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Abstract. In this paper we propose a metric approach to the analysis and ver-
ification of large scale self-organising collective systems. Typically, these sys-
tems consist of a large number of agents that have to interact to coordinate their
activities and, at the same time, have to adapt their behaviour to the dynamic
surrounding environment. It is then natural to apply a probabilistic modelling to
these systems and, thus, to use a metric for the comparison of their behaviours.
In detail, we introduce the population metric, namely a pseudometric measuring
the differences in the probabilistic evolution of two systems with respect to some
given requirements. We also use this metric to express the properties of adapt-
ability and reliability of a system, which allow us to identify potential critical
issues with respect to perturbations in its initial conditions. Then we show how
we can combine our metric with statistical inference techniques to obtain a math-
ematically tractable analysis of large scale systems. Finally, we exploit mean-field
approximations to measure the adaptability and reliability of large scale systems.

1 Introduction

The ever increasing complexity of the digital world has moved the focus of researchers
to new classes of systems that are characterised by a large number of interacting com-
ponents, or agents. These agents, when considered in isolation from the system, usually
show a rather simple behaviour. However, the interaction of a massive number of them
enables the desired complex behaviour of the system. Most prominent examples of this
class of systems are [oT systems [[19]], wireless sensors networks, and self-organising
collective systems [2]] (SCS). The latter ones are characterised by a large number of in-
teracting agents that coordinate their activities in a decentralised and often implicit way.
Each agent may change its behaviour according to the current status of the other agents
in order to make the system reach its objectives. However, the dynamic behaviour of
a massive number of agents, and the potential interaction of the system with users and
physical phenomena, make these changes subject to uncertainties and unpredictable
events. For simplicity, given one agent, we call environment the ensemble of all other
agents, users and phenomena that can affect its behaviour. We are interested in ensuring
that the system, and thus each agent, is able to adjust its behaviour with respect to the
current environmental conditions in order to fulfil its tasks.

Due to the unpredictable behaviour of the environment, it is natural to employ a
probabilistic model for the formal specification of the behaviour of these systems. In



2 V. Castiglioni, M. Loreti & S. Tini

particular, we can use a discrete-time Markov chain (DTMC) to model the semantics
of each agent and, thus, of the system (see, e.g., [20]). When quantitative aspects of
systems behaviour are considered, we can use metrics for verification purposes [4;6L/8|
14115, 23], as they allow us to quantify how far the current behaviour of a system is
from its intended one. In the literature, several formal frameworks have been proposed
for modelling and analysing SCS (see among others [[7./13})25[31]]). However, to the best
of our knowledge, so far there have been no proposals of a metric semantics for SCS.

Hence, our first contribution consists in filling this gap as we propose a metric ap-
proach to the analysis and verification of large scale SCS. For the specification, we con-
sider the probabilistic model from [20]: agents are identical, at any point in time each
agent can be in any of finitely many states, and the evolution of the system proceeds in a
clock-synchronous fashion. As each agent can change its state probabilistically, at each
time step we obtain a probability distribution over the possible configurations of the
system. Therefore, we express system’s semantics in terms of its evolution sequence,
i.e., the sequence of probability distributions so obtained. Then, we introduce the popu-
lation metric, a (time-dependent) pseudometric measuring the differences between the
evolution sequences of systems. Besides the disparities in the probabilistic behaviour,
the distance considers the ability of systems to fulfil their tasks. The population metric
consists of two components: a metric on global states and the Wasserstein metric [29].
The former considers the global state of the system, i.e. the identification of the cur-
rent state of each agent, and is defined in terms of a (time-dependent) penalty function
comparing two global states only on the base of the objectives of the system (at a given
time). The latter lifts this metric to a metric on distributions over global states, and thus
on the evolution sequences of systems. We then exploit the population metric to define
the notions of adaptability and reliability of a system, allowing us to analyse its ability
to adjust its behaviour to perturbations in the initial environmental conditions.

As systems are constituted by a large number of agents, a direct evaluation of the
population metric is generally unfeasible. Hence, as our second contribution, we pro-
vide a randomised algorithm, based on statistical inference and on results in [26}28],30],
to compute the distance between two systems in time O(T Rlog(R)), where R is the
number of samples used to estimate the evolution sequences of the two systems, and
T denotes the number of comparisons performed between the estimated evolution se-
quences, each one at a different time step. We then show an application of our algorithm
to evaluate the adaptability of a system in the balancing scenario from [5].

Nevertheless, when the number of agents increases dramatically, the proposed em-
pirical technique falls short of efficiency. For this reason, as our third contribution, we
propose a modification of our randomised algorithm based on mean-field approxima-
tion and the results in [21]]. We express system’s evolution in terms of the changes in its
occupancy vector, whose elements correspond to the fraction of agents in a particular
state. In [21]] it was proven that when the number of agents goes to infinity, the DTMC
capturing the evolution of the occupancy vector of the system can be approximated by a
deterministic process. This process corresponds to the deterministic solution of a set of
difference equations called mean-field, and it can be exploited to obtain a good estima-
tion of the behaviour of the entire system. As an application example, we evaluate the
adaptability of the system in the balancing scenario with an infinite number of agents.
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2 Background

As general notational conventions, given a set X we let | X| denote its cardinality, and
given a vector x € X', we let x};; denote the i-th component of x.

Metrics A metric on a set X is a function m: X x X — RZ% with m(x1,25) =0
iff 21 = 2o, m(x1,22) = m(x2,21), and m(z1,22) < m(xy,z3) + m(xs, x2), for all
x1,Ta,x3 € X. We obtain a pseudometric by relaxing the first property to m(z1, x2) =
0 if 1 = x. As elsewhere in the literature, as the difference in the two notions is not
relevant for our purposes, we will not distinguish between metrics and pseudometrics
and use the term metric as a general term to denote both. A metric m is l-bounded if
m(x1,xe) < lforall z1,z9 € X.

Probability distributions Given a countable set X, a discrete probability distri-
bution, henceforth simply distribution, over X is a mapping p: X — [0, 1] such that
> wex (w) = 1. The support of y is the set supp(u) = {x € X | p(x) > 0}. By
A(X) we denote the set of all distributions over X, ranged over by u, 7, 1/, ... Given
an element z € X, we let §,, denote the Dirac (or point) distribution on x, defined by
d,(x) = land d,(y) = Oforall y # x. For a finite set of indexes I, weights p; € (0, 1]
with } ., p; = 1 and distributions p1; € A(X) with i € I, the distribution ), _; pifi;
is defined by (Do, pipi)(x) = > _;c;pi - pi(x), forallz € X.

Discrete-time Markov chains A discrete-time Markov chain (DTMC) is a pair
M = (X, P) consisting in a countable set of states X’ and a |X| x |X| one step proba-
bility matrix P such that P, , expresses the probability of reaching state y from state
in one computation step. Equivalently, we can define a Markov chain M as a stochastic
process {X;}+en satisfying the Markov property, i.e., the probability of moving to the
next state depends only on the current state and not on the previous ones. Formally,

PI'(Xt+1 =X | XO =20, - - .,Xt = l’t) = PI'(Xt+1 =X | Xt = l’t) = P:L’t,z

3 A calculus of interacting agents

In this section we present a simple formalism that can be used to describe the behaviour
of N identical interacting agents. At any point in time, each agent can be in any of
its finitely many states and the evolution of the system proceeds in a clock-synchronous
fashion: at each clock tick each member of the population must either execute one of the
transitions that are enabled in its current state, or remain in such a state. The presented
formalism is a simple adaptation of the one introduced first in [21]] and in [20].

Agent specifications An agent specification consists of a triple (S, Act, D), where:

— S is a finite non-empty set of state constants, ranged over by A, A’, Ay, .. .;
— Act is a countable non-empty set of actions, ranged over by a, d’, a1, .. .;
— D is a set of agent definitions associating each state constant A; € S with a sum-
mation of enabled actions:
Ai = Z aij.Aij 5

Jj€Ji

with J; a finite index set, A;, A;; € S, and a;; € Act, fori € I and j € J;.
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Fig. 1: Behaviour of agents in Example

We let Act(A;) = {a;; | j € J;} denote the set of actions enabled in state A;. Notation
> Jedi a;;.A;; can be thought of as the n-ary extension of the standard binary nonde-
terministic choice operator. We assume that a;; # a;;» whenever j # j’ for j, 5’ € J,.
Since S is finite we can assume, without loss of generality, that the state constants are
ordered and univocally identified by their index, namely S = {A,..., A5 }.

In order to show how this simple formalism can be used to model the behaviour of
a population of agents, and as a running example for an application of our results, we
consider the following balancing scenario from [J]).

Example 1 (Balancing scenario). Le us consider a group of agents that can be either
red or blue. We want to guarantee that the two groups are balanced in size, without any
centralised control. Each agent can change its colour only by interacting with the other
participants in the systems. An agent of a given colour starts a transitional phase when
it meets another agent of the same colour. In this phase, if another agent with the same
colour is met, the agent changes its own. The transitional phase is cancelled when an
agent with a different colour is found. As typical of SCS, this procedure may never end.

The above behaviour is rendered via state constants B, R, RT and BT. The first two
states indicate a blue and a red agent, respectively; while the last two states describe an
agent in a transition phase. We let Dy p be the following set of agent definitions:

B := blueSeen.BT BT := redSeen.B + blueSeen.R
R := redSeen.RT RT := redSeen.B + blueSeen.R

where action redSeen is performed when a red agent is met, while blueSeen indicates
that the colour of encountered agent is blue.

Finally, the agent specification X' gp is ¥rp = (Srp, Actrp, Drp), where Sgp =
{B,R,BT,RT}, Actgp = {blueSeen, redSeen}, and Dgp is the one defined above.

An agent specification can be also depicted via a graph as reported in Figure [} As

common in the literature, for A; := 3, ; a;.A;, we write 4; Bl Aj to denote that if
an agent in state A; performs action a; then its state changes to A;, for each j € J.

Global states and occupancy vectors An agent specification (S, Act, D) describes
the behaviour of a set of agents operating in a system. A configuration of a system
consists of any representation of the current states of the N agents in it. Two different
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levels of abstraction for modelling configurations can be considered. The basic, and
more detailed, one is based on global states. This consists of a sequence A in SV of the
form (A;,, ..., Aiy), where A;, is the current state of agent k, foreach k = 1,..., N.
We refer to N as the population size, and we let Ay denote the k-th element in A.. The
state of each agent operating in the system is then univocally identified. Appropriate
syntactical shorthands will be used to denote system configurations. For instance, we
let (B[1000], R[0], BT[0], RT[0]) denote the configuration with only 1000 blue agents.
However, sometimes we can abstract from the precise state of each single agent
while we are interested in considering only the fraction of agents in each state. For
this reason, a configuration can be also represented via an occupancy vector associating
each state with the fraction of agents in that state. An occupancy vector o is then an
element in U/ = {u € [0,1]151 | 1%y = 1}, namely the unit simplex of di-
mension |S|. We let OF sy denote the function mapping each global state in S N to the
corresponding occupancy vector: OFs n: SN — U'S! is defined for all A € SN by:

N
1
OFsn(A)y = & > iag=al
k=1

where 15, — 4, is 1if Apy = A;, and it is 0 otherwise, i = 1,...,]|S|.
We call OF 5 y the occupancy function on S™. We shall drop the subscripts S and
N from OF s, 5 when no confusion shall arise.

Probability functions Let us consider an agent specification (S, Act, D) and a global
state A € S™. The behaviour of A is modelled via a probabilistic process. Each agent
in A selects probabilistically the next action to perform. The probability of an agent in
a given state A; to perform an action a € Act(A4;) in the current time step depends on
the distribution of the current states of the other agents, and thus on OF(A). Clearly,
the changes in the distribution of the states of the agents induced by each computation
step entail a modification of the (probabilistic) behaviour of each agent at the next step
until an equilibrium is eventually reached.

Formally, as a first step in the definition of the dynamic behaviour of agents, we
assign a weight to each action in a global state A by means of a weight function
pis : UISI x Act — R. The weight function is built on the weight expressions E € Exp,
defined according to the following grammar:

E:=v|frc(A) | (uvop) E | E(bop) E | (E)

Above v € [0, 1] and for each state A € S, frc (A) denotes the fraction of agents in
the system that are currently in state A out of the total number of objects V. Operators
(uop) and (bop) are standard arithmetic unary and binary operators.

Each expression is interpreted over a u € U!S! by means of an expressions inter-
pretation function [-],, : Exp — R defined as follows:

[vlw=v  [frc(Ai)]u = up [{uop) E]u = (uop) ([E]u)
[E1 (bop) Exllu = ([Er]u) (bop) ([E2lu)  [(E)]u = ([E]u)
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Hence, we can associate each action a € Act with a weight expression E, and define
the weight of action a with respect to an occupancy vector o by ps(0,a) = [E,]o-
We say that a state A € S is probabilistic in an occupancy vector o if

0< Y ps(ea) <1,
a€Act: A A

i.e., if the total weight assigned by p.s to the actions enabled for A with respect to o is
non-negative and smaller than 1. Then, we say that ugs is a probability function if all
the states in S are probabilistic in o, for any o € /5!, In the remainder of the paper we
shall consider only functions us that are probability functions.

We shall drop the subscript S from s when no confusion shall arise.

Example 2. For the red blue balancing scenario of Example [I] given an occupancy
vector o, we can consider the probability function ps,,,, defined as follows:

USpy (0, blueSeen) = Ja - (frc (B) + frc (BT))]o
pspy(0,redSeen) = Ja - (fre (R) + fre (RT))]o

with « a parameter in [0, 1] expressing the probability of an agent to see another agent.

Systems semantics A system specification X is a tuple of the form (S, Act, D, us),
where (S, Act, D) is an agent specification and s is a probability function. We let XV
denote a system 2’ composed by IV agents.

As outlined above, the behaviour of a global state A € S N can be described in
terms of the (probabilistic) evolution of the states of the agents. To this end, let us focus
on the behaviour of a single agent in its interaction with the others. Let o be an occu-
pancy vector in U!S!. The agent transition function K is used to express the probability
under o of an agent in state A, to change its state to A; after one computation step.
Formally, we define K: U5 x S x S — [0, 1] as follows:

Z us(u,a) if A; # A;

K(ua 4 — a€l(A;) ’
(W)a;.4, 1— Z ps(u,a) if A, = A;
a€l(A;)

where I(A;) ={a € Act | 3A,; € S: A; = A; N A; # Aj}.
As we are assuming that all the states in S are probabilistic in any occupancy vector
o, we can interpret K (o) as a one step |S| x |S| transition probability matrix, and call
it the agent transition matrix. Then, the second case in the definition of K (o) expresses
the probability of an agent in state A; to remain in that state after the clock tick.
Starting from K, we can define the probabilistic behaviour of global states via the
global state transition matrix P(N) : SN x SN — [0, 1] defined for all A, A’ € SV as

(k]

N
Py = [ K(OF(A))a, A/ (1)
k=1
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Fig. 2: Single simulation run of red-blue scenario.

Since all states in S are probabilistic in any occupancy vector o, the |SV| x |[SV]
matrix P(Y) corresponds to the one step transition probability matrix of the (finite state)
DTMC modelling a possible single step of the system as result of the parallel execution
of a single step of each of the N agents In detail, given a global state A € SV, we

define the evolution sequence of A as the sequence ma o,...,TA ¢,... of probability
distributions over SV such that ma o = 64 and 7a 111 = 7a PWN), for each t > 0.
In this case, we let XXV) (t) denote the Markov chain with transition probability matrix

P(™) as above and X4 (0) = A, i.e. with initial probability distribution & . From

the Markov chain {X&N)(t)}teN we can obtain the occupancy DTMC {O‘(,&N)(t)}teN,
namely the Markov chain modelling the evolution in time of the occupancy vector of
the system. Intuitively, and with a slight abuse of notation, OE&N)(t) corresponds to
OF(XXV) (t)) and its transition probability is defined by:

pr{Oy)(t+1) =0 |OY () =0F(A)} = S PYL @
A’: OF(A’)=0’

Notice that OV) is well-defined: if OF(A) = OF(A”), then A and A" are two per-
)

mutations of the same local states. Hence, for all A’ we have PX\&, = PEA,,, Al
Example 3. We can use the presented semantics to generate the stochastic process of
our system of Example[T] The result of the simulation of a single computational path is
reported in Figure 2] There we consider an initial state composed by N = 100 agents
out of which 75 are in the state R and 25 are in the state B. We consider & = 0.5
(see Example [2). We can observe that, after few steps, the system is able to evolve
to balanced configurations. (Data have been obtained by using Spear Tool available at
https://github.com/quasylab/spearl)

4 Measuring the adaptability and reliability of systems

In this section we provide the tools necessary to study and analyse the differences in the
dynamics of the systems described in the previous section. More precisely, we introduce
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a metric over systems, called the population metric m, that quantifies the dissimilarities
over the evolution sequences of the initial configurations of the systems. The definition
of the population metric will then make use of a (time-dependent) metric on global
states, measuring the differences of each pair of global states with respect to some
parameters of interest, and of the Wasserstein metric, allowing for lifting the former
metric to probability distributions over global states. We then exploit the population
metric to define the notions of adaptability and reliability of a system, expressing how
well the system can adjust its behaviour with respect to changes in the initial conditions.

4.1 A metric over systems: the population metric

A metric over global states We start by proposing a metric over global states. This
metric expresses the distance between two given configurations by comparing them
with respect to some parameters representing the ideal, optimal behaviour of a system.
To this end, we introduce a penalty function p: SV — [0, 1], namely a function assign-
ing to each global state A € SV a penalty in [0, 1] expressing how far the values of
the parameters on interest in A are from their desired ones. Intuitively, p(A) = 0 if
A respects all the parameters. Since some parameters can be time-dependent, so is the
penalty function: at any time step ¢, the ¢-penalty function p; compares the global states
with respect to the values of the parameters expected at time ¢.

Example 4. In Example [T] one is interested in verifying that blue and red agents are
balanced. It is then natural to define a penalty function on S such that: (i) the penalty
is zero if the number of red agents is equal to the number of the blue ones; (ii) the
penalty is higher for less balanced systems, (iii) the penalty does not depend on time,
(iv) the penalty is a value in [0, 1]. Given the occupancy function OF of § g g, We set

p(A) = | (OF(A)[B] + OF(A)[BT]) — (OF(A)[R] + OF(A)[RT])

)

for all t € N, where, with a slight abuse of notation, we let OF(A)[A] denote the
component of the occupancy vector corresponding to state A, for A € Sgp.

The (timed) metric over global states is then defined as the difference between the
values assigned to them by the penalty function.

Definition 1 (Metric over global spaces). For any time step t, let py: SN — [0, 1] be
the t-penalty function on S™. The timed metric over global states in SV, m, ;: SN x
SN —[0,1], is defined, for all global states A1, Ay € SN, by

mpt(A1, Az) = [pi(A1) — pe(Az)] .

When no confusion shall arise, we shall drop the p, ¢ subscript. It is not hard to see
that for all Ay, Ay, Az € SV we have that (i) 0 < m(Ay, As) < 1, (i) m(A1, Ay) =
0, (i) m(A1, A2) = m(Az, Ay), and (iv) m(A1, Az) < m(Aq1, Az) + m(As, As),
thus ensuring that m is well defined.

Proposition 1. Function m is a 1-bounded pseudometric over SN



Measuring Adaptability and Reliability of Large Scale Systems 9

We remark that the use of the penalty functions allows us to define the distance
between two global states, which are elements in S, in terms of a distance on R.
As we will discuss in Section [5] this feature significantly lowers the complexity of
the evaluation of the population metric. Moreover, thanks to the penalty function, the
metric on global states m could be directly generalised to a metric over SVt x SN2 with
N # N, i.e., a metric over global states of different dimensions. However, to simplify
the presentation in the upcoming sections and ease of notation, we preferred to consider
only the case of global states of the same dimension.

Lifting m to distributions The second step in the definition of the population metric
consists in lifting m to a metric over probability distributions over global states. In
the literature, we can find a wealth of notions of distances over probability measures
(see [22] for a survey). For our purposes, the most suitable one is the Wasserstein metric
[29]. This metric has been applied in several different contexts, from image processing
to economics, and it is known under different names, accordingly. Among the most
prominent ones, we recall its use in optimal transport problems [30], where it is called
the Earth mover’s distance, and in the definition of bisimulation metrics (see among
others [6,10,14,15]]), where it is usually referred to as the Kantorovich metric |18]]. More
recently, the Wasserstein metric has been successfully implemented in privacy problems
[9,/11] and has found a wealth of applications in machine learning for improving the
stability of generative adversarial networks training [3L|17,[27]].

Definition 2 (Wasserstein metric). For any two probability distributions i, v on S™,
the Wasserstein lifting of m to a distance between . and v is defined by

w = i A A" -m(AA
))<= s 3 (A A (A, )

where 23( 1, V) is the set of the couplings for pand v, i.e., the set of joint distributions 1o
over the product space S x S having p and v as left and right marginal respectively,
i€, > arcsn W(AA) = p(A)and Y 5 cgn w(A, A) = v(A), forall A € SN.

Thus, the inifimum in Deﬁnition@] is always achieved and it is, in fact, a minimum.
Due to the convexity of the Wasserstein lifting and in light of Proposition [} we are
guaranteed that W (m) is a well-defined pseudometric.

Proposition 2. Function W (m) is a 1-bounded pseudometric over A(SY).

The population metric We are now ready to lift the distance W (m) to a distance over
systems, which we call the population metric. This is obtained from the comparison of
the evolution sequences of the initial configurations of two systems. To favour computa-
tional tractability, we will not compare all the probability distributions in the evolution
sequences, but only those that are reached at certain time steps, called the observa-
tion times (OT). To perform such a comparison, we propose a sort of weighted infinity
norm of the tuple of the Wasserstein distances between the distributions in the evolution
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sequences. More precisely, we consider a non-increasing function \: OT — (0, 1] al-
lowing us to express how much the distance at time ¢, namely W (m,, ;)(7ma, 1, Ta,,¢)s
affects the overall distance between global states A; and As. Following the terminol-
ogy used for behavioural metrics [1}/16]], we refer to A as to the discount function, and
to A(t) as to the discount factor at time t.

Definition 3 (Population metric). Assume a finite set OT of observation times, a
penalty function p;: SN — [0,1] for each t € OT and a discount function \: OT —
(0, 1]. The A-population metric over OT, md: SN x SN — [0,1] is defined, for all
A A5 € SN, by

mdr(Ar,Az) = sup A(t) - W(mp) (Tars Tas.)-
teOT

We remark that although both m, ; and mQy. are formally defined as metrics over
global states in S¥, their expressive power is totally different. On one hand, m p,t COm-
pares the global states A, and A seen as static objects. In fact, m, (A1, As) is based
on the evaluation of p, on the current states of A; and As. On the other hand, mgT
compares A and Ao as dynamic objects. The distance mg\)T(Al, A,) is in fact evalu-
ated by considering the evolution sequences of the two global states.

The following proposition is a direct consequence of Proposition 2]

Proposition 3. Function m{yy is a I-bounded pseudometric over S™.

Notice that if A is a strictly decreasing function, then it specifies how much the
distance of future events is mitigated and, moreover, it guarantees that to obtain upper
bounds on the population metric only a finite number of observations is needed.

Furthermore, as for the metric m, the population metric could be easily generalised
to a metric over systems composed by a different number of agents. For consistency
with the choice made for Definition |1} we considered only the simple case of systems
having the same number of agents. We leave as future work an in-depth analysis of the
population metric over SVt x SN2, for Ny # Ns. In particular, our metric could be used
to measure the differences between the systems XV and V!, namely to analyse the
impact of the addition (or removal) of a single agent from the system.

4.2 System Adaptability and Reliability

We now apply the population metric to verify whether a system is able to adjust its be-
haviour to changes in the initial conditions. For instance, we are interested in verifying
whether a small perturbation to the initial distribution of states produces a controlled
perturbation to the dynamics of the system. We express this kind of properties in terms
of the notions of adaptability and reliability of a system. The main difference between
these notions is in how time is taken into account.

The notion of adaptability imposes some constraints on the long term behaviour of
systems, disregarding their possible initial dissimilarities. Given the thresholds 7,72 €
[0,1) and an observable time #, we say that a system £ is adaptable around a global
state Aq if whenever the computation is started from a global state A’ that differs from
A for at most 71, then we are guaranteed that the distance that we can observe between
the evolution sequences of the two systems after time  is bounded by 7).
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1: function ESTIMATE(A, T, R)

2 Vi (0<t<T):Oe« 0

3 counter < 0

4 while counter < R do

S (Ao, ..., A7) < SIMULATE(A,T)
6: Vt:@t (*Ot,At

7. counter < counter + 1

8 end while

9 return Oy, ..., Or

0:

10: end function

Fig. 3: Function giving R samples of the evolution sequence of A with time horizon 7.

Definition 4 (Adaptability). Consider a system specification X over N agents. Let
t € OT and n1,m2 € [0,1). We say that SN is (t,m1,12)-adaptable around A if
VA’ € SN withmpo(Ag, A') <y it holds W3, ypyys5y (Ao, AT) <12
Roughly, X is adaptable if whenever the starting conditions are changed, then X~
is able to return close to the original behaviour within the time threshold ¢. The notion
of reliability strengthens that of adaptability by bounding the distance on the evolution
sequences of systems from the beginning. A system is reliable if it ensures that small
variations in the initial conditions cause only bounded variations in its evolution.

Definition 5 (Reliability). Consider a system specification X' over N agents. Let n1,my €
[0,1). We say that XV is (n1,m2)-reliable around state Ay if

VA € SN withm,o(Ag, A’) < ny it holds mdp(Ag, A') < my .

5 Statistical estimation of adaptability and reliability

Given two evolution sequences one could explicitly compute the distance among them.
However, this approach is unfeasible when the number of agents in the involved states
increases. For this reason, in this section, we discuss an empirical technique that given
two global states A; and A allows us to generate their evolution sequences and then
evaluate the distance between them. The same technique will be used to verify the
adaptability and reliability of a system around a given global state A.

5.1 Computing empirical evolution sequences

To compute the empirical evolution sequence of a global state A the function ESTIMATE
in Figure |3| can be used. This function invokes R times function SIMULATE, i.e., any
simulation algorithm sampling a sequence of global states Ay, ..., Ap, modelling T’
steps of a computation from A = Ay . Then, a sequence of observations O, ..., Or
is computed, where each O, is the tuple A}, ..., A of global states observed at time
t in each of the R sampled computations. Each O; can be used to estimate the real
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: function DISTANCE(A 1, Az, p, A\, OT, R, 0)

function COMPUTEW (01, O2, p)
T < maxor :

1:

2 (A}, ..., AR 0O,

01,...,0% < ESTIMATE(A;, T, R) 3 (AL, ..., A5F) « O,

0O3%,...,0% « ESTIMATE(A2,T,fR) 4  VI:(1<I<R):w + p(Ah)

m <= 00 50 Vh:(1<h<U{R):v,+ p(Ah)

forallt € OT do 6: re index {w; } such that w; < wi41q
me < COMPUTEW(O,}, 02 pt) 7 re index {vp, } such that v, < vpyq
m + min{m, A(t) - m:} 8 return ;- >0 winy = val

end for 9: end function

return m

: end function

TV RXIDN R RN

—_

Fig. 4: Functions used to estimate the population metric on systems.

probability distribution 7w ;. For any ¢, with 0 < ¢ < T', we let ﬁﬁ,t be the probability

distribution such that, for any A’ C SV, #£ ,(A’) = % where |A’|p, denotes the
number of occurrences of A’ in O;. Since the R samples are i.i.d, we can apply to them

the weak law of large numbers, obtaining that 7% , converges weakly to 7a ;:

lim 78, =7a . 3)
R—o0 ’

5.2 Computing distance between two configurations

We now evaluate the distance between the evolution sequences of two global states A
and A, by exploiting the independent samples collected via function ESTIMATE. To this
end, we apply the approach of [26] to estimate the Wasserstein distance between two
(unknown) distributions. In order to approximate the distance W (m,, ;)(7ma, ¢, Ta,,t)s
for any 0 < ¢ < T, we consider R independent samples O; ; = {Al,..., A} taken
from 7a, ; and £R samples Oy ; = {A}, ... ALE} taken from 74, . We then apply
the ¢-penalty function p; to them, obtaining the two sequences of values {w; = p;(A}) |
1 <1 < R}and {v, = p(A%) | 1 < h < (R}. Without loss of generality, we
can assume that w; < w4 and v, < vp4q, 1., the two sequences are ordered. In
light of the next theorem, which is based on results from [26}28||30], we have that
W (m,+)(TA,t:TA,,t) can be approximated by 7= Zf;il |w(%] — vp|, and that the
latter value converges to the real distance when R — oo.

Theorem 1. Let o, 4, Ta,+ € A(SY) be unkonwn. Let {A1,... AR} be indepen-
dent samples taken from wa, +, and {A}, ..., ASR} independent samples taken from
Tyt Let {w = p(AY) | 1 <1 < R} and {vy, = p(A%) | 1 < h < (R} be the
ordered sequences obtained from the samples and the t-penalty function. Then

a.s.

(R
. 1

W) (mas e, mae) = lim o > lwrsy —val -
' h=1

Functions DISTANCE and COMPUTEW in Figure [ realise the procedure outlined
above. The former takes as input the two global states to compare, the penalty func-
tion (seen as the sequence of the t-penalty functions), the discount function A, the
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bounded set OT of observation times, and the parameters R and ¢ used to obtain
the samplings of the computations. It calls function ESTIMATE to collect the sam-
ples O; of possible computations during the observation period [0, maxor]. Then,
for each observation time ¢t € OT, the distance at time ¢ is computed via the func-
tion COMPUTEW (O +, Oz ¢, p¢). Since the penalty function allows us to evaluate the
Wasserstein distance on R, the complexity of function COMPUTEW is O(¢{R1og({R))
due to the sorting of {vy, | h € [1,...,¢R]} (cf. [26]).

Example 5. We use function COMPUTEW to evaluate the impact of a perturbation in
the initial configuration of the system in Example 3] There, we have considered an
initial state of the form A; = (B[25], R[75],BT[0], RT[0]). Consider the new initial
configuration A, = (B[0], R[100], BT[0], RT[0]). Figure[5a]shows the variation in time
of the distance between A; and Ay, for R = 100 and ¢ = 10: after around 10 steps, the
two systems cannot be distinguished. Therefore, we can infer that, after around 10 steps,
the actual distance between the two systems will be bounded by the approximation
error ew = | W (m,,10) (TR 10, Tard0) — W(m,),10)(TA; 10, TA,,10)| We refer the
interested reader to [24, Corollary 3.5, Equation (3.10)] for an estimation of ey .

5.3 Estimating adaptability and reliability

We can use a randomised algorithm to verify the adaptability and reliability of a system.
Given a global state A, a set OT of observation times and a given threshold n; > 0,
we can sample M variations {A1,..., Ay} of A such that, for any i = 1,..., M,
mp,0(A,A;) < ni. Then, for each sample we can estimate the distance between A

and A; at the different time steps in OT, namely m?teomtzf} (A, A;)forany € OT.

?tEOTltzf} (A, Af)} We can observe
that, for the chosen 7;, each L; gives us a lower bound to the ¢-adaptability of our
system. Similarly, for ¢,,;, = mingr ¢, Ly, gives a lower bound for its reliability.

Finally, for each t € OT, we let L; = max;{m

min

Example 6. Figure[5b|shows the evaluation of L; for configuration A; from Example[3]
with parameters M = 20 and 7; = 0.25. Observe that the initial perturbation is not
amplified and after 15 steps it is less than 0.05. Hence, our system of Example [3] is
(15, 0.25, 12 )-adaptable around A ; for any ns > ew.

6 Mean-field approximation of adaptability and reliability

When the number of agents increases dramatically, sampling the behaviour of each
global state may become unfeasible. Hence, in this section we strengthen our ran-
domised algorithm by means of mean-field approximation [21]]. We have seen in Sec-

tionthat we can express the behaviour of a system via the Markov chain {XXV) () hen
taking values in S~. However, we can also abstract from the identity of each single
agent while focusing only on the fraction of agents in a given state, and model systems

behaviour via the occupancy DTMC, namely the Markov chain {OXV) (t)}ien taking
values in /!S!. We recall that, for each IV, the occupancy DTMC {OXV) (t) }ren is given
by 04 (t) = OF s n (X4 (¢)), with initial distribution §op  (a)-
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Distance R=100 1=10 Estimation of Adaptability (M=20)

0.0 ——

0 20 a0 60 80 100 120 140

(a) Estimated distance between configurations  (b) Adaptability of A, (Example for M =
A and A in Example[3} 20, 71 = 0.25.

Mean Field Estimation of Adaptability (M=20)

Simulation vs Mean Field approximation.

075 — N=100
N=1000
0.70 — N=1o0000 0.4
—— Mean Field

(d) Mean-field adaptability of A; (Example[3)

(c) Simulation vs Mean-Field Approximation for M = 20,7 = 0.25.

Fig. 5: Some experiments carried out with the Spear Tool.

In the following we use the fundamental result due to Le Boudec et al. [21] that
guarantees that when N goes to infinite, the Markov chain OXV) (t) converges to a
deterministic behaviour. Given a global state A € SN, we let cA denote the global
state in SV such that (cA)py.N4k) = A forany 1 <k < Nand0 < v < c.
Intuitively, cA consists of ¢ copies of A and it is called a c-scale of A. We can observe
that for any A € S and for any ¢ > 1, OFs n(A) = OFs cn(cA). Hence, for all
A, Aj € S, K(OFs n(A))a;,4, = K(OFs n(cA))a,,a,. Consequently, scaling a
state by a factor ¢ has no effect on the behaviour of an agent since the probability to
select an action does not change. We can consider the sequence of occupancy DTMCs

{OSXN) (t)} obtained by increasing the scale ¢ of our system. By Theorem 4.1 of [21],
this sequence converges almost surely to the following deterministic process in 2/!°T:

~ DA(0) = 05" (0);
- DA(t+1) = Da(t) - K(Da(t)).

In other words, N
lim 0! (t) = Da(t) )
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Example 7. In Figure[5c|we can observe how when the scale of the system of Example[3]
is increased (we consider N = 100, N = 1000 and N = 10000), the single sampled
simulation run gets close to the mean-field approximation.

We say that a penalty function p : S — [0,1] is scale invariant if there exists
a function po : U!S! — [0, 1] such that p(A) = po(OFs n(A)). We can use mean-
field approximation to study the adaptability and reliability around a given state A with
respect to a scale invariant penalty function.

Proposition 4. Assume a penalty function py that is scale invariant for each t € N. Let
mQp be the population metric defined on m,, ;. Then,

lim m3r(cA,cAz) = S A(D) - [po(Da(t) = po(Das )l - ()

c— 00

We let mfdy (A1, Az) = supicor Alt) - [po(Da, (1)) — po(Da, (1))].

The same randomised algorithm outlined in Section [5.3|can be adapted to estimate
adaptability and reliability via mean-field approximation. Given a global state A, a
set OT of observation times and a threshold n; > 0, we can sample M variations
{A1,...,An} of A, such that for any i, m, (A, A;) < n;. Then, for each sampled
global state we can compute the distance between A and A; by using their mean field
approximants D4, (t) and D4, (t). Finally, a lower bound to the t-adaptability of our
system can be computed as L; = maXi{mf?thTux”} (A, A;)}. Similarly, for ¢, =
minpr ¢, Ly, gives a lower bound for its reliability.

Example 8. Figure[5d/shows the evaluation of L; for configuration A; from Example[3]
with parameters M = 20 and n; = 0.25. Observe that the initial perturbation is not
amplified and after 15 steps it is absorbed. Hence, while we increase the scale of our
system, we can guarantee that it is (15, 0.25, 772 )-adaptable around A for any 72 > ew.

7 Concluding remarks

We have proposed the population metric, a pseudometric allowing us to compare the
behaviour of self-organising collective systems. This metric quantifies the differences in
the evolution sequences of two systems, i.e., the sequences of probability distributions
over global states describing the (probabilistic) behaviour of each system. Then we
have provided a randomised algorithm for the evaluation of the metric over large scale
systems. Moreover, we have shown how we can use the population metric to verify the
properties of adaptability and reliability of system, expressing its ability of adjusting
its behaviour to perturbations in its initial configuration. We have then modified our
algorithm to obtain an estimation of the adaptability and reliability of a system via
mean-field approximations.

In this work we have considered a discrete-time approach to systems modelling.
Hence, as future work, it would be interesting to provide an adaptation of our framework
to system with a continuous model of time. In particular, we could exploit the fluid-flow
approximation based on [12], in place of the mean-field one, to deal with system with a
dramatically large population. Another interesting direction for future research, would
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be to use our metric to analyse systems with a different number of agents. From the
technical point of view, our definitions and results can be directly lifted to cover this
case. However, it would allow us to analyse the impact of a new agent (or a new set of
agents) on the dynamics of the system. Finally, we could extend our metric approach to
study other properties than adaptability and reliability, and thus obtain some measures
on systems performance.
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Proof. First we prove that

Jim m3p(cAr,cAz) > sup A(t) - [po(Da, (1) = po(Da,(t))] -

teOT
We have
lim mgT(cAl,cA2)
cC— 00
= lim sup A(%) min Z (A, A")|p(A) — pi(A)]
€30 +teOT WEW(MeAy,t,TcAy,t) Acsr(mon. 1)
A/Esupp(rrcAIQ,.’t)
— lim sup A(t) i ST (A, A)po(OF(A)) — puo(OF(A))]
C_M)OtEOT mew(ﬂ'cAl,tﬂTcAz,t) Acsupp(mop ¢)
A/ESupp(ﬂCAz’7t)
— lim sup A(H) _ min 3 3 w(A, A) | |pro(u) - pro(w)
€70 te0T mem(WCAl’thAQ’t)u,u’eL{lS\ Acsupp(Tep ) OF(A)=u
A/Esupp(wcA2‘t): OF(A’)=u’
= lim sup A(t) min Z (u,u’)|pro(u) — pro(u')]
=00 tcOT WEW (A, t:TcAy,t) acomall )
At
u’esupp(wz/[Alzwt)
> lim sup A(t)  min S o w)lpre(w) — pro(u)]
=0 tcOT l‘BEQU('fr?Al’t,wZC/’AQ_’t) aComn(alt )
CAq,t
u’esupp(ng;t)
= sup A(t) lim _ min > ) |pre(u) — pro(u)
teOT CPOREW (T, | 1Ty, )

uEsupP(W(g{Al )
u’ Esupp(‘rrlcffA2 ,t)

= sup M(6) W(mp, o) (lim wly, , lim wly, ,)

= sup A(t) W(mpo,t)(éDAl (t) 6DA2(t))
teOT

= sup A(t) - |pro(Da,(t)) — pro(Da,(t))]
teOT

where:

— The second step follows by p; being scale invariant.
— The fourth step follows by defining, for all u, u’ € ¢!

o(u,u’) = E w(A,A") .
AEsupp(wcAl)t): OF(A)=u
A/Esupp(ﬂ'CA2)t): OF(A/)=u’

— The fifth step follow by noticing that 1w is not necessarily the optimal coupling
in 0(n¥y 7%y, ;). where the two distributions are defined, for each u € ¢/,
i€{1,2},as

en, ¢(u) = > Tea; t(A) -

Acsupp(mea,,t): OF(A)=u
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— The sixth step follows by noticing that time and scaling are independent.
— The seventh step follows by noticing that:
o O4(t) converges in distribution to D 4, (¢) (Equation (@));
e since occupancy vectors are scale invariant we can take the limit inside the
minimum,;
o the linearity of the limit.

We can then apply the same steps backwards to obtain

sup A(t) - [po(Da, (1) = po(Da, (t))] > lim map(cAq,cAs)
teOT c—00

and thus that the equality holds. In particular, starting from the optimal coupling to €
W (x| + wﬁ’AZ’t) we can obtain a generic coupling o € 20(mca, ¢, Tea,,¢) as follows:

A A = WINRICY 0(OF(A), OF(A”))- Teast(A') .
(A, A') S i OF ) 0P S

B1€OF~1(OF(A)) B,cOF~1(OF(A’))
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