syntax and defining equations for an interrupt mech-
anism in process algebra. Fundamenta Informaticae IX(2), 127–168 (1986)

6. Balcázar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-complete. Formal Asp.
Comput. 4(6A), 638–648 (1992)

7. Bergstra, J.: Put and get, primitives for synchronous unreliable message passing. Logic
Group Preprint Series Nr. 3, CIF, State University of Utrecht (1985)

8. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and
Control 60(1-3), 109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-X

9. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268
(1995)

10. Cleaveland, R., Lüttgen, G., Natarajan, V.: Chapter 12 - priority in process algebra. In:
Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 711 – 765. El-
sevier Science, Amsterdam (2001). https://doi.org/https://doi.org/10.1016/B978-044482830-
9/50030-8

11. van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II.
In: Proceedings of ICALP’96. pp. 502–513. Lecture Notes in Computer Science (1996)

12. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978). https://doi.org/10.1145/359576.359585

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
14. Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of partial orders on a finite set.

Trans. Amer. Math. Soc. 205, 205–220 (1975). https://doi.org/10.2307/1997200
15. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer Science,

vol. 92 (1980). https://doi.org/10.1007/3-540-10235-3
16. Milner, R.: Communication and concurrency. PHI Series in computer science, Prentice Hall

(1989)
17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–

989 (1987). https://doi.org/10.1137/0216062
18. Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19, Aarhus

University (1981)
19. Vrancken, J.L.M.: The algebra of communicating processes with empty process. Theor.

Comput. Sci. 177(2), 287–328 (1997). https://doi.org/10.1016/S0304-3975(96)00250-2

14

A Depth and norm

Since in our setting the length of sequences of enables transitions depends on the con-
sidered priority order, we define the depth and the norm of a process with respect to
the empty order. The reason for this choice is twofold. Firstly, we notice that the depth
defined with respect to the empty order is an upper bound for the depths defined with
respect to any other priority order. Since for our purposes we will need to consider
upper bounds for the depth of processes, and not the exact value of their depths, it is
reasonable to consider directly the greatest of the depths. Notice that the norm defined
with respect to the empty order is, dually, a lower bound for the norms defined with
respect to the other priority orders. Secondly, this choice allows us to give alternative
formulations of both measures by induction on the structure of processes.

Definition 8 (Depth and norm of processes). The depth of a process is defined induc-
tively on its structure by

– depth (a) = 1;
– depth (p1 · p2) = depth (p1) + depth (p2);
– depth (p1 + p2) = max{depth (p1) ,depth (p2)};
– depth (Θ(p)) = depth (p).

Similarly, the norm of process is defined inductively on its structure by
– norm (a) = 1;
– norm (p1 · p2) = norm (p1) + norm (p2);
– norm (p1 + p2) = min{norm (p1) ,norm (p2)};
– norm (Θ(p)) = norm (p).

Both notions can be extended to process terms by adding, respectively, the value of the
depth and norm of a variable which are defined as depth (x) = 1 and norm (x) = 1.

We remark that although variables cannot perform any transition, as one can easily
see from the inference rules in Table 1, their depth, and norm, are set to 1, since the
minimal closed instance of a variable with respect to these measures is as a constant in
A.

B Proofs of results in Section 3

B.1 Proof of Lemma 2

Proof of Lemma 2.

1. We proceed by induction over the derivation of the predicate t x−→>

√√
.

– Base case: t = x and t x−→>

√√
is derived by rule (a2) in Table 3. Hence the

proof directly follows by σ(x) a−→>

√√
.

– Inductive step: t = t1+t2 and t x−→>

√√
is derived by either rule (a8) in Table 3,

and thus by t1
x−→>

√√
, or its symmetric version on t2. Assume wlog. that rule

(a8) in Table 3 was applied. Then by induction t1
x−→>

√√
and σ(x) a−→>

√√

imply σ(t1)
a−→>

√√
. Hence, the premise of rule (r4) in Table 1 is satisfied and

we can infer that σ(t) a−→>

√√
.

15

– Inductive step: t = Θ(u) and t x−→>

√√
is derived by rule (a11) in Table 3, and

thus by u x−→>

√√
. By induction u x−→>

√√
and σ(x) a−→>

√√
imply σ(u) a−→>

√√
.

Since by the hypothesis action a has maximal priority with respect to >, the
premises of rule (r8) in Table 1 are satisfied and we can infer that σ(t) a−→>

√√
.

2. We proceed by induction over the derivation of the auxiliary transition t x−→> t
′.

– Base case: t = t1 · t2 and t x−→> t
′ is derived by rule (a5) in Table 3, namely

t1
x−→>

√√
and t′ = t2. By Lemma 2.1 we have that t1

x−→>

√√
and σ(x) a−→>

√√

imply that σ(t1)
a−→>

√√
. Hence, the premise of rule (r2) in Table 1 is satisfied

and we can infer that σ(t) a−→> σ(t2).
– Inductive step: t = t1 · t2 and t x−→> t′ is derived by rule (a4) in Table 3,

namely t1
x−→> t

′
1 and t′ = t′1 · t2. By induction we have that t1

x−→> t
′
1 and

σ(x)
a−→>

√√
imply that σ(t1)

a−→> σ(t
′
1). Hence, the premise of rule (r3) in

Table 1 is satisfied and we can infer that σ(t) a−→> σ(t
′
1 · t2).

– Inductive step: t = t1 + t2 and t
x−→> t′ is derived either by rule (a7) in

Table 3, namely t1
x−→> t′1 and t′ = t′1, or by its symmetric version for t2.

Assume wlog. that rule (a7) was applied. By induction we have that t1
x−→> t

′
1

and σ(x) a−→>

√√
imply that σ(t1)

a−→> σ(t
′
1). Hence, the premise of rule (r6)

in Table 1 is satisfied and we can infer that σ(t) a−→> σ(t
′
1).

– Inductive step: t = Θ(u) and t x−→> t′ is derived by rule (a10) in Table 3,
namely t1

x−→> t
′
1 and t′ = Θ(t′1). By induction we have that t1

x−→> t
′
1 and

σ(x)
a−→>

√√
imply that σ(t1)

a−→> σ(t′1). Since by the hypothesis action a
has maximal priority with respect to >, the premise of rule (r9) in Table 1 is
satisfied and we can infer that σ(t) a−→> σ(Θ(t′1)).

3. We proceed by induction over the derivation of the auxiliary transition t xs−−→> c.

– Base case: t = x and t xs−−→> c is derived by rule (a1) in Table 3, namely
c = xd. Hence the proof follows directly by σ(x) a−→> p.

– Inductive step: t = t1 · t2 and t xs−−→> c is derived by rule (a3) in Table 3,
namely t1

xs−−→> c
′ and c = c′ · t2. By induction we have that t1

xs−−→> c
′ and

σ(x)
a−→> p imply σ(t1)

a−→> p
′ for p′ = σ[xd 7→ p](c′). Hence, by rule (r3) in

Table 1 we can infer that σ(t) a−→> p
′·σ(t2), with p′·σ(t2) = σ[xd 7→ p](c′·t2).

– Inductive step: t = t1 + t2 and t xs−−→> c is derived either by rule (a6) in
Table 3, namely t1

xs−−→> c, or by its symmetric version for t2. Assume wlog.
that (a6) was applied. By induction we have that t1

xs−−→> c and σ(x) a−→> p

imply σ(t1)
a−→> σ[xd 7→ p](c). Hence, by rule (r6) in Table 1 we can infer

that σ(t) a−→> σ[xd 7→ p](c).
– Inductive step: t = Θ(u) and t xs−−→> Θ(c) is derived by rule (a9) in Table 3,

namely u xs−−→> c. By induction we have that u xs−−→> c and σ(x) a−→> p

imply σ(u) a−→> σ[xd 7→ p](c). Since by the hypothesis action a has maximal
priority with respect to >, by rule (r9) in Table 1 we can infer that σ(t) a−→>

σ[xd 7→ p](Θ(c)).

ut

16

B.2 Proof of Lemma 3

Before proceeding to the proof, the provide an auxiliary technical Lemma, that will
simplify our reasoning.

Lemma 7. Let a ∈ A be maximal with respect to >, and let σ be a closed substitu-
tion. Consider a configuration c, and processes p, p′ s.t. p a−→> p′. If c contains an
occurrence of xd, then σ[xd 7→ p](c)

a−→> σ[xd 7→ p′](c).

Proof. We proceed by structural induction on c.

– Base case c = t: since c does not contain an occurrence of xd, the lemma is vacu-
ously true.

– Base case c = xd: clearly, σ[xd 7→ p](c) = p
a−→> p

′ = σ[xd 7→ p′](c).
– Inductive step c = c′ ·t: by induction over c′ we obtain σ[xd 7→ p](c′)

a−→> σ[xd 7→
p′](c′). An application of rule (r3) in Table 1 therefore gives

σ[xd 7→ p](c) = σ[xd 7→ p](c′) ·σ(t) a−→> σ[xd 7→ p′](c′) ·σ(t) = σ[xd 7→ p′](c).

– Inductive step c = Θ(c′): by induction over c′ we have σ[xd 7→ p](c′)
a−→> σ[xd 7→

p′](c′). Since moreover a is maximal with respect to >, by applying rule (r9) in
Table 1 we obtain

σ[xd 7→ p](c) = σ[xd 7→ p](Θ(c′))
a−→> σ[xd 7→ p′](Θ(c′)) = σ[xd 7→ p′](c).

ut

Proof of Lemma 3. Note first of all that since t xs−−→> c, then c must contain an occur-
rence of xd.

We proceed by induction on the derivation of t xs−−→> c, and for each case, we prove
the statement by induction on n. However, since the base case of n = 1 is given by
Lemma 2.3, we omit the details here. Furthermore, in each case we will use that fact
that σ(x) −→n

> p implies that σ(x) −→n−1
> p′ −→> p for some process p′.

Rule (a1): In this case we have t = x and c = xd. By induction hypothesis we get

σ(t) = σ(x) −→n−1
> σ[xd 7→ p′](xd) = p′,

and we know that p′ −→> p = σ[xd 7→ p](c), so we conclude that σ(t) −→n
> σ[xd 7→

p](c).
Rule (a3): In this case we have t = t1 · t2, t1

xs−−→> c
′, and c = c′ · t2. By the induction

hypothesis we get σ(t1) −→n−1
> σ[xd 7→ p′](c′), which, by rule (r3), gives

σ(t) = σ(t1) · σ(t2) −→n−1
> σ[xd 7→ p′](c′) · σ(t2) = σ[xd 7→ p′](c).

Since p′ −→> p, Lemma 7 gives σ[xd 7→ p′](c) −→> σ[xd 7→ p](c), so we conclude
σ(t) −→n

> σ[xd 7→ p](c).

17

Rule (a6): In this case we have t = t1 + t2 and t1
xs−−→> c. The induction hypothesis

gives σ(t1) −→n−1
> σ[xd 7→ p′](c), so rule (r6) and Lemma 7 together give

σ(t) −→n−1
> σ[xd 7→ p′](c) −→> σ[xd 7→ p](c).

A similar argument using rule (r7) establishes the symmetric case.
Rule (a9): In this case we have t = Θ(t′), t′ xs−−→> c

′, and c = Θ(c′). By the induction
hypothesis we get σ(t1) −→n−1

> σ[xd 7→ p′](c′). Rule (r9) and Lemma 7 then give

σ(t) −→n−1
> σ[xd 7→ p′](Θ(c′)) = σ[xd 7→ p′](c) −→> σ[xd 7→ p](c).

ut

B.3 Proof of Lemma 4

Proof of Lemma 4. (=⇒) We proceed by structural induction on t in x /` t.

Case 1: We have x /0 x, so x = t, and hence rule (a1) gives t xs−−→> xd = c0.
Case 2: We have t = t1 + t2 and either x /` t1 or x /` t2. If x /` t1, then by induction

hypothesis we get t1
xs−−→> c`, so rule (a6) gives t xs−−→> c`. If x /` t2, we get the

same by result by the symmetric version of (a6).
Case 3: We have t = t1 · t2 and x /` t1, so by induction hypothesis we get t1

xs−−→> c
′
`.

Rule (a3) then gives t xs−−→> c
′
` · t2 = c`, which is of the correct form.

Case 4: We have t = Θ(t′) and x/`−1t′. By induction hypothesis we get t′ xs−−→> c
′
`−1.

Rule (a9) gives t xs−−→> Θ(c′`−1) = c`, which is of the correct form.

(⇐=) The proof is by induction on the derivation of t xs−−→> c`.

Rule (a1): In this case we have ` = 0, t = x, and x /0 t.
Rule (a3): We have t = t1 · t2 with t1

xs−−→> c
′
`. By induction hypothesis, this gives

x /` t1, which implies x /` t1 · t2 = t.
Rule (a6): We have t = t1 + t2 with t1

xs−−→> c`. The induction hypothesis then gives
x/` t1, which implies x/` t1+ t2 = t. The same argument holds for the symmetric
version of (a6).

Rule (a9): We have t = Θ(t′) with t′ xs−−→> c`−1. By induction hypothesis, this gives
x /`−1 t

′, which implies x /` Θ(t′) = t.
ut

B.4 Proof of Proposition 1

Proof of Proposition 1.

1. We proceed by induction over the derivation of σ(t) a−→>

√√
.

– Base cases: t = a and t = x. The proof for the former case follows directly by
rule (r1) in Table 1 and the latter directly by rule (a2) in Table 3.

– Inductive step t = t1 + t2 and σ(t) a−→>

√√
is derived either by rule (r4) in

Table 1, and thus by σ(t1)
a−→>

√√
, or by rule (r5) in Table 1, and thus by

σ(t2)
a−→>

√√
. Assume wlog. that rule (r4) was applied. By induction over

σ(t1)
a−→>

√√
we can distinguish two cases:

18

• t1
a−→>

√√
. Then by rule (r4) in Table 1 we derive that t a−→>

√√
.

• There is a variable x s.t. t1
x−→>

√√
and σ(x) a−→>

√√
. Hence, by applying

rule (a8) in Table 3 we derive that, for the same variable x, t x−→>

√√
.

– Inductive step: t = Θ(u) and σ(t) a−→>

√√
is derived by rule (r8) in Table 1.

This implies that σ(u) a−→>

√√
and σ(u) b−→>6 for all b > a. By induction over

σ(u)
a−→>

√√
we can distinguish two cases:

• u a−→>

√√
. Since moreover from σ(u)

b−→>6 for all b > a we can infer that
u

b−→>6 for all such b, the premises of rule (r8) in Table 1 are satisfied and
we can derive that t a−→>

√√
.

• There is a variable x s.t. u x−→>

√√
and σ(x) a−→>

√√
. By applying rule (a11)

in Table 3 we derive that, for the same variable, t x−→>

√√
.

2. We proceed by induction over the derivation of σ(t) a−→> p.
– Base case: t = x. Then case (2c) is satisfied directly by rule (a1) in Table 3.
– Inductive step: t = t1 · t2. We can distinguish two cases:
• σ(t) a−→> p is derived by rule (r2) in Table 1, namely by σ(t1)

a−→>

√√

and p = σ(t2). From σ(t1)
a−→>

√√
and Proposition 1.1 we get that either

t1
a−→>

√√
or there is a variable x s.t. t1

x−→>

√√
and σ(x) a−→>

√√
. In the

former case we can apply rule (r2) in Table 1 and obtain t a−→> t2 with
σ(t2) = p, thus case (2a) is satisfied. In the latter case we can apply rule
(a5) in Table 3 and obtain t x−→> t2 which together with σ(t2) = p and
σ(x)

a−→>

√√
satisfies case (2b).

• σ(t) a−→> p is derived by rule (r3) in Table 1, namely by σ(t1)
a−→> p1

with p1 = q · σ(t2). By induction over σ(t1)
a−→> p1 we can distinguish

three cases:
∗ Case (2a) applies so that there is a process term t′1 s.t. t1

a−→> t
′
1 and

σ(t′1) = p1. Then, by rule (r3) in Table 1 we infer that t a−→> t
′
1 · t2

with σ(t′1) · σ(t2) = p, and thus case (2a) is also satisfied by t.
∗ Case (2b) applies so that there is a process term t′1 and a variable x s.t.
t1

x−→> t
′
1, σ(x) a−→>

√√
and σ(t′1) = p1. Then, by rule (a4) in Table 3

we infer that t x−→> t
′
1 · t2 with σ(x) a−→>

√√
and σ(t′1) · σ(t2) = p,

and thus case (2b) is also satisfied by t.
∗ Case (2c) applies so that there are a variable x, a natural l ∈ N and a

process s s.t. t1
xs−−→> �l(xd), σ(x)

a−→> q and �l(q) = p1. Then,
by rule (a3) in Table 3 we infer that t xs−−→> �l(xd) · t2. Hence case
(2c) is also satisfied by t with respect to the configuration �l(xd) · t2,
the variable x, the natural l ∈ N and the process q for which �l(q) ·
σ(t2) = p.

– Inductive step: t = t1 + t2 and σ(t) a−→> p is derived by the same transition
performed either by σ(t1) or σ(t2), namely by applying either rule (r6) or
rule (r7) in Table 1. Since induction applies to such a move taken by σ(ti)
and in all the rules for nondeterministic choice in Tables 1 and 3 the moves
of ti are mimicked exactly by t, we can infer that each of the three cases of
Proposition 1.2 holds for t whenever it holds for ti.

19

– Inductive step: t = Θ(u) and σ(t) a−→> p is derived by applying rule (r9) in
Table 1. This implies that σ(u) a−→> p1, with Θ(p1) = p, and σ(u) b−→>6 for
all b > a. By induction over σ(u) a−→> p1 we can distinguish three cases:
• Case (2a) applies so that there is a process term u′ s.t. u a−→> u′ and
σ(u′) = p1. Moreover, we can also infer that u b−→>6 for all b > a because
σ(u)

b−→>6 . Then, by rule (r9) in Table 1 we infer that t a−→> Θ(u′) with
σ(Θ(u′)) = p, and thus case (2a) is also satisfied by t.

• Case (2b) applies so that there is a process term u′ and a variable x s.t.
u

x−→> u
′, σ(x) a−→>

√√
and σ(u′) = p1. Then, by rule (a10) in Table 3 we

infer that t x−→> Θ(u′) with σ(x) a−→>

√√
and σ(Θ(u′)) = p, and thus case

(2b) is also satisfied by t.
• Case (2c) applies so that there are a variable x, a natural l ∈ N and a

process q s.t. u xs−−→> �l(xd), σ(x)
a−→> q and �l(q) = p1. Then, by rule

(a9) in Table 3 we infer that t xs−−→> Θ(�l(xd)) = �l+1(xd). Hence case
(2c) is also satisfied by t with respect to the variable x, the natural l + 1
and the process q for which �l+1(q) = p.

ut

B.5 Proof of Proposition 2

Before proceeding to the proof, we notice that by Lemma 7, if p a−→> p
′ for some ac-

tion a having (locally) maximal priority with respect to >, then the transition σ[xd 7→
p](�l(xd))

a−→> σ[xd 7→ p′](�l(xd)) is well defined. In this case, we abuse notation
slightly and write directly �l(p) a−→> �l(p′).

Proof of Proposition 2. We proceed by induction over n.

– Base case n = 1. This directly follows by Proposition 1.2.
– Inductive step n > 1. σ(t) −→n

> p is equivalent to write σ(t) −→> p1 −→n−1
> p, for

some process p1. We can assume wlog. that σ(t) a−→> p1. Accordingly to Proposi-
tion 1.2, from σ(t)

a−→> p1 we can distinguish three cases:
1. there is a process term t1 s.t. t a−→> t1 and σ(t1) = p1. Then by induction over
p1 −→n−1

> p we can distinguish two subcases:
• there is w1 ∈ (A ∪ V)∗ with t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = n − 1

and σ(t′) = p. Then, the proof can be concluded by noticing that for the
sequence w = aw1 we get t as1...sh−−−−−→>,w t′ with |as1 . . . sh| = n and
σ(t′) = p.

• there are w1 ∈ (A ∪ V)∗, a variable y, a natural l ∈ N and a process q,
such that t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = k < n− 1, t′

ys−−→> �l(yd),
σ(y) −→n−1−k

> q and �l(q) = p. Then, the proof can be concluded by
noticing that for the sequence w = aw1 we get t as1...sh−−−−−→>,w t′ with
|as1 . . . sh| = k + 1 < n and y, l, q behave as before.

2. there are a process term t1 and a variable x s.t. t x−→> t1, σ(x) a−→>

√√
and

σ(t1) = p1. Then by induction over p1 −→n−1
> p we can distinguish two sub-

cases:

20

• there is w1 ∈ (A ∪ V)∗ with t1
s1...sh−−−−−→> t′ with |s1 . . . sh| = n − 1

and σ(t′) = p. Then, the proof can be concluded by noticing that for the
sequence w = xw1 we get t as1...sh−−−−−→>,w t′ with |as1 . . . sh| = n, as
|a| = 1, and σ(t′) = p.

• there are w1 ∈ (A ∪ V)∗, a variable y, a natural l ∈ N and a process q,
such that t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = k < n− 1, t′

ys−−→> �l(yd),
σ(y) −→n−1−k

> q and �l(q) = p. Then, the proof can be concluded by
noticing that, since σ(x) a−→>

√√
gives |a| = 1, for the sequence w = xw1

we get t as1...sh−−−−−→>,w t
′ with |as1 . . . sh| = k + 1 < n and c, x, q behave

as before.
3. there are a variable x, a natural m ∈ N and a process p′ s.t. t xs−−→> �m(xd),
σ(x)

a−→> p
′. More precisely, Lemma 3 allows us to distinguish two cases:

• σ(x) −→h
> q for some h ≥ n. In this case the thesis follows by considering

w = ∅ and the process q′ s.t. σ(x) −→n
> q
′ and �l(q′) = p.

• σ(x) −→k−1
> q −→>

√√
for some k < n. Notice that this implies that there

is some string sx with |sx| = k of actions that have been performed by
σ(x). Due to the structure of �l(xd) we can infer that there are a natural
m′ ∈ N and a process term t1 = Θ(· · ·Θ︸ ︷︷ ︸

m′ times

(t′′ � tm′+1) � tm′) . . .) � u1

s.t. σ(t) −→k
> σ(t1) = p1. Since then p1 −→n−k

> p, by induction we can
distinguish two subcases:
∗ there is w1 ∈ (A∪V)∗ with t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = n−k

and σ(t′) = p. Then, the proof can be concluded by noticing that for
the sequence w = xsw1 we get t sxs1...sh−−−−−−→>,w t

′ with |sxs1 . . . sh| =
n, as |sx| = k, and σ(t′) = p.

∗ there are w1 ∈ (A ∪ V)∗, a variable y, a natural l ∈ N and a process
q′, such that t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = j < n − k, t′

ys−−→>

�l(yd), σ(y) −→n−k−j
> q′ and �l(q′) = p. Then, the proof can be

concluded by noticing that, as |sx| = k, for the sequence w = xsw1

we get t sxs1...sh−−−−−−→>,w t
′ with |sxs1 . . . sh| = k + j < n and y, l, q′

behave as before.
ut

B.6 Proof of Theorem 1

Proof of Theorem 1. Let n ∈ N be larger than the depths of t and u, and assume a
priority order > overA with b > a, with a > c for any other possible action c ∈ A. We
define the family of closed substitutions {σi}i∈N inductively as follows:

σ0(y) =

{
a+ b if y = x

a otherwise.

σi(y) =

{
a · (σi−1(y) + a) if y = x

a otherwise.

21

Let σ = σn. Suppose that t −→k t′, for some k ∈ N. Since A∗(t) = {a}, and all
variables but x are mapped into a process that can only execute a, we can infer that
there are process terms t0, . . . , tk s.t. t = t0

a−→ . . .
a−→ tk = t′. Moreover, as in

all such terms ti there is no occurrence of b, a is maximal with respect to > on them,

and thus by Lemma 1 and an easy induction over k, we obtain that σ(t0)
a−→
k
σ(tk),

namely σ(t) a−→
k

> σ(t′). Suppose now that x /l t′, for some l ∈ N. By Lemma 4,
x /l t

′ implies that t′ xs−−→> �l(xd). By the choice of σ and A∗(t) = {a}, we have
that σ(x) a−→

n

> a + b. Therefore, by Lemma 3 we obtain that σ(t′) a−→
n

> �l(a + b).

By combining the two sequences of transitions, we get σ(t) a−→
k+n

> �l(a+ b). By the
hypothesis we have t↔∗ u, which in particular implies t↔> u and thus σ(t)↔> σ(u).

As ↔> is a bisimulation, we can infer that σ(u) a−→
k+n

> p for some process p with
�l(a+b)↔>p. As n is larger than the depth of u, by Proposition 2 there exist a process
term u′, a string w with strings s1, . . . , sh ∈ {a}∗, a variable y, a natural number m
and a process q such that u s1...sh−−−−−→>,w u′, |s1 . . . sh| = j < n, u′ xs−−→> �m(yd),
σ(y) −→k+n−j

> q and p = �m(q). Therefore: (i) by k + n − j > 0; (ii) by the choice
of > (which gives that the only possible transition enabled for �l(a+ b) is a b-labeled
move); (iii) by the choice of σ; (iv) by �l(a + b)↔> �m(q); we can conclude that
y = x, j = k and q = a+ b. Moreover, from �l(a+ b)↔> �m(a+ b) and the choice
of >, we obtain that l = 0 iff m = 0. ut

C Proofs of results in Section 4

C.1 Proof of Lemma 5

Proof of Lemma 5. The proof is by induction on k. Note that p ↔∗ q in particular
implies p↔ q.

Base case: If k = 1, assume that q is not uniformly 1-determinate. This means that
either |A(q) | > 1 or there exist q1 and q2 such that q −→ q1 and q −→ q2 but q1 6↔? q2,
or norm (q1) 6= 1, or norm (q2) 6= 1.

If |A(q) | > 1, then there are a, b ∈ A with a 6= b such that q a−→ qa and q b−→ qb
for some processes qa and qb. Since p↔ q, there must exist pa and pb such that p a−→ pa

and p b−→ pb, but this contradicts |A(p) | = 1.
If q1 6↔∗ q2, then q1 6↔> q2 for some priority order >. Since we already know that

|A(q) | = 1, q −→ q1 and q −→ q2 implies q −→> q1 and q −→> q2. Hence there exist
processes p1 and p2 such that p −→> p1 and p −→> p2 with p1 ↔> q1 and p2 ↔> q2.
However, since p is uniformly 1-determinate, we know that p1 ↔> p2, so q1 ↔> q2,
which is a contradiction.

If norm (q1) 6= 1, then we know from p↔ q and q −→ q1 that p −→ p1 for some
process p1 with p1 ↔ q1. But this implies norm (q1) = norm (p1) = 1, which is a
contradiction. The argument for norm (q2) 6= 1 is similar.

Inductive step: Assume that q is uniformly k′-determinate for all k′ < k. We
now prove that q is also uniformly k-determinate. Assume towards a contradiction that
q is not k-determinate. Then there must exist some q′ such that q −→k q′ and either

22

|A(q′) | > 1 or there are q1 and q2 such that q′ −→ q1 and q′ −→ q2, but either q1 6↔∗ q2,
norm (q1) 6= 1, or norm (q2) 6= 1.

The cases of |A(q′) | > 1, norm (q1) 6= 1, and norm (q2) 6= 1 are essentially the
same as for the base case, except that one first gets a process p′ such that p −→k p′, and
then reasons as before on p′.

We now consider the case of q1 6↔∗ q2. This implies that q1 6↔> q2 for some priority
order >. Since p↔∗ q, we also get p↔> q, and since we know that q is uniformly
k′-determinate for every k′ < k. q −→k q′ implies q −→k

> q′. Therefore there exists a
process p′ such that p −→k

> p
′ and p′↔> q

′. Since we already know that |A(q′) | = 1,
q′ −→ q1 and q′ −→ q2 implies q′ −→> q1 and q′ −→> q2. Hence there exist p1 and p2 such
that p′ −→> p1 and p′ −→> p2 as well as p1 ↔> q1 and p2 ↔> q2. However, since p is
uniformly k-determinate, we know that p1↔>p2, so we get q1↔>q2, which contradicts
our assumption.

ut

C.2 Proof of Proposition 3

Proof of Proposition 3. Since our notion of uniformly k-determinate implies that of
k-determinate in [3], Lemma 18 of that paper gives the result. ut

D Proofs of results in Section 5

D.1 Proof of Proposition 4

Proof of Proposition 4. Notice that it is enough to prove that An(Θ(a + b)) ≈ Pn,
since then

An(Θ(a+ b)) ≈ Pn =⇒ Pn +An(Θ(a+ b)) ≈ Pn + Pn ≈ Pn.

Let > be an arbitrary preorder. We now proceed by a case analysis on the behaviour
of An(Θ(a+ b)) with respect to >.

– If a > b, then An(Θ(a+ b))↔> An(a).
– If b > a, then An(Θ(a+ b))↔> An(b).
– If a and b are incomparable, then An(Θ(a+ b))↔> An(a+ b).

In any case, we conclude that An(Θ(a+ b))↔> Pn. ut

D.2 Proof of Lemma 6

Before proceeding to the proof, we recall a preliminary result on ↔>. For a given
priority order >, the bisimulation equivalence↔> behaves like a classic bisimulation
and therefore the following Lemma holds. (The same result on BCCSP processes was
provided as Proposition 9 in [3]).

Lemma 8. Consider processes p, q, assume p↔> q, for some priority order > overA,
and let k ∈ N. Then:

23

1. For every process p′ s.t. p −→k
> p
′, there is a process q′ s.t. q −→k

> q
′ and p′↔> q

′.
2. Ak>(p) = Ak>(q) so, in particular, A1

>(p) = A1
>(q).

Proof of Lemma 6. We first prove thatAk(p) = {a} for 0 ≤ k < n. Assume p v∗ Pn,
which means that p + r↔∗ Pn for some r, which in particular implies that p + r↔
Pn. By Lemma 8, we infer Ak(p+ r) = Ak(Pn) = {a}. Since, moreover, Ak(p) ⊆
Ak(p+ r), we get Ak(p) = {a}.

We proceed by contradiction. Let 1 ≤ k < n be the least number such that p is not
uniformly k-determinate. Then there exist processes p′, p1, and p2 such that p −→k p′,
p′ −→ p1, and p′ −→ p2, and p1 6↔∗ p2, or norm (p1) 6= 1, or norm (p2) 6= 1.

If norm (p1) 6= 1, then p −→k p′ and p′ −→ p1, so there exists P ′n and P ′′n such that
Pn −→k P ′n and P ′n −→ P ′′n with p1 ↔ P ′′n . But then norm (p1) = norm (P ′′n) = 1,
which is a contradiction. A similar argument holds when norm (p2) 6= 1.

If p1 6↔∗ p2, then p1 6↔> p2 for some specific priority order >. Notice that since
|Ai(p) | = {a} for all 0 ≤ i < n, we get that p −→k p′, p′ −→ p1, and p′ −→ p2 implies
p −→k

> p
′, p′ −→> p1, and p′ −→> p2. Since p+r↔>Pn for some r, there existP ′n,P ′′n , and

P ′′′n such that Pn −→k
> P
′
n, P ′n −→> P

′′
n , and P ′n −→> P

′′′
n with p1↔> P

′′
n and p2↔> P

′′
n .

Since norm (p1) = 1 = norm (p2), we also get norm (P ′′n) = 1 = norm (P ′′′n).
However, we see from the definition of Pn that P ′n has a unique successor with norm
1. Hence it follows that P ′′n = P ′′′n , so p1 ↔> P

′′
n = P ′′′n ↔> p2, which contradicts

p1 6↔> p2. ut

D.3 Proof of Proposition 5

Proof of Proposition 5. We start by noticing that since σ(t) is uniformlyΘ-n-dependent,
by Definition 4 there are processes p0, . . . , pn s.t. σ(t) = p0 −→ . . . −→ pn, norm (pi) =
1 for all i = 0, . . . , n−1, and pn isΘ-dependent. Since, moreover, we have depth (t) <
n, by Proposition 2 there are a process term t′ and a string w s.t. t s1...sh−−−−−→w t

′ and there
are a variable x, an l ∈ N and a process q s.t. t′ xs−−→ �l(xd), σ(x) −→n−k q, and
�l(q) = pn.

Notice that, by Lemma 4, t′ xs−−→ �l(xd) is the same as x /l t′. Since, moreover,
pn is Θ-dependent, it must be the case that |A| > 1. We can then apply Theorem 1,
thus obtaining that there are a process term u′ and an m ∈ N s.t. u −→k u′ and x /m u′.
Using again Lemma 4, x /m u′ is the same as u′ xs−−→ �m(xd). Notice that σ(u) v∗
Pn implies that An−1(σ(u)) = {a}. Hence, we have that a is locally maximal with

respect to any priority order. Thus, from σ(x)
a−→
n−k

q and u′ xs−−→ �m(xd), Lemma 3

implies σ(u′) a−→
n−k
�m(q). Hence we can infer that there are processes q0, . . . , qn

s.t. σ(u) = q0 −→ . . . −→ qn = �m(q). As pn is Θ-dependent, l > 0 and thus, by
Theorem 1, we can infer that m > 0, so that also �m(q) is Θ-dependent.

To conclude, we need to show that norm (qi) = 1 for each i = 0, . . . , n − 1. First
of all we notice that, since σ(t)↔∗ σ(u) and norm (σ(t)) = 1, then norm (σ(u)) =
norm (q0) = 1. Moreover, since by the hypothesis σ(t) is uniformly k-determinate for
all 1 ≤ k < n, by Lemma 5 we infer that also σ(u) is uniformly k-determinate for the
same values of k, and thus norm (qi) = 1 for all i = 1, . . . , n − 1 is guaranteed by
Definition 4. We can therefore conclude that σ(u) is uniformly Θ-n-dependent. ut

24

(e1)
t ≈ t (e2)

t ≈ u
u ≈ t (e3)

t ≈ u u ≈ v
t ≈ v (e4)

t ≈ u
σ(t) ≈ σ(u)

(e5)
t1 ≈ u1 t2 ≈ u2

t1 · t2 ≈ u1 · u2
(e6)

t1 ≈ u1 t2 ≈ u2

t1 + t2 ≈ u1 + u2
(e7)

t ≈ u
Θ(t) ≈ Θ(u)

Table 4: Rules of equational logic over BPAΘ .

D.4 Proof of Theorem 2

Before proceeding to the proof of our main result, we report, in Table 4, the rules of
equaitonal logic over BPAΘ. As in operational semantics, they allow us to infer equa-
tions by proceeding inductively over the structure of terms. Let E be a sound set of
axioms. Rules (e1)-(e4) are common for all process languages and they ensure that E is
closed with respect to reflexivity, symmetry, transitivity and substitution, respectively.
Rules (e5)-(e7) are tailored for BPAΘ and they ensure the closure ofE under BPAΘ con-
texts. They are therefore referred to as the congruence rules. Briefly, rule (e5) is the rule
for sequential composition and it states that whenever E ` t1 ≈ u1 and E ` t2 ≈ u2,
then we can infer E ` t1 ·u1 ≈ t2 ·u2. Rule (e6) deals with the nondeterministic choice
operator in a similar way and rule (e7) ensures that the priority operator preserves the
equivalence of terms.

As elsewhere in the literature, we assume without loss of generality that for each
axiom inE also the symmetric counterpart is inE, so that the symmetry rule is not nec-
essary in the proofs, and that substitutions rules are always applied first in equational
proofs, which means that the substitution rule t ≈ u

σ(t) ≈ σ(u) may only be used over ax-

ioms t ≈ u in E. If this is the case, then σ(t) ≈ σ(u) is called a substitution instance
of the axiom.

Moreover, we will make use of the following technical result from [3].

Lemma 9 ([3, Lemma 14]). If p↔∗ q and p is Θ-dependent, then so is q.

We are now ready to prove our main result.

Proof of Theorem 2. As briefly discussed in Section 2, without loss of generality,
we can disregard the symmetry rule in our inductive proof below by assuming that
u ≈ t ∈ E whenever t ≈ u ∈ E. Furthermore, we can assume that all applications
of the substitution rule in derivations have a process equation from E as premise. This
means that we only need to consider a new rule stating that all substitution instances of
process equations in E are derivable, rather than considering the axiom rule — which
states that all process equations inE are derivable —, and the substitution rule — which
states that if a process equation is derivable, then so are all its substitution instances —
separately.

We will now present the inductive argument over the number of steps in a proof of
an equation p ≈ q from E. We proceed by a case analysis on the last rule applied to

25

obtain E ` p ≈ q.

Case 1: reflexivity and transitivity. In these cases, the proof follows immediately or
by the induction hypothesis in a straightforward manner.

Case 2: variable substitution. Assume that E ` p ≈ q is the result of a closed
substitution instance of an open process equation t ≈ u ∈ E, namely there exists
a substitution σ such that σ(t) = p and σ(u) = q. Since t ≈ u ∈ E, we have
that depth (t) ,depth (u) < n. Moreover, from p, q v∗ Pn it follows that A∗(p) =
A∗(q) = {a} and that, by Lemma 6, p and q are uniformly k-determinate for all
k ∈ {1, . . . n − 1}. Hence by Proposition 5, we can conclude that if p is uniformly
Θ-n-dependent, then so is q.

Case 3: congruence rule. We can distinguish three cases:

– The last rule applied in E ` p ≈ q is the congruence rule for the nondeterministic
choice +. Then there exist closed process terms p1, p2, q1 and q2 such that p =
p1 + p2, q = q1 + q2, E ` p1 ≈ q1 and E ` p2 ≈ q2 by shorter proofs. Since p is
uniformly Θ-n-dependent, there must exist a process p′ such that p −→n p′, where
p′ is Θ-dependent and every process along the transitions from p to p′ has norm 1.
We can distinguish four possible subcases, regarding how such property is derived:
1. p1 is Θ-n-dependent.
2. p2 is Θ-n-dependent.
3. norm (p2) = 1, norm (p1) 6= 1, and there are processes p11, . . . , p

n
1 such that

p1 −→ p11 −→ pn1 = p′ and pn1 is Θ-dependent.
4. norm (p1) = 1, norm (p2) 6= 1, and there are processes p12, . . . , p

n
2 such that

p2 −→ p12 −→ pn2 = p′ and pn2 is Θ-dependent.
In cases (1) and (2) we can immediately apply the induction hypothesis obtaining,
respectively, that either q1 or q2 isΘ-n-dependent, and thus that q isΘ-n-dependent
as well.
The cases (3) and (4) require more attention. We detail only the proof for case (3),
since the one for case (4) is symmetric. Firstly, we notice that since p, q v∗ Pn then
by Lemma 6 both p and q are uniformly k-determinate for all k ∈ {1, . . . , n− 1}.
This implies that p1 is uniformly k-determinate for the same values of k. Moreover,
as E ` p1 ≈ q1 gives p1↔∗ q1 and depth (p1) = n, by Lemma 5 we obtain that
also q1 is uniformly k-determinate for k ∈ {1, . . . , n− 1}. Then, by Proposition 3
we can infer that there is a a process qn1 such that q1 −→n qn1 and qn1 ↔∗ pn1 , which,
by Lemma 9, implies that qn1 is Θ-dependent. Furthermore, uniform k-determinacy
ensures that all the processes q11 , . . . , q

n−1
1 in the sequence q1 −→ q11 −→ . . . −→

qn−11 −→ qn1 have norm 1. Finally, we notice that since norm (p2) = 1 and E `
p2 ≈ q2 implies p2 ↔∗ q2, we can infer that norm (q2) = 1. By combining the
properties of q1 and q2, we can conclude that q = q1 + q2 is uniformly Θ-n-
dependent.

– The last rule applied in E ` p ≈ q is the congruence rule for the sequential com-
position. This means that p = p1 · p2, q = q1 · q2, E ` p1 ≈ q1 and E ` p2 ≈ q2
by shorter proofs. This case is vacuous, as norm (p) ≥ 2 and therefore p cannot be
uniformly Θ-n-dependent.

26

– The last rule applied in E ` p ≈ q is the congruence rule for the priority op-
erator Θ. Then there exist p′ and q′ such that p = Θ(p′), q = Θ(q′), and E `
p′ ≈ q′ by a shorter proof. Since p is uniformly Θ-n-dependent, there exists a se-
quence of processes p = Θ(p′) −→ Θ(p1) −→ · · · −→ Θ(pn−1) −→ Θ(pn) such
that norm (Θ(p1)) = . . . norm (Θ(pn−1)) = 1 and Θ(pn) is Θ-dependent. Note
that, since Θ(pn) is Θ-dependent, |A(pn) | ≥ 2. Moreover, from the operational
rules for Θ, p′ −→ p1 −→ · · · −→ pn−1 −→ pn and from the definition of norm,
norm (p1) = · · · = norm (pn) = 1. From E ` p′ ≈ q′, we derive that p′ ↔∗ q′.
Hence, p′ ↔ q′ holds and therefore we get a sequence q′ −→ q1 −→ · · · −→ qn
such that pn↔ qn, which implies that |A(qn) | ≥ 2. Thus, we infer q = Θ(q′) −→
Θ(q1) −→ · · · −→ Θ(qn) and, since |A(qn) | ≥ 2, Θ(qn) is Θ-dependent. It remains
to show that norm (Θ(q′)) = norm (Θ(qi)) = 1 for each i ∈ {1, . . . , n − 1}.
As q v∗ Pn, by Lemma 6 we gather that q is uniformly k-determinate for all
1 ≤ k < n, from which it follows that norm (Θ(qi)) = 1 for all i ∈ {1, . . . , n−1}.
Since, moreover, p↔∗ q and norm (p) = 1, we get norm (q) = 1 and we conclude
that q is Θ-n-dependent.

ut

