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Abstract. We consider the problem of modelling and verifying the behaviour of
systems characterised by a close interaction of a program with the environment.
We propose to model the program-environment interplay in terms of the proba-
bilistic modifications they induce on a set of application-relevant data, called data
space. The behaviour of a system is thus identified with the probabilistic evolu-
tion of the initial data space. Then, we introduce a metric, called evolution metric,
measuring the differences in the evolution sequences of systems and that can be
used for system verification as it allows for expressing how well the program is
fulfilling its tasks. We use the metric to express the properties of adaptability and
reliability of a program, which allow us to identify potential critical issues of it
w.r.t. changes in the initial environmental conditions. We also propose an algo-
rithm, based on statistical inference, for the evaluation of the evolution metric.

1 Introduction

With the ever-increasing complexity of the digital world and the massive diffusion of
IoT systems [13], cyber-physical systems [17], and smart devices, we are progressively
witnessing the rise of a new class of software applications, henceforth programs, that
must be able to deal with highly changing operational conditions, henceforth environ-
ment. Examples of this kind of programs are the software components of unmanned
vehicles, (on-line) service applications, the devices in a smart house, etc, which have to
interact with other programs and heterogeneous devices, and with physical phenomena
like wind, temperature, etc. In what follows, we will use the term system to denote the
combination of the environment and the program acting on it. Hence, the behaviour of
a system is the result of the program-environment interplay.

The main challenge in the analysis and verification of these systems is then the
dynamical and, sometimes, unpredictable behaviour of the environment. The highly
dynamical behaviour of physical processes can only be approximated in order to be-
come computationally tractable and it can constitute a safety hazard for the devices in
the system (like, e.g., an unexpected gust of wind for a drone that is autonomously set-
ting its trajectory to avoid obstacles); some devices or programs may appear, disappear,
or become temporarily unavailable; faults or conflicts may occur (like, e.g., in a smart
home the program responsible for the ventilation of a room may open a window caus-
ing a conflict with the program that has to limit the noise level); sensors may introduce
some measurement errors; etc. The introduction of uncertainties and approximations in
these systems is therefore inevitable.
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In the literature, we can find a wealth of proposals of stochastic and probabilistic
models, as, e.g., Stochastic Hybrid Systems [5,12] and Markov Decision Processes [15],
and ad hoc solutions for specific application contexts, as, e.g., establishing safety guar-
antees for drones flying under particular circumstances [10, 24]. Yet, in these studies,
either the environment is not explicitly taken into account or it is modelled only deter-
ministically. In addition to that, due to the variety of applications and heterogeneity of
systems, no general formal framework to deal with these challenges has been proposed
so far. The lack of concise abstractions and of an automatic support makes the analysis
and verification of the considered systems difficult, laborious, and error prone.

Our contribution. With this paper we aim at taking a first step towards a solution of
the above-mentioned challenges, with a special focus on verification, by developing the
tools for the verification of the ability of programs to adjust their behaviour to the un-
predictable environment. Formally, we introduce two measures allowing us to assess
how well a given program can perform under perturbations in the environmental condi-
tions. We call these two measures adaptability and reliability. As an example, consider
a drone that is autonomously flying along a given trajectory. In this setting, a pertur-
bation can be given by a gust of wind that moves the drone out of its trajectory. We
will say that the program controlling the drone is adaptable if it can retrieve the initial
trajectory within a suitable amount of time. In other words, we say that a program is
adaptable if no matter how much its behaviour is affected by the perturbations, it is
able to react to them and regain its intended behaviour within a given amount of time.
On the other hand, it may be the case that the drone is able to detect the presence of a
gust of wind and can oppose to it, being only slightly moved from its initial trajectory.
In this case, we say that the program controlling the drone is reliable. Hence, reliabil-
ity expresses the ability of a program to maintain its intended behaviour (up-to some
reasonable tolerance) despite the presence of perturbations in the environment.

In order to measure the adaptability and reliability of a program, we need to be able
to express how well it is fulfilling its tasks. The systems that we are considering are
strongly characterised by a quantitative behaviour, given by both the presence of un-
certainties and the data used by program and environment. It seems then natural, and
reasonable, to quantify the differences in the behaviour of systems by means of a metric
over data. However, in order to informally discuss our proposal of a metric semantics for
the kind of systems that we are considering, we need first to explain how the behaviour
of these systems is defined, namely to introduce our general formal model for them.
Our idea is to favour the modelling of the program-environment interplay over precise
specifications of the operational behaviour of a program. In the last decade, many re-
searchers have focused their studies on formal models capturing both the qualitative
and quantitative behaviour of systems: Probabilistic Automata [19], Stochastic Process
Algebras [3, 6, 11], Labelled Markov Chains and Stochastic Hybrid Systems [5, 12]. A
common feature of these models is that the (quantitative, labelled) transitions express-
ing the computation steps directly model the behaviour of the system as a whole.

In this paper we take a different point of view: we propose to model the behaviour
of program and environment separately, and then explicitly represent their interaction in
a purely data-driven fashion. In fact, while the environmental conditions are (partially)
available to the program as a set of data, allowing it to adjust its behaviour to the current
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situation, the program is also able to use data to (partially) control the environment and
fulfil its tasks. It is then natural to model the program-environment interplay in terms
of the changes they induce on a set of application-relevant data, henceforth referred to
as the data space. This feature will allow for a significant simplification in modelling
the behaviour of the program, which can be isolated from that of the environment, thus
favouring its analysis. Moreover, as common practice to favour computational tractabil-
ity [1, 2], we adopt a discrete time approach.

We can then study the behaviour of the system as a whole by analysing how data
evolve in time. In our model, a system consists in three distinct components: 1. a process
P describing the behaviour of the program, 2. a data state d describing the current
state of the data space, and 3. an environment evolution E describing the effect of the
environment on d. As we focus on the interaction with the environment, we abstract
from the internal computation of the program and model only its activity on d. At each
step, a process can read/update values in d and E applies on the resulting data state,
providing a new data state at the next step. To deal with the uncertainties, we introduce
probability at two levels: (i) we use the discrete generative probabilistic model [9] to
define processes, and (ii) E induces a continuous distribution over data states. The
behaviour of the system is then entirely expressed by its evolution sequence, i.e., the
sequence of distributions over data states obtained at each step. Given the novelties of
our model, as a side contribution we show that this behaviour defines a Markov process.

It is now reasonable to define our metric semantics in terms of a (time-dependent)
distance on the evolution sequences of systems, which we call the evolution metric. The
evolution metric will allow us to: 1. verify how well a program is fulfilling its tasks by
comparing it with its specification, 2. compare the activity of different programs in the
same environment, 3. compare the behaviour of one program w.r.t. different environ-
ments and changes in the initial conditions. The third feature will allow us to measure
the adaptability and reliability of programs.

The evolution metric will consist of two components: a metric on data states and the
Wasserstein metric [22]. The former is defined in terms of a (time-dependent) penalty
function allowing us to compare two data states only on the base of the objectives of
the program (which can be in turn expressed in terms of data). The latter lifts the metric
on data states to a metric on distributions on data states. We then obtain a metric on
evolution sequences by considering the maximal of the Wasserstein distances over time.
We provide an algorithm for the estimation of the evolution sequences of systems and
thus for the evaluation of the evolution metric. Following [21], the Wasserstein metric
is evaluated in time O(N logN), where N is the (maximum) number of samples.

As an example of application of our framework, we use it to model a simple smart-
room scenario. We consider two programs: the thermostat of an heating system, and
an air quality controller. The former has to keep the room temperature within a desired
comfort interval. The latter has to keep the quality of the air above a given threshold.
We use our algorithm to evaluate the differences between two systems having the same
programs but starting from different initial conditions. Finally, we apply it to measure
the adaptability and reliability of the considered programs.

Due to space limitations, the proofs and the simplest parts of the algorithm have
been moved to the Appendix.
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2 Background

Measurable spaces. A σ-algebra over a setΩ is a familyΣ of subsets ofΩ s.t.Ω ∈ Σ,
and Σ is closed under complementation and under countable union. The pair (Ω,Σ) is
called a measurable space and the sets in Σ are called measurable sets, ranged over by
A,B, . . . . For an arbitrary family Φ of subsets ofΩ, the σ-algebra generated by Φ is the
smallest σ-algebra over Ω containing Φ. In particular, we recall that given a topology T
over Ω, the Borel σ-algebra over Ω, denoted B(Ω), is the σ-algebra generated be the
open sets in T . Given two measurable spaces (Ωi, Σi), i = 1, 2, the product σ-algebra
Σ1 ×Σ2 is the σ-algebra on Ω1 ×Ω2 generated by the sets {A1 × A2 | Ai ∈ Σi}.

Given measurable spaces (Ω1, Σ1), (Ω2, Σ2), a function f : Ω1 → Ω2 is said to be
Σ1-measurable if f−1(A2)∈Σ1 for all A2∈Σ2, with f−1(A2)={ω∈Ω1|f(ω) ∈ A2}.

Probability spaces. A probability measure on a measurable space (Ω,Σ) is a func-
tion µ : Σ → [0, 1] such that: i) µ(Ω) = 1, ii) µ(A) ≥ 0 for all A ∈ Σ, and
iii) µ(

⋃
i∈I Ai) =

∑
i∈I µ(Ai) for every countable family of pairwise disjoint mea-

surable sets {Ai}i∈I ⊆ Σ. Then (Ω,Σ, µ) is called a probability space.

Notation With a slight abuse of terminology, we shall henceforth use the term distribu-
tion in place of the term probability measure.

We let ∆(Ω,Σ) denote the set of all distributions over (Ω,Σ). For ω ∈ Ω, the Dirac
distribution δω is defined by δω(A) = 1, if ω ∈ A, and δω(A) = 0, otherwise, for all
A ∈ Σ. For a countable set of reals (pi)i∈I with pi ≥ 0 and

∑
i∈I pi = 1, the convex

combination of the distributions {µi}i∈I ⊆ ∆(Ω,Σ) is the distribution
∑
i∈I pi · µi in

∆(Ω,Σ) defined by (
∑
i∈I pi · µi)(A) =

∑
i∈I piµi(A), for all A ∈ Σ. A distribution

µ ∈ ∆(Ω,Σ) is called discrete if µ =
∑
i∈I pi · δωi , with ωi ∈ Ω, for some countable

set of indexes I . In this case, the support of µ is supp(µ) = {ωi | i ∈ I}.

The Wasserstein hemimetric. A metric on a set Ω is a function m : Ω ×Ω → R≥0 s.t.
m(ω1, ω2) = 0 iff ω1 = ω2, m(ω1, ω2) = m(ω2, ω1), and m(ω1, ω2) ≤ m(ω1, ω3) +
m(ω3, ω2), for all ω1, ω2, ω3 ∈ Ω. We obtain a hemimetric by relaxing the first property
to m(ω1, ω2) = 0 if ω1 = ω2, and by dropping the requirement on symmetry. A
(hemi)metric m is l-bounded if m(ω1, ω2) ≤ l for all ω1, ω2 ∈ Ω. For a (hemi)metric
on Ω, the pair (Ω,m) is a (hemi)metric space.

In order to define a hemimetric on distributions we use the Wasserstein lifting [22].
We recall that a Polish space is a separable completely metrisable topological space.

Definition 1 (Wasserstein hemimetric). Consider a Polish space Ω and let m be a
hemimetric on Ω. For any two distributions µ and ν on (Ω,B(Ω)), the Wasserstein
lifting of m to a distance between µ and ν is defined by

W(m)(µ, ν) = inf
w∈W(µ,ν)

∫
Ω×Ω

m(ω, ω′)dw(ω, ω′)

where W(µ, ν) is the set of the couplings of µ and ν, namely the set of joint distributions
w over the product space (Ω×Ω,B(Ω×Ω)) having µ and ν as left and right marginal,
respectively, namely w(A×Ω) = µ(A) and w(Ω × A) = ν(A), for all A ∈ B(Ω).
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Despite the Wasserstein distance was originally given on metrics, the Wasserstein
hemimetric given above is well-defined. A formal proof of this can be found in [7] and
the references therein. We refer the interested reader to Appendix A for more details.

Notation As elsewhere in the literature, we use the term metric in place of hemimetric.

3 The model

In this section, we introduce the three components of our systems, namely the data
space, the process describing the behaviour of the program, and the environment evo-
lution describing the effects of the environment. The following example perfectly em-
bodies the kind of program-environment interactions we are interested in.

Example 1. We consider a smart-room scenario in which the program should guarantee
that both the temperature and the air quality in the room are in a given comfort zone. The
room is equipped with a heating system and an air filtering system. Both are equipped
with a sensor and an actuator. In the heating system the sensor is a thermometer that
reads the room temperature, while the actuator is used to turn the heater on or off.
Similarly, in the air filtering system the sensor perceives the air quality, giving a value
in [0, 1], while the actuator activates the air exchangers. The environment models the
evolution of temperature and air quality in the room, as described by the following
stochastic difference equations, with sample time interval ∆τ = 1:

T (τ + 1) = T (τ) + a(e(τ)) · (Te − T (τ)) + h(τ) · b · (Th − T (τ)) (1)
Ts(τ) = T (τ) + nt(τ) (2)

A(τ + 1) = A(τ) + e(τ) · q+ · (1−A(τ))− (1− e(τ)) · q− ·A(τ) (3)
As(τ) = A(τ) + na(τ) (4)

Above, T (τ) and A(τ) are the room temperature and air quality at time τ , while Ts(τ)
and As(τ) are the respective values read by sensors, which are obtained from the real
ones by adding noises nt(τ) and na(τ), that we assume to be distributed as Gaussian
(normal) distributionsN (0, υ2t ) andN (0, υ2a), resp., for some suitable υ2t and υ2a. Then,
h(τ) and e(τ) represent the state of the actuators of the heating and air filtering system,
respectively. Both take value 1 when the actuator is on, and 0 otherwise. Following
[2,8,14], the temperature dynamics depends on two (non negative) values, a(e(τ)) and
b, giving the average heat transfer rates normalised w.r.t. the thermal capacity of the
room. In detail, a(e(τ)) is the heat loss rate from the room (through walls, windows,
etc.) to the external ambient for which we assume a constant temperature Te. In our case,
this value depends on e(τ), since the loss rate increases when the air exchangers are on.
Then, b is the heat transfer rate from the heater, whose temperature is the constant Th,
to the room. The air quality dynamics is similar: when the air exchangers are off, the
air quality decreases with a rate q−, while it increases of a rate q+ when they are on.

Modelling the data space. We define the data space by means of a finite set of variables
Var representing: i) environmental conditions (pressure, temperature, humidity, etc.,);
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ii) values perceived by sensors (unavoidably affected by imprecision and approxima-
tions); iii) state of actuators (usually elements in a discrete domain). For each x ∈ Var
we assume a measurable space (Dx,Bx), with Dx ⊆ R the domain of x and Bx the
Borel σ-algebra on Dx. Without loosing generality, we can assume that Dx is either a
finite set or a compact subset of R. Notably, Dx is a Polish space. As Var is a finite set,
we can always assume it to be ordered, i.e., Var = {x1, . . . , xn} for some n ∈ N.

Definition 2 (Data space). We define the data space over Var, notation DVar, as the
Cartesian product of the variables domains, namely DVar =×n

i=1
Dxi . Then, as a

σ-algebra on DVar we consider the the product σ-algebra BDVar =×n

i=1
Bxi .

Example 2. The data space for the system in Example 1 is defined on the variables T ,
Ts, h, A, As and e. Their domains are DT = DTs = [tm, tM ], for suitable values
tm < tM , DA = DAs = [0, 1], and Dh = De = {0, 1}.

When no confusion arises, we will use D and BD in place of DVar and BDVar
,

respectively. The elements in D are the n-ples of the form (v1, . . . , vn), with vi ∈
Dxi , which can be also identified by means of functions d : Var → R from variables
to values, with d(x) ∈ Dx for all x ∈ Var. Each function d identifies a particular
configuration of the data in the data space, and it is thus called a data state.

Definition 3 (Data state). A data state is a mapping d : Var→ R from state variables
to values, with d(x) ∈ Dx for all x ∈ Var.

For simplicity, we shall write d ∈ D in place of (d(x1), . . . ,d(xn)) ∈ D. Since
program and environment interact on the basis of the current values of data, we have
that at each step there is a data state d that identifies the current state of the data space
on which the next computation step is built. Given a data state d, we let d[x = v] denote
the data state d′ associating v with x, and d(y) with any y 6= x.

Modelling processes. We introduce a simple process calculus allowing us to specify
programs that interact with a data state d in a given environment. We assume that the
action performed by a process at a given computation step is determined probabilisti-
cally, according to the generative probabilistic model [9].

Definition 4 (Syntax of processes). We let P be the set of processes P defined by:

P ::= (e→ x).P ′ | if [e] P1 else P2 |
∑
i∈I pi · Pi | P1‖pP2 | A

e ::= v ∈ R | x ∈ Var | opk(e1, . . . , ek)

where p, p1, . . . range over probability weights in [0, 1], I is finite, A ranges over pro-
cess variables, opk indicates a measurable operator Rk → R, and · denotes a finite

sequence of elements. We assume to have a single definition A
def
= P for each process

variable A. Moreover, we require that
∑
i∈I pi = 1 for any process

∑
i∈I pi · Pi.

Process (e → x).P evaluates the sequence of expressions e with the current data
state d and assigns the results JeKd to the sequence of variables x. We may use

√
to de-

note the prefix (∅ → ∅). Process if [e] P1 else P2 behaves either as P1 when JeKd = >,
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or as P2 when JeKd = ⊥. Then,
∑n
i=1 pi ·Pi is the generative probabilistic choice: pro-

cess Pi has probability pi to move. The generative probabilistic interleaving construct
P1‖pP2 lets the two argument processes to interleave their actions, where at each step
P1 moves with probability p and P2 with probability 1 − p. Process variables allow us

to specify recursive behaviours by means of equations of the form A
def
= P . To avoid

Zeno behaviours we assume that all occurrences of process variables appear guarded
by prefixing constructs in P . We assume the standard notions of free and bound process
variables. A program is then a closed process, i.e., a process without free variables.

Formally, actions performed by a process can be abstracted in terms of the effects
they have on the data state, i.e., via substitutions of the form θ = [xi1 ← vi1 , . . . , xik ←
vik ], also denoted x ← v if x = xi1 , . . . , xik and v = vi1 , . . . , vik . Since in Defini-
tion 4 operations opk are assumed to be measurable, we can model the effects as BD-
measurable functions θ : D → D s.t. θ(d) := d[x = v] whenever θ = x ← v. We
denote by Θ the set of effects. The behaviour of a process can then be defined by means
of a function pstep : P × D → ∆(Θ × P) that given a process P and a data state d
yields a discrete distribution over Θ × P . Function pstep is defined as follows:

(PR1) pstep((e→ x).P ′,d) = δ(x←JeKd,P ′)

(PR2) pstep(if [e] P1 else P2,d) =

{
pstep(P1,d) if JeKd = 1

pstep(P2,d) if JeKd = 0

(PR3) pstep(
∑
i pi · Pi,d) =

∑
i pi · pstep(Pi,d)

(PR4) pstep(P1‖pP2,d) = p · (pstep(P1,d)‖pP2) + (1− p) · (P1‖ppstep(P2,d))

(PR5) pstep(A,d) = pstep(P,d) (if A
def
= P ).

In rule (PR4), for π ∈ ∆(Θ×P), we let π‖pP (resp. P‖pπ) denote the distribution π′ ∈
∆(Θ × P) s.t.: π′(θ, P ′) = π(θ, P ′′), whenever P ′ = P ′′‖pP (resp. P ′ = P‖pP ′′),
and 0, otherwise.

Proposition 1 (Properties of process semantics). Let P ∈ P and d ∈ D. Then
pstep(P,d) is a discrete distribution with finite support.

Example 3. We define a program to control the smart-room scenario of Example 1. In
detail, we want to guarantee that the temperature in the room is in the interval Z =
[tmin, tmax] ⊆ DT , while the air quality is above a given threshold qa ∈ DA. The
following process AToff (resp. ATon ) turns the heating system on (resp. off ) when the
temperature acquired by the sensor goes under tmin− εt (resp. over tmax+ εt). The use
of the tolerance εt guarantees that the heating system is not repeatedly turned on/off.

AToff

def
= if [Ts < tmin − εt] (1→ h).ATon else

√
.AToff

ATon
def
= if [Ts > tmax + εt] (0→ h).AToff else

√
.ATon .

The behaviour of program components controlling the air filtering system is similar and
implemented by the following processes AAoff and AAon :

AAoff

def
= if [As ≤ qa − εa] (1→ e).AAon else

√
.AAoff

AAon
def
= if [As > qa + εa] (0→ e).AAoff else

√
.AAon .
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The composition of the programs is given by the process P = AToff ‖0.5 AAoff .

Modelling the environment. We model the action of the environment by a mapping E ,
called environment evolution, taking a data state to a distribution over data states.

Definition 5 (Environment evolution). An environment evolution is a function E : D →
∆(D,BD) s.t. for each D ∈ BD the mapping d 7→ E(d)(D) is BD-measurable.

Due to the interaction with the program, the probability induced by E at the next
time step depends only on the current state of the data space. It is then natural to assume
that the behaviour of the environment is modelled as a discrete time Markov process.

Example 4. For our smart-room scenario, the environment evolution E can be derived
directly from Equations (1)–(4). Notice that, in this case, randomness follows from the
Gaussian noises associated with the temperature and air quality sensors.

Modelling system’s behaviour. We use the notion of configuration to model the state of
the system at each time step.

Definition 6 (Configuration). A configuration is a triple c = 〈P,d〉E , where P is a
process, d is a data state and E is an environment evolution. We denote by CP,D,E the
set of configurations defined over P,D and E .

When no confusion arises, we shall write C in place of CP,D,E .
Let (P, ΣP) be the measurable space of processes, where ΣP is the power set of

P , and (D,BD) be the measurable space of data states. As E is fixed, we can identify C
with P × D and equip it with the product σ-algebra ΣC = ΣP × BD: ΣC is generated
by the sets {〈P,D〉E | P ∈ ΣP ,D ∈ BD}, where 〈P,D〉E = {〈P,d〉E | P ∈ P,d ∈ D}.

Notation For µP ∈ ∆(P, ΣP) and µD ∈ ∆(D,BD) we let µ = 〈µP , µD〉E denote the
product distribution on (C, ΣC), i.e., µ(〈P,D〉E) = µP(P) · µD(D) for all P ∈ ΣP and
D ∈ BD. If µP = δP for some P ∈ P , we shall denote 〈δP , µD〉E simply by 〈P, µD〉E .

We aim to express the behaviour of a system in terms of the changes on data. We
start with the one-step behaviour of a configuration, in which we combine the effects on
the data state induced by the activity of the process (given by pstep) and the subsequent
action by the environment. Formally, we define a function cstep that, given a configu-
ration, yields a distribution on (C, ΣC) (Def. 7 below). Then, we use cstep to define the
multi-step behaviour of configuration c as a sequence SCc,0,SCc,1, . . . of distributions on
(C, ΣC). To this end, we show that cstep is a Markov kernel (Prop. 3 below). Finally, to
abstract from processes and focus only on data, from the sequence SCc,0,SCc,1, . . ., we ob-
tain a sequence of distributions SDc,0,SDc,1, . . .on (D,BD) called the evolution sequence
of the system (Def. 9 below).

Definition 7 (One-step semantics of configurations). Function cstep : C → ∆(C, ΣC)
is defined for all configurations 〈P,d〉E ∈ C by

cstep(〈P,d〉E) =
∑

(θ,P ′)∈supp(pstep(P,d))

pstep(P,d)(θ, P ′) · 〈P ′, E(θ(d))〉E . (5)
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The next result follows by E(θ(d)) ∈ ∆(D,BD) (Def. 5), which ensures that
〈P ′, E(θ(d))〉E ∈ ∆(C, ΣC), and pstep(P,d) ∈ ∆(Θ × P) (Prop. 1).

Proposition 2. For any configuration c ∈ C, cstep(c) is a distribution on (C, ΣC).

Since cstep(c) ∈ ∆(C, ΣC) for each c ∈ C, we can rewrite cstep : C ×ΣC → [0, 1],
so that for each configuration c ∈ C and measurable set C ∈ ΣC , cstep(c)(C) denotes
the probability of reaching in one step a configuration in C starting from c. We can
prove that cstep is the Markov kernel of the Markov process modelling our system.
This follows by Proposition 2 and by proving that for each C ∈ ΣC , the mapping
c 7→ cstep(c)(C) is ΣC-measurable for all c ∈ C (a detailed proof is in Appendix C).

Proposition 3. The function cstep is a Markov kernel.

Hence, the multi-step behaviour of configuration c can be defined as a time homo-
geneous Markov process having cstep as Markov kernel and δc as initial distribution.

Definition 8 (Multi-step semantics of configurations). Let c ∈ C be a configuration.
The multi-step behaviour of c is the sequence of distributions SCc,0,SCc,1, . . . on (C, ΣC)
defined inductively as follows:

SCc,0(C) = δc(C), for all C ∈ ΣC

SCc,i+1(C) =
∫
C
cstep(b)(C)d(SCc,i(b)), for all C ∈ ΣC .

We can prove that SCc,0,SCc,1, . . . are well defined, namely they are distributions on
(C, ΣC). The proof follows by an easy induction based on Proposition 3.

Proposition 4. For any c ∈ C, all SCc,0,SCc,1, . . . are distributions on (C, ΣC).

As the program-environment interplay can be observed only in the changes they
induce on the data states, we define the evolution sequence of a configuration as the
sequence of distributions over data states that are reached by it, step-by-step.

Definition 9 (Evolution sequence). The evolution sequence of a configuration c =
〈P,d〉E is a sequence SDc ∈ ∆(D,BD)ω of distributions overD s.t. SDc = SDc,0 . . .SDc,n . . .
if and only if for all i ≥ 0 and for all D ∈ BD, SDc,i(D) = SCc,i(〈P,D〉E).

4 Towards a metric for systems

We aim at defining a distance over the systems described in the previous section, called
the evolution metric, allowing us to do the following:

1. Verify how well a program is fulfilling its tasks.
2. Establish whether one program behaves better than another one in an environment.
3. Compare the interactions of a program with different environments.
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These three objectives can be naturally obtained thanks to the possibility of modelling
the program in isolation from the environment typical of our model, and to our purely
data-driven system semantics. Intuitively, since the behaviour of a system is entirely
described by its evolution sequence, the evolution metric m will indeed be defined as a
distance on the evolution sequences of systems. However, in order to obtain the proper
technical definition of m, some considerations are due.

Firstly, we notice that in most applications the tasks of the program can be expressed
in a purely data-driven fashion. We can identify a set of parameters of interest such that,
at any time step, any difference between them and the data actually obtained can be
interpreted as a flaw in system behaviour. We use a penalty function ρ to quantify these
differences. From the penalty function we can obtain a distance on data states, namely
a 1-bounded hemimetric mD expressing how much a data state d2 is worse than a data
state d1 according to parameters of interests. Secondly, we recall that the evolution
sequence of a system consists in a sequence of distributions over data states. Hence,
we use the Wasserstein metric to lift mD to a distance W(mD) over distributions over
data states. Informally, with the Wasserstein metric we can express how much worse
a configuration is expected to behave w.r.t. another one at a given time. Finally, we
need to lift W(mD) to a distance on the entire evolution sequences of systems. For our
purposes, a reasonable choice is to take the maximum over time of the pointwise (w.r.t.
time) Wasserstein distances (see Remark 1 below for further details on this choice).

A metric on data states. We start by proposing a metric on data states, seen as static
components in isolation from processes and environment. To this end, we introduce a
penalty function ρ : D → [0, 1], a continuous function that assigns to each data state d
a penalty in [0, 1] expressing how far the values of the parameters of interest in d are
from their desired ones (hence ρ(d) = 0 if d respects all the parameters). Since some
parameters can be time-dependent, so is ρ: at any time step τ , the τ -penalty function ρτ
compares the data states w.r.t. the values of the parameters expected at time τ .

Example 5. We recall, from Example 2, that DT = [tm, tM ] and DA = [0, 1]. The task
of our program is to keep the value of T within the comfort zone Z = [tmin, tmax], for
some tmin, tmax, and that of A above a threshold qa ∈ DA (cf. Example 3). Hence, we
define a penalty function that assigns the penalty 0 if the value of T is in Z and that ofA
is greater or equal to qa, otherwise it is proportional to how much T andA are far fromZ
and qa, respectively. We let ρτ (d) = max{ρT (d(T )), ρA(d(A))}, where ρT (t) is 0 if
t ∈ [tmin, tmax] and max{t−tmax,tmin−t}

max{tM−tmax,tmin−tm} otherwise, while ρA(q) = max{0, qa − q}.

A formal definition of the penalty function is beyond the purpose of this paper, also
due to its context-dependent nature. Besides, notice that we can assume that ρ already
includes some tolerances w.r.t. the exact values of the parameters in its evaluation, and
thus we do not consider them. The (timed) metric on data states is then defined as the
asymmetric difference between the penalties assigned to them by the penalty function.

Definition 10 (Metric on data states). For any time step τ , let ρτ : D → [0, 1] be the
τ -penalty function on D. The τ -metric on data states in D, mDρ,τ : D × D → [0, 1], is
defined, for all d1,d2 ∈ D, by mDρ,τ (d1,d2) = max{ρτ (d2)− ρτ (d1), 0}.
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Notice that mDρ,τ (d1,d2) > 0 iff ρτ (d2) > ρτ (d1), i.e., the penalty assigned to d2

is higher than that assigned to d1. For this reason, we say that mDρ,τ (d1,d2) expresses
how worse d2 is than d1 w.r.t. the objectives of the system. It is not hard to see that for
all d1,d2,d3 ∈ D we havemDρ,τ (d1,d2) ≤ 1,mDρ,τ (d1,d1) = 0, andmDρ,τ (d1,d2) ≤
mDρ,τ (d1,d3) +mDρ,τ (d3,d2), thus ensuring that mDρ,τ is a 1-bounded hemimetric.

Proposition 5. Function mDρ,τ is a 1-bounded hemimetric on D.

Lifting mD to distributions. The second step to obtain the evolution metric consists
in lifting mD to a metric on distributions on data states. Among the several notions of
lifting in the literature (see [16] for a survey), we opt for that of Wasserstein, since: i) it
preserves the properties of the ground metric; ii) it allows us to deal with discrete and
continuous measures; iii) it is computationally tractable via statistical inference. Ac-
cording to Def. 1, the Wasserstein lifting of mDρ to a distance between two distributions
µ, ν ∈ ∆(D,BD) is defined by

W(mDρ )(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mDρ (d,d
′)dw(d,d′).

The evolution metric. We now need to lift W(mD) to a distance on evolution se-
quences. To this end, we observe that the evolution sequence of a configuration includes
the distributions over data states induced after each computation step. Thus, the time
step between two distributions is determined by the program. However, it could be the
case that the changes on data induced by the environment can be appreciated only along
wider time intervals. Our running example is a clear instance of this situation: while we
can reasonably assume that the duration of the computation steps of the thermostat is
of the order of a millisecond, the variations in the temperature that can be detected
in the same time interval are indeed negligible w.r.t. the program’s task. A significant
temperature rise or drop can be observed only in longer time. To deal with this kind
of situations, we introduce the notion of observation times, namely a discrete set OT
of time steps at which the modifications induced by the program-environment interplay
give us useful information on the evolution of the system. Hence, a comparison of the
evolution sequences based on the differences in the distributions reached at the times
in OT can be considered meaningful. Moreover, considering only the differences at the
observation times will favour the computational tractability of the evolution metric.

We define the evolution metric as a sort of weighted infinity norm of the tuple of the
Wasserstein distances between the distributions in the evolution sequences. As weight
we consider a non-increasing function λ : OT → (0, 1] expressing how much the dis-
tance at time τ affects the overall distance between configurations c1 and c2. We refer
to λ as to the discount function, and to λ(τ) as to the discount factor at time τ .

Definition 11 (Evolution metric). Assume a set OT of observation times and a dis-
count function λ. Let ρ be a penalty function and letmDρ be the metric on data states de-
fined on it. Then, the λ-evolution metric over ρ and OT is the mapping mλρ,OT : C×C →
[0, 1] defined, for all configurations c1, c2 ∈ C, by

mλρ,OT(c1, c2) = sup
τ∈OT

λ(τ) ·W(mDρ,τ )
(
SDc1,τ ,S

D
c2,τ

)
.
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Since mDρ,τ is a 1-bounded hemimetric (Proposition 5) and lifting W preserves such
a property, we can easily derive the same property for mλOT.

Proposition 6. Function mλρ,OT is a 1-bounded hemimetric on C.

Notice that if λ is a strictly non-increasing function, then it specifies how much the
distance of future events is mitigated and, moreover, it guarantees that to obtain upper
bounds on the evolution metric only a finite number of observations is needed.

Remark 1. Usually, due to the presence of uncertainties, the behaviour of a system can
be considered acceptable even if it differs from its intended one up-to a certain toler-
ance. Similarly, the properties of adaptability and reliability that we aim to study will
check whether a program is able to perform well in a perturbed environment up-to a
given tolerance. In this setting, the choice of defining the evolution metric as the point-
wise maximal distance in time between the evolution sequences of systems is natural
and reasonable: if in the worst case (the maximal distance) the program keeps the pa-
rameters of interest within the given tolerance, then its entire behaviour can be consid-
ered acceptable. However, with this approach we have that a program is only as good as
its worst performance, and one could argue that there are application contexts in which
our evolution metric would be less meaningful. For these reasons, we remark that we
could have given a parametric version of Definition 11 and defining the evolution met-
ric in terms of a generic aggregation function f over the tuple of Wasserstein distances.
Then, one could choose the best instantiation for f according to the chosen application
context. The use of a parametric definition would have not affected the technical de-
velopment of our paper. However, to keep the notation and presentation as simple as
possible, we opted to define mλρ,OT directly in the weighted infinity norm form. A simi-
lar reasoning applies to the definition of the penalty function that we gave in Example 5.

5 Estimating the evolution metric

In this section we show how the evolution metric can be estimated via statistical tech-
niques. Firstly, we show how we can estimate the evolution sequence of a given config-
uration c. Then, we evaluate the distance between two configurations c1 and c2 on their
estimated evolution sequences.

Computing empirical evolution sequences. To compute the empirical evolution se-
quence of a configuration c the following function EST can be used.

1: function EST(c, k,N )
2: ∀i : (0 ≤ i ≤ k) : Ei ← ∅
3: counter ← 0
4: while counter < N do
5: (c0, . . . , ck)← SIM(c, k)
6: ∀i : Ei ← Ei, ci
7: counter ← counter + 1
8: end while
9: return E0, . . . , Ek

10: end function

Function EST(c, k,N) invokes N times
function SIM, i.e., any simulation algo-
rithm sampling a sequence of configura-
tions c0, . . . , ck, modelling k steps of a
computation from c = c0. Then, the se-
quence E0, . . . , Ek is computed, where
Ei is the tuple c1i , . . . , c

N
i of configura-

tions observed at time i in each of the N
sampled computations.
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Fig. 1: Estimated distribution of the temperature after 50 steps with N = 102, N = 103 and
N = 104. As comfort zone we consider the interval [15, 20].

Each Ei can be used to estimate the distribution SCc,i. For any i, with 0 ≤ i ≤ k,

we let ŜC,Nc,i be the distribution s.t. for any C ∈ ΣC we have ŜC,Nc,i (C) = |Ei∩C|
N .

Finally, we let ŜD,Nc = ŜD,Nc,0 . . . ŜD,Nc,k be the empirical evolution sequence s.t. for any
measurable set of data states D ∈ BD we have ŜD,Nc,i (D) = ŜC,Nc,i (〈P,D〉E). Then, by
applying the weak law of large numbers to the i.i.d samples, we get that when N goes
to infinite both ŜC,Nc,i and ŜD,Nc,i converge weakly to SCc,i and SDc,i respectively:

lim
N→∞

ŜC,Nc,i = SCc,i lim
N→∞

ŜD,Nc,i = SDc,i. (6)

An implementation of algorithm SIM is in Appendix D (Fig. 4). The tool and
the scripts of the examples are available (in Python) at https://github.com/
quasylab/spear.

Example 6. We apply our simulation to the heating system from Sect. 3, with initial
configuration c1 = 〈P, {T = 5.0, Ts = 5.0, h = 0, A = 0.5, As = 0.5, e = 0}〉E ,
where P is the process in Ex. 3, and [tmin, tmax] = [15, 20]. In Fig. 1 the probability
distribution of the temperature after 50 steps is reported. We observe that the higher the
number of samplings, the smoother the plot.

Computing distance between two configurations. Function EST allows us to collect in-
dependent samples at each time step i from 0 to a deadline k. These samples can be used
to estimate the distance between two configurations c1 and c2. Following an approach
similar to the one presented in [21], to estimate the Wasserstein distance W(mDρ,i) be-
tween two (unknown) distributions SDc1,i and SDc2,i we can use N independent samples
{c11, . . . , cN1 } taken from SCc1,i and ` · N independent samples {c12, . . . , c`·N2 } taken
from SCc2,i. After that, we exploit the i-penalty function ρ and we consider the two se-
quences of values: {ωj = ρi(d

j
1)|〈P

j
1 ,d

j
1〉E1 = cj1} and {νh = ρi(d

h
2 )|〈Ph2 ,dh2 〉E2 =

ch2}. We can assume, without loss of generality, that these sequences are ordered, i.e.,
ωj ≤ ωj+1 and νh ≤ νh+1. The value W(mDρ,i)(SDc1,i,S

D
c2,i

) can be approximated as
1
`N

∑`N
h=1 max{νh − ωdh` e, 0}. The next theorem, based on results in [21, 23], ensures

that the larger the number of samplings the closer the gap between the estimated value
and the exact one.
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1: function DIST(c1, c2, ρ, λ,OT, N, `)
2: k ← maxOT

3: E1,1, . . . , E1,k ← EST(c1, k,N)
4: E2,1, . . . , E2,k ← EST(c2, k, `N)
5: m←∞
6: for all i ∈ OT do
7: mi ← COMPW(E1,i, E2,i, ρi)
8: m← min{m,λ(i) ·mi}
9: end for

10: return m
11: end function

1: function COMPW(E1, E2, ρ)
2: (〈P 1

1 ,d
1
1〉E1 , . . . , 〈PN

1 ,d
N
1 〉E1)← E1

3: (〈P 1
2 ,d

1
2〉E2 , . . . , 〈P `N

2 ,d`N
2 〉E2)← E2

4: ∀j : (1 ≤ j ≤ N) : ωj ← ρ(dj
1)

5: ∀h : (1 ≤ h ≤ `N) : νh ← ρ(dh
2 )

6: re index {ωj} s.t. ωj ≤ ωj+1

7: re index {νh} s.t. νh ≤ νh+1

8: return 1
`N

∑`N
h=1 |ωdh

`
e − νh|

9: end function

Fig. 2: Functions used to estimate the evolution metric on systems.

Theorem 1. Let SCc1,i,S
C
c2,i
∈ ∆(C, ΣC) be unknown, and ρ be a penalty function.

Let {ωj = ρi(d
j
1)} and {νh = ρi(d

h
2 )} be the ordered sequences obtained from in-

dependent samples taken from SCc1,i and SCc2,i, respectively. Then, it holds, a.s., that
W(mDρ,i)(SDc1,i,S

D
c2,i

) = limN→∞
1
`N

∑`N
h=1 max{νh − ωdh` e, 0}.

The outlined procedure is realised by functions DIST and COMPW in Fig. 2. The
former takes as input the two configurations to compare, the penalty function (seen
as the sequence of the i-penalty functions), the discount function λ, the set OT of
observation times which we assume to be bounded, and the parameters N and ` used to
obtain the samplings of computation. Function DIST collects the samplesEi of possible
computations during the observation period [0,maxOT], where maxOT denotes the last
observation time. Then, for each observation time i ∈ OT, the distance at time i is
computed via the function COMPW(E1,i, E2,i, ρi). Since the penalty function allows
us to reduce the evaluation of the Wasserstein distance in Rn to its evaluation on R,
due to the sorting of {νh | h ∈ [1, . . . , `N ]} the complexity of function COMPW is
O(`N log(`N)) (cf. [21]).

Example 7. We change the initial value of the air quality in the configuration c1 in
Example 6, and consider c2 = 〈P, {T = 5.0, Ts = 5.0, h = 0, A = 0.3, As = 0.3, e =
0}〉E . Figure 3a shows the variation in time of the distance between c1 and c2.

6 Adaptability and reliability of programs

In this section we exploit the evolution metric to study some dependability properties
of programs, which we call adaptability and reliability, w.r.t. a data state and an envi-
ronment. Both notions entail the ability of the process to induce a similar behaviour in
systems that start from similar initial conditions. They differ in how time is considered.

The notion of adaptability imposes some constraints on the long term behaviour of
systems, disregarding their possible initial dissimilarities. Given the thresholds η1, η2 ∈
[0, 1) and an observable time τ̃ , we say that a program P is adaptable w.r.t. a data state
d and an environment evolution E if whenever P starts its computation from a data state
d′ that differs from d for at most η1, then we are guaranteed that the distance between
the evolution sequences of the two systems after time τ̃ is bounded by η2.
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(a) In blue: pointwise distance between c1 and c2.
In red: mλ

ρ,{τ′≥τ}(c1, c2), for each τ (Ex. 7).
(b) Adaptability of P in c1 (from Ex. 6) for M = 100,
η1 = 0.2 (Ex. 8).

Fig. 3: Examples of the evaluation of the evolution metric (assuming λ being the constant 1).

Definition 12 (Adaptability). Let τ̃ ∈ OT and η1, η2 ∈ [0, 1). We say that P is
(τ̃ , η1, η2)-adaptable w.r.t. the data state d and the environment evolution E if ∀d′ ∈ D
with mDρ,0(d,d

′) ≤ η1 it holds mλ{τ∈OT|τ≥τ̃}(〈P,d〉E , 〈P,d
′〉E) ≤ η2.

We remark that one can always consider the data state d as the ideal model of the
world used for the specification of P , and the data state d′ as the real world in which P
has to execute. Hence, the idea behind adaptability is that even if the initial behaviour of
the two systems is quite different, P is able to reduce the gap between the real evolution
and the desired one within the time threshold τ̃ . Notice that being (τ̃ , η1, η2)-adaptable
for τ̃ = min{τ | τ ∈ OT} is equivalent to being (τ, η1, η2)-adaptable for all τ ∈ OT.

The notion of reliability strengthens that of adaptability by bounding the distance on
the evolution sequences from the beginning. A program is reliable if it guarantees that
small variations in the initial conditions cause only bounded variations in its evolution.

Definition 13 (Reliability). Let η1, η2 ∈ [0, 1). We say that P is (η1, η2)-reliable w.r.t.
the data state d and the environment evolution E if ∀d′ ∈ D with mDρ,0(d,d

′) ≤ η1 it
holds mλOT(〈P,d〉E , 〈P,d′〉E) ≤ η2.

We can use our algorithm to verify adaptability and reliability of a given program.
Given a configuration 〈P,d〉E , a set OT of observation times and a given threshold
η1 ≥ 0, we can sample M variations {d1, . . . ,dM} of d, s.t. for any i, mDρ,0(d,di) ≤
η1. Then, for each sampled data state we can estimate the distance between c = 〈P,d〉E
and ci = 〈P,di〉E at the different time steps in OT, namely mλ{τ∈OT|τ≥τ̃}(c, ci) for any
τ̃ ∈ OT. Finally, for each τ̃ ∈ OT , we let lτ̃ = maxi{mλ{τ∈OT|τ≥τ̃}(c, ci)}. We can
observe that, for the chosen η1, each lτ̃ gives us a lower bound to the τ̃ -adaptability of
the program. Similarly, for τmin = minOT τ , lτmin gives a lower bound for its reliability.

Example 8. Figure 3b shows the evaluation of lτ for the program P in the configuration
c1 from Example 6 with parameters M = 100 and η1 = 0.2. Observe that the initial
perturbation is not amplified and after 12 steps it is almost absorbed. In particular, our
program is (12, 0.2, η2)-adaptable w.r.t. the data state and the environment evolution
in Example 6, for any η2 ≥ 0.05 + e12W, where e12W is the approximation error e12W =

|W(mDρ,12)(Ŝ
D,1000
c1,12

, ŜD,10000c2,12
) −W(mDρ,12)(SDc1,12,S

D
c2,12)|. We refer the interested

reader to [20, Corollary 3.5, Equation (3.10)] for an estimation of e12W.
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7. Faugeras, O.P., Rüschendorf, L.: Risk excess measures induced by hemi-metrics. Probability,
Uncertainty and Quantitative Risk 3:6 (2018). https://doi.org/10.1186/s41546-018-0032-0
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A The Wasserstein hemimetric

Firstly, we recall that given a (hemi)metric space (Ω,m), the (hemi)metric m induces a
natural topology over Ω, namely the topology generated by the open ε-balls, for ε > 0,
Bm(ω, ε) = {ω′ ∈ Ω | m(ω, ω′) < ε}. We can then naturally obtain the Borel σ-
algebra over Ω from this topology.

The definition of the Wasserstein lifting is based on the following notions and re-
sults. Given a set Ω and a topology T on Ω, the topological space (Ω, T ) is said to
be completely metrisable if there exists at least one metric m on Ω such that (Ω,m)
is a complete metric space and m induces the topology T . A Polish space is a sepa-
rable completely metrisable topological space. In particular, we recall that: 1. R is a
Polish space; and 2. every closed subset of a Polish space is in turn a Polish space.
Moreover, for any n ∈ N , if Ω1, . . . , Ωn are Polish spaces, then the Borel σ-algebra on
their product coincides with the product σ-algebra generated by their Borel σ-algebras,
namely B(×n

i=1
Ωi) =

⊗n
i=1 B(Ωi) (a formal proof can be found in, e.g., [4, Lemma

6.4.2] whose hypothesis are satisfied by Polish spaces since they are second countable.)
These properties of Polish spaces are interesting for us since they guarantee that all the
distributions we consider in this paper are Radon measures and, thus, the Wasserstein
lifting is well-defined on them. For this reason, we also directly present the Wasserstein
hemimetric by considering only distributions on Borel sets.

Despite the original version of the Wasserstein distance being defined on a metric on
Ω, the Wasserstein hemimetric given in Definition 1 is well-defined. In particular, the
Wasserstein hemimetric is given in [7] as Definition 7 (considering the compound risk
excess metric defined in Equation (31) in that paper), and Proposition 4 in [7] guarantees
that it is indeed a well-defined hemimetric on ∆(Ω,B(Ω)). Moreover, Proposition 6
in [7] guarantees that the same result holds for the hemimetric m(x, y) = max{x −
y, 0} which, as we will see, plays an important role in our work (cf. Definition 10 in
Section 4).

B Proof of Proposition 2

Proposition 2. For any configuration c ∈ C, cstep(c) is a distribution on (C, ΣC).

Proof. Being d a data state in D and θ an effect, θ(d) is a data state. Then, E(θ(d)) is
a probability measure on (D, ΣD), thus implying that 〈P ′, E(θ(d))〉E is a probability
measure on (C, ΣC). Finally, by Proposition 1 we get that cstep(〈P,d〉E) is a convex
combination of probability measures on (C, ΣC) whose weights sum up to 1, which
gives the thesis.

C Proof of Proposition 3

Proposition 3. The function cstep is a Markov kernel.

Proof. We need to show that cstep satisfies the two properties of Markov kernels,
namely
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1. For each configuration c ∈ C, the mapping C 7→ cstep(c)(C) is a probability
measure on (C, ΣC).

2. For each measurable set C ∈ ΣC , the mapping c 7→ cstep(c)(C) isΣC-measurable.

Item 1 follows directly by Proposition 2.
Let us focus on item 2. By Definition 7, for each 〈P,d〉E ∈ C we have that

cstep(〈P,d〉E)(C) =
∑

(θ,P ′)∈supp(pstep(P,d))

pstep(P,d)(θ, P ′) · 〈P ′, E(θ(d))〉E(C) .

As, by definition, each θ ∈ Θ and E are ΣD-measurable functions, we can infer that
also their composition E(θ(·)) is a ΣD-measurable function. Since, moreover, ΣC is
the (smallest) σ-algebra generated by ΣP ×ΣD and every subset of P is a measurable
set in ΣP , we can also infer that 〈(·), E(θ(·))〉E is a ΣC-measurable function. Finally,
we recall that by Proposition 1 we have that supp(pstep(P,d)) is finite. Therefore, we
can conclude that cstep is a ΣC-measurable function as linear combination of a finite
collection of ΣC-measurable functions (see, e.g., [18, Chapter 3.5, Proposition 19]).

D The simulation algorithm

Given a configuration 〈P,d〉E and an integer k we can use function SIM, defined in
Figure 4, to sample a sequence of configurations the form

〈P0,d0〉E , 〈P1,d1〉E , . . . , 〈Pk,dk〉E .

This sequence represents k-steps of a computation starting from 〈P,d〉E = 〈P0,d0〉E .
Each step of the sequence is computed by using function SIMSTEP, also defined in
Figure 4. There we let RAND be a function that allow us to get a uniform random
number in (0, 1] while SAMPLE(E ,d) is used to sample a data state in the distribution
E(d). We assume that for any measurable set of data states D ∈ ΣD the probability of
SAMPLE(E ,d) to be in D is equal to the probability of D induced by E(d), namely:

Pr(SAMPLE(E ,d) ∈ D) = E(d)(D) . (7)

We can then extend this property to configurations and function SIMSTEP:

Lemma 1. For any configuration 〈P,d〉E ∈ C, and for any measurable set C ∈ ΣC:

Pr(SIMSTEP(〈P,d〉E) ∈ C) = cstep(〈P,d〉E)(C) .

Proof. To prove the thesis it is enough to show that the property

Pr(SIMSTEP(〈P,d〉E) ∈ C) = cstep(〈P,d〉E)(C)

holds on the generators of the σ-algebra ΣC . Hence, assume that C = 〈P,D〉E for some
P ∈ ΣP and D ∈ ΣD. Then we have

cstep(〈P,d〉E)(C)
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1: function SIM(〈P,d〉E , k)
2: i← 0
3: c← 〈P,d〉E
4: a← c
5: while i ≤ k do
6: c← SIMSTEP(c)
7: a← a, c
8: i← i+ 1
9: end while

10: return a
11: end function

1: function SIMSTEP(〈P,d〉E )
2:

∑n
i=1 pi(θi, Pi)← pstep(P,d)

3: u← RAND()
4: let i s.t.

∑i−1
j=1 pj < u ≤

∑i
j=1 pj

5: d′i ← SAMPLE(E , θi(di))
6: return 〈Pi,d

′
i〉E

7: end function

Fig. 4: Functions used to simulate behaviour of a configuration.

=
∑

(θ,P ′)∈supp(pstep(P,d))

(pstep(P,d)(θ, P ′) · 〈P ′, E(θ(d))〉E) (C)

=

n∑
i=1

(pi · 〈Pi, E(θi(d))〉E) (C)

=

n∑
i=1

pi · 〈1P{Pi}, E(θi(d))(D)〉E

=
∑

{i|Pi∈P}

pi · E(θi(d))(D)

=
∑

{i|Pi∈P}

pi · Pr(SAMPLE(E , θi(d)) ∈ D)

= Pr(SIMSTEP(〈P,d〉E) ∈ C)

where

– The first step follows by the definition of cstep (Definition 7).
– The second step follows by pstep(P,d) = p1 · (θ1, P1) + . . . + pn · (θn, Pn), for

some pi, θi and Pi (see Proposition 1).
– The third step follows by the definition of the probability measure 〈µP , µD〉E

(Notation 3), in which 1P denotes the characteristic function of the set P, i.e.,
1P{P ′} = 1 if P ′ ∈ P and 1P{P ′} = 0 otherwise.

– The fifth step follows by the assumption on the function SAMPLE( ) in Equa-
tion (7).

– The last step follows by the definition of function SIMPSTEP( ).

E Proof of Theorem 1

Theorem 1. Let SCc1,i,S
C
c2,i
∈ ∆(C, ΣC) be unknown, and ρ be a penalty function.

Let {ωj = ρi(d
j
1)} and {νh = ρi(d

h
2 )} be the ordered sequences obtained from in-

dependent samples taken from SCc1,i and SCc2,i, respectively. Then, it holds, a.s., that
W(mDρ,i)(SDc1,i,S

D
c2,i

) = limN→∞
1
`N

∑`N
h=1 max{νh − ωdh` e, 0}.
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Proof. We split the proof into two parts showing respectively:

W(mDρ,i)(SDc1,i,S
D
c2,i) = lim

N→∞
W(mDρ,i)(Ŝ

D,N
c1,i

, ŜD,`Nc2,i
) . (8)

W(mDρ,i)(Ŝ
D,N
c1,i

, ŜD,`Nc2,i
) =

1

`N

`N∑
h=1

max
{
νh − ωdh` e, 0

}
. (9)

where µ̂N and ν̂`N are the estimated probability distributions obtained from µ and ν by
sampling N and `N values.

– PROOF OF EQUATION (8).
We recall that the sequence {µ̂N} (resp. {ν̂N}) converges weakly to µ (resp. ν) (see
Equation (6)). Moreover, we can prove that these sequences converge weakly in
∆(D,BD) in the sense of [23, Definition 6.8]. In fact, given the i-ranking function
ρi, the existence of a data state d̃ such that ρi(d̃) = 0 is guaranteed (remember that
the constraints used to define ρi are on the possible values of state variables and a
data state fulfilling all the requirements is assigned value 0). Thus, for any d ∈ D
we have that

mDρ,i(d̃,d) = max{ρi(d)− ρi(d̃), 0} = ρi(d) .

Since, moreover, by definition ρi is continuous and bounded, the weak convergence
of the probability measures gives∫

D
ρi(d)d(ŜD,Nc1,i

(d))→
∫
D
ρi(d)d(SDc1,i(d))∫

D
ρi(d)d(ŜD,`Nc2,i

(d))→
∫
D
ρi(d)d(SDc2,i(d))

and thus Definition 6.8.(i) of [23] is satisfied. As D is a Polish space, by [23, The-
orem 6.9] we obtain that

µ̂N → µ and ν̂`N → ν implies W(mDρ,i)(µ, ν) = lim
N→∞

W(mDρ,i)(µ̂
N , ν̂`N ) .

– PROOF OF EQUATION (9).
For this part of the proof we follow [21]. Since the ranking function is continuous,
it is in particular BD measurable and therefore for any probability measure µ on
(D,BD) we obtain that

Fµ,ρi(r) := µ({ρi(d) < r})

is a well defined cumulative distribution function. In particular, for µ = ŜD,Nc1,i
we

have that

FŜD,Nc1,i
,ρi

(r) = ŜD,Nc1,i
({ρi(d) < r}) =

∣∣∣{〈P j1 ,dj1〉E1 ∈ E1,i | ρi(dj1) < r}
∣∣∣

N
.
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Since, moreover, we can always assume that the values ρi(d
j
1) are sorted, so that

ρi(d
j
i ) ≤ ρi(d

j+1
1 ) for each j = 1, . . . , N − 1, we can express the counter image

of the cumulative distribution function as

F−1
ŜD,Nc1,i

,ρi
(r) = ρi(d

j
1) whenever

j − 1

N
< r ≤ j

N
. (10)

A similar reasoning holds for F−1
ŜD,`Nc2,i

,ρi
(r).

Then, by [7, Proposition 6.2], for each N we have that

W(mDρ,i)(Ŝ
D,N
c1,i

, ŜD,`Nc2,i
) =

∫ 1

0

max

{
F−1
ŜD,`Nc2,i

,ρi
(r)− F−1

ŜD,Nc1,i
,ρi

(r), 0

}
dr .

Let us now partition the interval [0, 1] into `N intervals of size 1
`N , thus obtaining

W(mDρ,i)(Ŝ
D,N
c1,i

, ŜD,`Nc2,i
) =

`N∑
h=1

(∫ h
`N

h−1
`N

max

{
F−1
ŜD,`Nc2,i

,ρi
(r)− F−1

ŜD,Nc1,i
,ρi

(r), 0

}
dr

)
.

From Equation (10), on each interval (h−1`N , h
`N ] it holds that F−1

ν̂N ,ρi
(r) = ρi(d

dh` e
1 )

and F−1
ν̂`N ,ρi

(r) = ρi(d
h
2 ). Moreover, both functions are constant on each the inter-

val so that the value of the integral is given by the difference multiplied by the
length of the interval:

W(mDρ,i)(Ŝ
D,N
c1,i

, ŜD,`Nc2,i
) =

`N∑
h=1

1

`N
max

{
ρi(d

h
2 )− ρi(d

dh` e
1 ), 0

}
=

`N∑
h=1

1

`N
max

{
νh − ωdh` e, 0

}
.

By substituting the last equality into Equation (8) we obtain the thesis.


