
Are Two Binary Operators Necessary to Obtain a Finite
Axiomatisation of Parallel Composition?∗

LUCA ACETO, Reykjavik University, Iceland and Gran Sasso Science Institute, Italy

VALENTINA CASTIGLIONI, Reykjavik University, Iceland

WAN FOKKINK, Vrije Universiteit Amsterdam, The Netherlands

ANNA INGÓLFSDÓTTIR, Reykjavik University, Iceland

BAS LUTTIK, Eindhoven University of Technology, The Netherlands

Bergstra and Klop have shown that bisimilarity has a finite equational axiomatisation over ACP/CCS extended

with the binary left and communication merge operators. Moller proved that auxiliary operators are necessary
to obtain a finite axiomatisation of bisimilarity over CCS, and Aceto et al. showed that this remains true

when Hennessy’s merge is added to that language. These results raise the question of whether there is one
auxiliary binary operator whose addition to CCS leads to a finite axiomatisation of bisimilarity. We contribute

to answering this question in the simplified setting of the recursion-, relabelling-, and restriction-free fragment

of CCS. We formulate three natural assumptions pertaining to the operational semantics of auxiliary operators

and their relationship to parallel composition, and prove that an auxiliary binary operator facilitating a finite

axiomatisation of bisimilarity in the simplified setting cannot satisfy all three assumptions.

CCS Concepts: • Theory of computation → Equational logic and rewriting; Process calculi; Operational
semantics.

Additional Key Words and Phrases: Equational logic, CCS, bisimulation, parallel composition, non-finitely

based algebras.

ACM Reference Format:
Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. 2022. Are Two Binary

Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition?. ACM Trans. Comput. Logic 1,
1 (April 2022), 54 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The purpose of this paper is to provide an answer to the following problem (see [1, Problem 8]):

Are the left merge and the communication merge operators necessary to obtain a finite equational
axiomatisation of bisimilarity over the language CCS? The interest in this problem is threefold, as

an answer to it would:

(1) provide the first study on the finite axiomatisability of operators whose operational semantics

is not determined a priori,

∗
A preliminary version of this work appeared as [5].

Authors’ addresses: Luca Aceto, Reykjavik University, Reykjavik, Iceland;, Gran Sasso Science Institute, L’Aquila, Italy,

luca@ru.is; Valentina Castiglioni, Reykjavik University, Reykjavik, Iceland, valentinac@ru.is;Wan Fokkink, Vrije Universiteit

Amsterdam, Amsterdam, The Netherlands, w.j.fokkink@vu.nl; Anna Ingólfsdóttir, Reykjavik University, Reykjavik, Iceland,

annai@ru.is; Bas Luttik, Eindhoven University of Technology, Eindhoven, The Netherlands, s.p.luttik@tue.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1529-3785/2022/4-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

(2) clarify the status of the auxiliary operators left merge and communication merge, proposed in

[19], in the finite axiomatisation of parallel composition, and

(3) give further insight into properties that auxiliary operators used in the finite equational

characterisation of parallel composition ought to afford.

We prove that, under some simplifying assumptions, whose role in our technical developments

we discuss below, there is no auxiliary binary operator that can be added to CCS to yield a finite

equational axiomatisation of bisimilarity. Despite falling short of solving the above-mentioned

problem in full generality, our negative result is a substantial generalisation of previous non-finite

axiomatisability theorems by Moller [40, 41] and Aceto et al. [8].

In order to put our contribution in context, we first describe the history of the problem we tackle

and then give a bird’s eye view of our results.

The story so far. In the late 1970s, Milner developed the Calculus of Communicating Systems (CCS)
[37], a formal language based on a message-passing paradigm and aimed at describing commu-

nicating processes from an operational point of view. In detail, a labelled transition system (LTS)

[33] was used to equip language expressions with an operational semantics [44] and was defined

using a collection of syntax-driven rules. The analysis of process behaviour was carried out via

an observational bisimulation-based theory [43] that defines when two states in an LTS describe

the same behaviour. In particular, CCS included a parallel composition operator ∥ to model the

interactions among processes. Such an operator, also known as merge [19, 20], allows one both to

interleave the behaviours of its argument processes (modelling concurrent computations) and to

enable some form of synchronisation between them (modelling interactions). Later on, in collabora-

tion with Hennessy, Milner studied the equational theory of (recursion-free) CCS and proposed a

ground-complete axiomatisation for it modulo bisimilarity [32]. More precisely, Hennessy and Milner

presented a set E of equational axioms from which all equations over closed CCS terms (namely

those with no occurrences of variables) that are valid modulo bisimilarity can be derived using

the rules of equational logic [46]. Notably, the set E included infinitely many axioms, which were

instances of the expansion law that was used to ‘simulate equationally’ the operational semantics

of the parallel composition operator.

The ground-completeness result by Hennessy and Milner started the quest for a finite axiomati-

sation of CCS’s parallel composition operator modulo bisimilarity.

Bergstra and Klop showed in [19] that a finite ground-complete axiomatisation modulo bisimi-

larity can be obtained by enriching CCS with two auxiliary operators, namely the left merge and

the communication merge |, expressing respectively one step in the asymmetric pure interleaving

and the synchronous behaviour of ∥. Their result was then strengthened by Aceto et al. in [10],

where it is proved that, over the fragment of CCS without recursion, restriction and relabelling, the

auxiliary operators and | allow for finitely axiomatising ∥ modulo bisimilarity also when CCS

terms with variables are considered. Moreover, in [14] that result is extended to the fragment of

CCS with relabelling and restriction, but without communication. From those studies, we can infer

that the left merge and communication merge operators are sufficient to finitely axiomatise parallel

composition modulo bisimilarity. But is the addition of auxiliary operators necessary to obtain a

finite equational axiomatisation, or can the use of the expansion law in the original axiomatisation

of bisimilarity by Hennessy and Milner be replaced by a finite set of sound CCS equations?

To address that question, in [40, 41] Moller considered a minimal fragment of CCS, including only

action prefixing, nondeterministic choice and interleaving, and proved that, even in the presence

of a single action, bisimilarity does not afford a finite ground-complete axiomatisation over the

closed terms in that language. This showed that auxiliary operators are indeed necessary to obtain

a finite equational axiomatisation of bisimilarity. Adapting Moller’s proof technique, Aceto et al.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 3

proved, in [8], that if we replace and | with the so called Hennessy’s merge |/ [31], which denotes

an asymmetric interleaving with communication, then the collection of equations that hold modulo

bisimilarity over the recursion-, restriction-, and relabelling-free fragment of CCS enriched with |/
is not finitely based (in the presence of at least two distinct complementary actions).

A natural question that arises from those negative results is the following:

Can one obtain a finite axiomatisation of the parallel composition operator in bisimulation
semantics by adding only one binary operator to the signature of (recursion-, restriction-,
and relabelling-free) CCS?

(P)

In this paper, we provide a partial negative answer to that question. Henceforth, we consider the
recursion-, restriction-, and relabelling-free fragment of CCS which, for simplicity, we still denote as
CCS. (Note that, in (P), we focus on binary operators, like all the variations on parallel composition

mentioned above, since using a ternary operator one can express the left and communication merge

operators and, in fact, an arbitrary number of binary operators.)

Our contribution. We analyse the axiomatisability of parallel composition over the language CCS𝑓 ,

namely CCS enriched with a binary operator 𝑓 that we use to express ∥ as a derived operator. We

prove that, under three simplifying assumptions, an auxiliary operator 𝑓 alone does not allow us

to obtain a finite ground-complete axiomatisation of CCS𝑓 modulo bisimilarity. We remark that

the non-existence of a finite ground-complete axiomatisation implies the non-existence of a finite

complete one. Hence, we actually provide a partial answer to a stronger version of (P) concerning

the existence of a finite ground-complete axiomatisation over CCS.

To this end, the only knowledge we assume on the operational semantics of 𝑓 is that it is formally

defined by rules in the de Simone format [27] (Assumption 1) and that the behaviour of the parallel

composition operator is expressed equationally by a law that is akin to the one used by Bergstra

and Klop to define ∥ in terms of and | (Assumption 2). We then argue that the latter assumption

yields that the equation

𝑥 ∥𝑦 ≈ 𝑓 (𝑥,𝑦) + 𝑓 (𝑦, 𝑥) (A)

is valid modulo bisimilarity. Next we proceed by a case analysis over the possible sets of de

Simone rules defining the behaviour of 𝑓 , in such a way that the validity of Equation (A) modulo

bisimilarity is guaranteed. To fully characterise the sets of rules that may define 𝑓 , we introduce a

third simplifying assumption: the target of each rule for 𝑓 is either a variable or a term obtained by

applying a single CCS𝑓 operator to the variables of the rule, according to the constraints of the de

Simone format (Assumption 3). Then, for each of the resulting cases, we show the desired negative

result using proof-theoretic techniques that have their roots in Moller’s classic results in [40, 41].

This means that we identify a (case-specific) property of terms denoted by𝑊𝑛 for 𝑛 ≥ 0. The idea

is that, when 𝑛 is large enough,𝑊𝑛 is preserved by provability from finite, sound axiom systems.

Hence, whenever E is a finite, sound axiom system and an equation 𝑝 ≈ 𝑞 is derivable from E, then
either both terms 𝑝 and 𝑞 satisfy𝑊𝑛 , or none of them does. The negative result is then obtained

by exhibiting a (case-specific) infinite family of valid equations {𝑒𝑛 | 𝑛 ≥ 0} in which𝑊𝑛 is not

preserved, that is, for each 𝑛 ≥ 0,𝑊𝑛 is satisfied only by one side of 𝑒𝑛 . Due to the choice of𝑊𝑛 ,

this means that the equations in the family cannot all be derived from a finite set of valid axioms

and therefore no finite, sound axiom system can be complete.

To the best of our knowledge, in this paper we propose the first non-finite axiomatisability result

for a process algebra in which one of the operators, namely the auxiliary operator 𝑓 , does not have

a fixed semantics. However, for our technical developments, it has been necessary to restrict the

search space for 𝑓 by means of the aforementioned simplifying assumptions. We proceed to give

some justifications for these assumptions. There are three main reasons behind Assumption 1:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

4 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

• The de Simone format is the simplest congruence format for bisimilarity. Hence we must be

able to deal with this case before proceeding to any generalisation.

• The specification of parallel composition, left merge and communication merge operators

(and of the vast majority of process algebraic operators) is in de Simone format. Hence, that

format was a natural choice also for operator 𝑓 .

• The simplicity of the de Simone rules allows us to reduce considerably the complexity of our

case analysis over the sets of available rules for the operator 𝑓 . However, as witnessed by the

developments in this article, even with this simplification, the proof of the desired negative

result requires a large amount of delicate, technical work.

Assumptions 2 and 3 still allow us to obtain a significant generalisation of related works, such as

[8], as we can see them as an attempt to identify the requirements needed to apply Moller’s proof

technique to Hennessy’s merge like operators. We stress that the reason for adding Assumption 3

is purely technical: it plays a role in the proof of one of the claims in our combinatorial analysis

of the rules that 𝑓 may have (see Lemma 4.3). Although we conjecture that the assumption is not

actually necessary to obtain that claim, we were unable to prove it without the assumption.

Even though the vast literature on process algebras offers a plethora of non-finite axiomatisability

results for a variety of languages and semantics (see, for instance, the survey [9] from 2005), we

are not aware of any previous attempt at proving a result akin to the one we present here. We

have already addressed at length how our contribution fits within the study of the equational logic

of processes and how it generalises previous results in that field. The proof-theoretic tools and

the approach we adopt in proving our main theorem, which links equational logic with structural

operational semantics and builds on a number of previous achievements (such as those in [3]), may

have independent interest for researchers in logic in computer science. To our mind, achieving

an answer to question (P) in full generality would be very pleasing for the concurrency-theory

community, as it would finally clarify the canonical role of Bergstra and Klop’s auxiliary operators

in the finite axiomatisation of parallel composition modulo bisimilarity.

Organisation of contents. In Section 2 we review basic notions on process semantics, CCS and

equational logic. In Section 3 we present the simplifying assumptions under which we tackle the

problem (P). In Section 4 we study the operational semantics of auxiliary operators 𝑓 meeting our

assumptions. In Section 5 we give a detailed presentation of the proof strategy we will follow to

address (P). Sections 6 and 7 are then devoted to the technical development of our negative results,

which are presented in Sections 8–11. We conclude by discussing future work in Section 12.

Due to space limitations, the proofs of the results in Sections 5–7 have been moved to an

Electronic Appendix accompanying the on-line version of this paper. Those proofs can be found

also in the technical report [4].

2 BACKGROUND
LTSs and bisimilarity. As semantic model we consider classic labelled transition systems [33].

Definition 2.1. A labelled transition system (LTS) is a triple (𝑆,A,−→), where 𝑆 is a set of states
(or processes), A is a set of actions, and −→ ⊆ 𝑆 × A × 𝑆 is a (labelled) transition relation.

As usual, we use 𝑝
`
−→ 𝑝 ′

in lieu of (𝑝, `, 𝑝 ′) ∈ −→. For each 𝑝 ∈ 𝑆 and ` ∈ A, we write 𝑝
`
−→

if 𝑝
`
−→ 𝑝 ′

holds for some 𝑝 ′
, and 𝑝

`
−↛ otherwise. The initials of 𝑝 are the actions that label the

outgoing transitions of 𝑝 , that is, init(𝑝) = {` | 𝑝
`
−→}. For a sequence of actions 𝜑 = `1 · · · `𝑘

(𝑘 ≥ 0), and states 𝑝, 𝑝 ′
, we write 𝑝

𝜑
−→ 𝑝 ′

if and only if there exists a sequence of transitions

𝑝 = 𝑝0

`1−−→ 𝑝1

`2−−→ · · ·
`𝑘−−→ 𝑝𝑘 = 𝑝 ′

. If 𝑝
𝜑
−→ 𝑝 ′

holds for some state 𝑝 ′
, then 𝜑 is a trace of 𝑝 .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 5

Moreover, we say that 𝜑 is a maximal trace of 𝑝 if init(𝑝 ′) = ∅. By means of traces, we associate two

classic notions with a process 𝑝 : its depth, denoted by depth(𝑝), and its norm, denoted by norm(𝑝).
For a process 𝑝 whose set of traces is finite, they express, respectively, the length of a longest trace
and that of a shortest maximal trace of 𝑝 . Formally, depth(𝑝) = sup{𝑘 | 𝑝 has a trace of length 𝑘}
and norm(𝑝) = inf{𝑘 | 𝑝 has a maximal trace of length 𝑘}.

In this paper, we shall consider the states in a labelled transition system modulo bisimilarity [38,

43], allowing us to establish whether two processes have the same behaviour.

Definition 2.2. Let (𝑆,A,−→) be a labelled transition system. Bisimilarity, denoted by↔, is the

largest binary symmetric relation over 𝑆 such that whenever 𝑝 ↔ 𝑞 and 𝑝
`
−→ 𝑝 ′

, then there is a

transition 𝑞
`
−→ 𝑞′ with 𝑝 ′ ↔ 𝑞′. If 𝑝 ↔ 𝑞, then we say that 𝑝 and 𝑞 are bisimilar.

It is well-known that bisimilarity is an equivalence relation (see, e.g., [38, 43]). Moreover, two

bisimilar processes have the same depth and norm.

The Language CCS𝑓 . The language we consider in this paper is obtained by adding a single binary

operator 𝑓 to the recursion-, restriction-, and relabelling-free subset of Milner’s CCS [38], henceforth

referred to as CCS𝑓 , and is given by the following grammar:

𝑡 ::= 0 | 𝑥 | 𝑎.𝑡 | 𝑎.𝑡 | 𝜏 .𝑡 | 𝑡 + 𝑡 | 𝑡 ∥ 𝑡 | 𝑓 (𝑡, 𝑡) ,

where 𝑥 is a variable drawn from a countably infinite setV , 𝑎 is an action, and 𝑎 is its complement.

We assume that the actions 𝑎 and 𝑎 are distinct. Following [38], the action symbol 𝜏 will result from

the synchronised occurrence of the complementary actions 𝑎 and 𝑎.

To obtain the desired negative results, it will actually be sufficient to consider the proposed three

unary prefixing operators; so there is only one action 𝑎 with its corresponding complementary

action 𝑎, so that A = {𝑎, 𝑎, 𝜏}. Our results carry over unchanged to a setting with an arbitrary

number of actions, and corresponding prefixing operators. Henceforth, we let ` ∈ A and 𝛼 ∈ {𝑎, 𝑎}.
As usual, we postulate that ¯̄𝑎 = 𝑎. We shall use the meta-variables 𝑡,𝑢, 𝑣,𝑤 to range over process

terms, and write var (𝑡) for the collection of variables occurring in the term 𝑡 . The size of a term is

the number of operator symbols in it. A term is closed if it does not contain any variables. Closed

terms, or processes, will be denoted by 𝑝, 𝑞, 𝑟 . Moreover, trailing 0’s will be omitted from terms.

A (closed) substitution is a mapping from process variables to (closed) CCS𝑓 terms. For every

term 𝑡 and substitution 𝜎 , the term obtained by replacing every occurrence of a variable 𝑥 in 𝑡 with

the term 𝜎 (𝑥) will be written 𝜎 (𝑡). Note that 𝜎 (𝑡) is closed, if so is 𝜎 . We let 𝜎 [𝑥 ↦→ 𝑝] denote the
substitution that maps the variable 𝑥 into process 𝑝 and behaves like 𝜎 on all other variables.

In the remainder of this paper, we exploit the associativity and commutativity of + modulo

bisimilarity and we consider process terms modulo them, namely we do not distinguish 𝑡 + 𝑢 and

𝑢 + 𝑡 , nor (𝑡 +𝑢) + 𝑣 and 𝑡 + (𝑢 + 𝑣). In what follows, the symbol = will denote equality modulo the

above identifications. We use a summation
∑

𝑖∈{1,...,𝑘 } 𝑡𝑖 to denote the term 𝑡 = 𝑡1 + · · · + 𝑡𝑘 , where

the empty sum represents 0. We can also assume that the terms 𝑡𝑖 , for 𝑖 ∈ {1, . . . , 𝑘}, do not have +
as head operator, and refer to them as the summands of 𝑡 .
Henceforth, for each action ` and𝑚 ≥ 0, we let `0

denote 0 and `𝑚+1
denote ` (`𝑚). For each

action ` and positive integer 𝑖 ≥ 0, we also define

`≤𝑖 = ` + `2 + · · · + `𝑖 .

Equational Logic. An axiom system E is a collection of (process) equations 𝑡 ≈ 𝑢 over CCS𝑓 . An

equation 𝑡 ≈ 𝑢 is derivable from an axiom system E, notation E ⊢ 𝑡 ≈ 𝑢, if there is an equational
proof for it from E, namely if 𝑡 ≈ 𝑢 can be inferred from the axioms in E using the rules of
equational logic. The ones over CCS𝑓 are reported in Table 1. Rules (𝑒1)-(𝑒4) are common for all

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

6 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

(𝑒1) 𝑡 ≈ 𝑡 (𝑒2)

𝑡 ≈ 𝑢

𝑢 ≈ 𝑡
(𝑒3)

𝑡 ≈ 𝑢 𝑢 ≈ 𝑣

𝑡 ≈ 𝑣
(𝑒4)

𝑡 ≈ 𝑢

𝜎 (𝑡) ≈ 𝜎 (𝑢)

(𝑒5)

𝑡 ≈ 𝑢

`.𝑡 ≈ `.𝑢
(𝑒6)

𝑡 ≈ 𝑢 𝑡 ′ ≈ 𝑢 ′

𝑡 + 𝑡 ′ ≈ 𝑢 + 𝑢 ′ (𝑒7)

𝑡 ≈ 𝑢 𝑡 ′ ≈ 𝑢 ′

𝑓 (𝑡, 𝑡 ′) ≈ 𝑓 (𝑢,𝑢 ′) (𝑒8)

𝑡 ≈ 𝑢 𝑡 ′ ≈ 𝑢 ′

𝑡 ∥ 𝑡 ′ ≈ 𝑢 ∥ 𝑢 ′ .

Table 1. The rules of equational logic

process languages and they ensure that E is closed with respect to reflexivity, symmetry, transitivity

and substitution, respectively. Rules (𝑒5)-(𝑒8) are tailored for CCS𝑓 and they ensure the closure of E
under CCS𝑓 contexts. They are therefore referred to as the congruence rules.

Without loss of generality one may assume that substitutions happen first in equational proofs,

i.e., that rule (𝑒4) may only be used when (𝑡 ≈ 𝑢) ∈ E. In this case 𝜎 (𝑡) ≈ 𝜎 (𝑢) is called a

substitution instance of an axiom in E. Moreover, by postulating that for each axiom in E also its

symmetric counterpart is present in E, one may assume that applications of symmetry happen first

in equational proofs, i.e., that rule (𝑒2) is never used in equational proofs. In the remainder of the

paper, we shall always tacitly assume that axiom systems are closed with respect to symmetry.

We are interested in equations that are valid modulo some congruence relation R over closed

terms. The equation 𝑡 ≈ 𝑢 is said to be sound modulo R if 𝜎 (𝑡) R 𝜎 (𝑢) for all closed substitutions 𝜎 .

For simplicity, if 𝑡 ≈ 𝑢 is sound, then we write 𝑡 R 𝑢. An axiom system is sound moduloR if, and only

if, all of its equations are sound modulo R. Conversely, we say that E is ground-complete modulo

R if 𝑝 R 𝑞 implies E ⊢ 𝑝 ≈ 𝑞 for all closed terms 𝑝, 𝑞. We say that R has a finite, ground-complete,

axiomatisation, if there is a finite axiom system E that is sound and ground-complete for R.

3 THE SIMPLIFYING ASSUMPTIONS
The aim of this paper is to investigate whether bisimilarity admits a finite equational axiomatisation

over CCS𝑓 , for some binary operator 𝑓 . Of course, this question only makes sense if 𝑓 is an operator

that preserves bisimilarity. In this section we discuss two assumptions we shall make on the

auxiliary operator 𝑓 in order to meet such requirement and to tackle problem (P) in a simplified

technical setting.

3.1 The de Simone format
One way to guarantee that 𝑓 preserves bisimilarity is to postulate that the behaviour of 𝑓 is

described using Plotkin-style rules that fit a rule format that is known to preserve bisimilarity,

see, e.g., [13] for a survey of such rule formats. The simplest format satisfying this criterion is the

format proposed by de Simone in [27]. We believe that if we can’t deal with operations specified in

that format, then there is little hope to generalise our results. Therefore, we make the following

Simplifying Assumption 1. The behaviour of 𝑓 is described by rules in de Simone format.

Definition 3.1. An SOS rule 𝜌 for 𝑓 is in de Simone format if it has the form

𝜌 =
{𝑥𝑖

`𝑖−−→ 𝑦𝑖 | 𝑖 ∈ 𝐼 }

𝑓 (𝑥1, 𝑥2)
`
−→ 𝑡

(1)

where 𝐼 ⊆ {1, 2}, `, `𝑖 ∈ A (𝑖 ∈ 𝐼), and moreover

• the variables 𝑥1, 𝑥2 and 𝑦𝑖 (𝑖 ∈ 𝐼) are all different and are called the variables of the rule,
• 𝑡 is a CCS𝑓 term over variables {𝑥1, 𝑥2, 𝑦𝑖 | 𝑖 ∈ 𝐼 }, called the target of the rule, such that

– each variable occurs at most once in 𝑡 , and

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 7

– if 𝑖 ∈ 𝐼 , then 𝑥𝑖 does not occur in 𝑡 .

Henceforth, we shall assume, without loss of generality, that the variables 𝑥1, 𝑥2, 𝑦1 and 𝑦2 are

the only ones used in operational rules for 𝑓 . Moreover, if ` is the label of the transition in the

conclusion of a de Simone rule 𝜌 , we shall say that 𝜌 has ` as label.
The SOS rules for all of the classic CCS operators, reported below, are in de Simone format, and so

are those for Hennessy’s |/ operator from [31] and for Bergstra and Klop’s left and communication

merge operators [18], at least if we disregard issues related to the treatment of successful termination.

Thus restricting ourselves to operators whose operational behaviour is described by de Simone

rules leaves us with a good degree of generality.

`.𝑥
`
−→ 𝑥

𝑥
`
−→ 𝑥 ′

𝑥 + 𝑦
`
−→ 𝑥 ′

𝑦
`
−→ 𝑦 ′

𝑥 + 𝑦
`
−→ 𝑦 ′

𝑥
`
−→ 𝑥 ′

𝑥 ∥ 𝑦
`
−→ 𝑥 ′ ∥ 𝑦

𝑦
`
−→ 𝑦 ′

𝑥 ∥ 𝑦
`
−→ 𝑥 ∥ 𝑦 ′

𝑥
𝛼−→ 𝑥 ′, 𝑦

𝛼−→ 𝑦 ′

𝑥 ∥ 𝑦 𝜏−→ 𝑥 ′ ∥ 𝑦 ′

The transition rules for the classic CCS operators above and those for the operator 𝑓 give rise

to transitions between CCS𝑓 terms. The operational semantics for CCS𝑓 is thus given by the LTS

whose states are CCS𝑓 terms, and whose transitions are those that are provable using the rules.

In what follows, we shall consider the collection of closed CCS𝑓 terms modulo bisimilarity. Since

the SOS rules defining the operational semantics of CCS𝑓 are in de Simone’s format, we have that

bisimilarity is a congruence with respect to CCS𝑓 operators, that is, `𝑝 ↔ `𝑞, 𝑝 + 𝑝 ′ ↔ 𝑞 + 𝑞′,
𝑝 ∥𝑝 ′ ↔ 𝑞∥𝑞′ and 𝑓 (𝑝, 𝑝 ′) ↔ 𝑓 (𝑞, 𝑞′) hold whenever 𝑝 ↔ 𝑞, 𝑝 ′ ↔ 𝑞′, for processes 𝑝, 𝑝 ′, 𝑞, 𝑞′.

Bisimilarity is extended to arbitrary CCS𝑓 terms thus:

Definition 3.2. Let 𝑡,𝑢 be CCS𝑓 terms. We write 𝑡 ↔ 𝑢 if and only if 𝜎 (𝑡) ↔ 𝜎 (𝑢) for every closed
substitution 𝜎 .

3.2 Axiomatising ∥ with 𝑓

Our second simplifying assumption concerns how the operator 𝑓 can be used to axiomatise parallel

composition. To this end, a fairly natural assumption on an axiom system over CCS𝑓 is that it

includes an equation of the form

𝑥 ∥𝑦 ≈ 𝑡 (𝑥,𝑦) (2)

where 𝑡 is a CCS𝑓 term that does not contain occurrences of ∥ with var (𝑡) ⊆ {𝑥,𝑦}. More precisely,

the term will be in the general form 𝑡 (𝑥,𝑦) = ∑
𝑖∈𝐼 𝑡𝑖 (𝑥,𝑦), where 𝐼 is a finite index set and, for each

𝑖 ∈ 𝐼 , 𝑡𝑖 (𝑥,𝑦) does not have + as head operator. Equation (2) essentially states that ∥ is a derived
operator in CCS𝑓 modulo bisimilarity. To our mind, this is a natural, initial assumption to make in

studying the problem we tackle in the paper.

We now proceed to refine the form of the term 𝑡 (𝑥,𝑦), in order to guarantee the soundness,

modulo bisimilarity, of Equation (2). Intuitively, no term 𝑡𝑖 (𝑥,𝑦) can have prefixing as head operator.

In fact, if 𝑡 (𝑥,𝑦) had a summand `.𝑡 ′(𝑥,𝑦), for some ` ∈ A, then one could easily show that

0∥0↔/ 𝑡 (0, 0), since 𝑡 (0, 0) could perform a `-transition, unlike 0∥0. Similarly, 𝑡 (𝑥,𝑦) cannot have
a variable as a summand, for otherwise we would have 𝑎∥𝜏 ↔/ 𝑡 (𝑎, 𝜏). Indeed, assume, without loss

of generality, that 𝑡 (𝑥,𝑦) has a summand 𝑥 . Then, 𝑡 (𝑎, 𝜏) 𝑎−→ 0, whereas 𝑎∥𝜏 cannot terminate in

one step. We can therefore assume that, for each 𝑖 ∈ 𝐼 , 𝑡𝑖 (𝑥,𝑦) = 𝑓 (𝑡1

𝑖 (𝑥,𝑦), 𝑡2

𝑖 (𝑥,𝑦)) for some CCS𝑓

terms 𝑡𝑘𝑖 (𝑥,𝑦), with 𝑘 ∈ {1, 2}. To further narrow down the options on the form that the subterms

𝑡𝑘𝑖 (𝑥,𝑦) might have, we would need to make some assumptions on the behaviour of the operator 𝑓 .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

8 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

For the sake of generality, we assume that the terms 𝑡𝑘𝑖 (𝑥,𝑦) are in the simplest form, namely they

are variables in {𝑥,𝑦}. Notice that to allow prefixing and/or nested occurrences of 𝑓 -terms in the

scope of the terms 𝑡𝑖 (𝑥,𝑦) we would need to define (at least partially) the operational semantics of

𝑓 , thus making our results less general as, roughly speaking, we would need to study one possible

auxiliary operator at a time (the one identified by the considered set of de Simone rules). Moreover,

if we look at how parallel composition is expressed equationally as a derived operator in terms

of Hennessy’s merge (H), or Bergstra and Klop’s left and communication merge (LC), or as in [3]

(LRC), viz. via the equations

(H) 𝑥 ∥ 𝑦 ≈ (𝑥 |/ 𝑦) + (𝑦 |/ 𝑥)
(LC) 𝑥 ∥ 𝑦 ≈ (𝑥 𝑦) + (𝑦 𝑥) + (𝑥 | 𝑦) (LRC) 𝑥 ∥ 𝑦 ≈ (𝑥 𝑦) + (𝑥 𝑦) + (𝑥 | 𝑦) ,

we see the emergence of a pattern: the parallel composition operator is always expressed in terms

of sums of terms built from the auxiliary operators and variables.

Therefore, from now on we will make the following:

Simplifying Assumption 2. For some 𝐽 ⊆ {𝑥,𝑦}2
, the equation

𝑥 ∥ 𝑦 ≈
∑

{𝑓 (𝑧1, 𝑧2) | (𝑧1, 𝑧2) ∈ 𝐽 } (3)

holds modulo bisimilarity. We shall use 𝑡 𝐽 to denote the right-hand side of the above equation and

use 𝑡 𝐽 (𝑝, 𝑞) to stand for the process 𝜎 [𝑥 ↦→ 𝑝,𝑦 ↦→ 𝑞] (𝑡 𝐽), for any closed substitution 𝜎 .

Using our assumptions, we further investigate the relation between operator 𝑓 and parallel

composition, obtaining a refined form for Equation (3) (Proposition 3.5 below).

Lemma 3.3. Assume that Assumptions 1 and 2 hold. Then:
(1) The index set 𝐽 on the right-hand side of Equation (3) is non-empty.
(2) The set of transition rules for 𝑓 is non-empty.
(3) Each transition rule for 𝑓 has some premise.
(4) The terms 𝑓 (𝑥, 𝑥) and 𝑓 (𝑦,𝑦) are not summands of 𝑡 𝐽 .

Proof. Statements 1 and 2 are trivial because the equation 𝑥 ∥𝑦 ≈ 0 is not sound modulo

bisimilarity.

Let us focus now on the proof for statement 3. To this end, assume, towards a contradiction, that

𝑓 has a rule of the form 𝑓 (𝑥1, 𝑥2)
`
−→ 𝑡 (𝑥1, 𝑥2), for some action ` and term 𝑡 . This rule can be used

to derive that 𝑓 (0, 0)
`
−→ 𝑡 (0, 0). Since the set 𝐽 on the right-hand side of Equation (3) is non-empty

by statement 1, the term 𝑓 (0, 0) occurs as a summand of 𝑡 𝐽 (0, 0). It follows that 𝑡 𝐽 (0, 0)
`
−→ 𝑡 (0, 0).

Therefore, 0 ∥ 0↔ 0 ↔/ 𝑡 𝐽 (0, 0), contradicting our Assumption 2.

Finally, we deal with statement 4. Assume, towards a contradiction, that 𝑓 (𝑥, 𝑥) is a summand

of 𝑡 𝐽 . As 𝑎 ∥ 0 𝑎−→ 0 ∥ 0 ↔ 0 and Equation (3) holds modulo bisimilarity, there is a process 𝑝

such that 𝑡 𝐽 (𝑎, 0)
𝑎−→ 𝑝 and 𝑝 ↔ 0. This means that there is a summand 𝑓 (𝑧1, 𝑧2) of 𝑡 𝐽 such that

𝑓 (𝑝1, 𝑝2)
𝑎−→ 𝑝 , where, for 𝑖 ∈ {1, 2},

𝑝𝑖 =

{
𝑎 if 𝑧𝑖 = 𝑥 ,

0 if 𝑧𝑖 = 𝑦 .

The transition 𝑓 (𝑝1, 𝑝2)
𝑎−→ 𝑝 must be provable using some de Simone rule 𝜌 for 𝑓 (see Equation (1)

in Definition 3.1). Such a rule has some premise by Lemma 3.3(3), and each such premise must

have the form 𝑥1

`
−→ 𝑦1 or 𝑥2

`
−→ 𝑦2, for some action `. If both 𝑧1 and 𝑧2 are 𝑦 then 𝑝1 = 𝑝2 = 0, and

none of those premises can be met. Therefore at least one of 𝑧1 and 𝑧2 in the summand 𝑓 (𝑧1, 𝑧2) is

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 9

𝑥 . Moreover, if 𝑥𝑖
`
−→ 𝑦𝑖 (𝑖 ∈ {1, 2}) is a premise of 𝜌 , then 𝑧𝑖 = 𝑥 and ` = 𝑎 (or else the premise

could not be met). So the rule 𝜌 can have one of the following three forms:

𝑥1

𝑎−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
𝑎−→ 𝑡1 (𝑦1, 𝑥2)

𝑥2

𝑎−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝑎−→ 𝑡2 (𝑥1, 𝑦2)

𝑥1

𝑎−→ 𝑦1 𝑥2

𝑎−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝑎−→ 𝑡3 (𝑦1, 𝑦2)

for some terms 𝑡1, 𝑡2 and 𝑡3. We now proceed to argue that the existence of each of these rules

contradicts the soundness of Equation (3) modulo bisimilarity.

If 𝜌 has the form

𝑥1

𝑎−→ 𝑦1 𝑥2

𝑎−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝑎−→ 𝑡3 (𝑦1, 𝑦2)

then 𝑧1 = 𝑧2 = 𝑥 and 𝑓 (𝑎, 𝑎) 𝑎−→ 𝑝. Since the term 𝑓 (𝑎, 𝑎) is a summand of 𝑡 𝐽 (𝑎, 𝑎), it follows that
𝑡 𝐽 (𝑎, 𝑎)

𝑎−→ 𝑝 also holds. However, this contradicts the soundness of Equation (3) because, for each

transition 𝑎 ∥ 𝑎 𝑎−→ 𝑞, we have that 𝑞 ↔ 𝑎 ↔/ 0↔ 𝑝 .

Assume now, without loss of generality, that 𝜌 has the form

𝑥1

𝑎−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
𝑎−→ 𝑡1 (𝑦1, 𝑥2)

Using this rule, we can infer that 𝑓 (𝑎, 𝑎) 𝑎−→ 𝑡1 (0, 𝑎). Since 𝑓 (𝑥, 𝑥) is a summand of 𝑡 𝐽 by our

assumption, the term 𝑓 (𝑎, 𝑎) is a summand of 𝑡 𝐽 (𝑎, 0). Hence, 𝑡 𝐽 (𝑎, 0)
𝑎−→ 𝑡1 (0, 𝑎) also holds. As

Equation (3) holds modulo bisimilarity, we have that 𝑎 ∥ 0 ↔ 𝑡 𝐽 (𝑎, 0). Therefore 𝑡1 (0, 𝑎) ↔ 0,
because 𝑎 ∥ 0

𝑎−→ 0 ∥ 0 is the only transition afforded by the term 𝑎 ∥ 0. Observe now that

𝑡 𝐽 (𝑎, 𝑎)
𝑎−→ 𝑡1 (0, 𝑎) ↔ 0 also holds. However, this contradicts the soundness of Equation (3) as

above because, for each transition 𝑎 ∥ 𝑎 𝑎−→ 𝑞, we have that 𝑞 ↔ 𝑎 ↔/ 0 ↔ 𝑡1 (0, 𝑎).
This proves that 𝑓 (𝑥, 𝑥) is not a summand of 𝑡 𝐽 , which was to be shown. □

As a consequence, we may infer that the index set 𝐽 in the term 𝑡 𝐽 is either one of the singletons

{(𝑥,𝑦)} or {(𝑦, 𝑥)}, or it is the set {(𝑥,𝑦), (𝑦, 𝑥)}. Due toMoller’s results to the effect that bisimilarity

has no finite ground-complete axiomatisation over CCS [40, 42], the former option can be discarded,

as shown in the following:

Proposition 3.4. If 𝐽 is a singleton, then CCS𝑓 admits no finite equational axiomatisation modulo
bisimilarity.

Proof. If 𝐽 is a singleton, then, since ∥ is commutative modulo bisimilarity, the equation 𝑥 ∥ 𝑦 ≈
𝑓 (𝑥,𝑦) holds modulo bisimilarity. Therefore the result follows from the nonexistence of a finite

equational axiomatisation for CCS proven by Moller in [40, 42]. □

As a consequence, we can restate our Assumption 2 in the following simplified form:

Proposition 3.5. Equation (3) can be refined to the form:

𝑥 ∥ 𝑦 ≈ 𝑓 (𝑥,𝑦) + 𝑓 (𝑦, 𝑥) . (4)

Moreover, in the light of Moller’s results in [40, 42], we can restrict ourselves to considering only

operators 𝑓 such that 𝑥 ∥ 𝑦 ≈ 𝑓 (𝑥,𝑦) does not hold modulo bisimilarity.

For later use, we note a useful consequence of the soundness of Equation (4) modulo bisimilarity.

Lemma 3.6. Assume that Equation (4) holds modulo ↔. Then depth(𝑝) is finite for each closed
CCS𝑓 term 𝑝 .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

10 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Proof. By structural induction on closed terms. For all of the standard CCS operators, it is well

known that the depth of closed terms can be characterised inductively thus:

depth(0) = 0

depth(`𝑝) = 1 + depth(𝑝)
depth(𝑝 + 𝑞) = max{depth(𝑝), depth(𝑞)}
depth(𝑝 ∥𝑞) = depth(𝑝) + depth(𝑞) .

So the depth of a closed term of the form `𝑝 , 𝑝 + 𝑞 or 𝑝 ∥𝑞 is finite, if so are the depths of 𝑝 and 𝑞.

Consider now a closed term of the form 𝑓 (𝑝, 𝑞). Since bisimilar terms have the same depth and,

by the proviso of the lemma, Equation (4) holds modulo bisimilarity, we have that

depth(𝑓 (𝑝, 𝑞)) ≤ depth(𝑓 (𝑝, 𝑞) + 𝑓 (𝑞, 𝑝)) = depth(𝑝 ∥𝑞) .

It follows that depth(𝑓 (𝑝, 𝑞)) is finite, if so are the depths of 𝑝 and 𝑞. □

4 THE OPERATIONAL SEMANTICS OF 𝑓

In order to obtain the desired results, we shall, first of all, understand what rules 𝑓 may and must

have in order for Equation (4) to hold modulo bisimilarity (Proposition 4.4 below). We begin this

analysis by restricting the possible forms the SOS rules for 𝑓 may take.

Lemma 4.1. Suppose that 𝑓 meets Assumption 1, and that Equation (4) is sound modulo bisimilarity.
Let 𝜌 be a de Simone rule for 𝑓 with ` as label. Then:

(1) If ` = 𝜏 then the set of premises {𝑥𝑖
`𝑖−−→ 𝑦𝑖 | 𝑖 ∈ 𝐼 } of 𝜌 can only have one of the following

possible forms:
• {𝑥𝑖

𝜏−→ 𝑦𝑖 } for some 𝑖 ∈ {1, 2}, or
• {𝑥1

𝛼−→ 𝑦1, 𝑥2

𝛼−→ 𝑦2} for some 𝛼 ∈ {𝑎, 𝑎}.
(2) If ` = 𝛼 for some 𝛼 ∈ {𝑎, 𝑎}, then the set of premises {𝑥𝑖

`𝑖−−→ 𝑦𝑖 | 𝑖 ∈ 𝐼 } can only have the form
{𝑥𝑖

𝛼−→ 𝑦𝑖 } for some 𝑖 ∈ {1, 2}.

Proof. We only detail the proof for statement 1. The proof for statement 2 follows similar lines.

Assume, towards a contradiction, that ` = 𝜏 and the set of premises {𝑥𝑖
`𝑖−−→ 𝑦𝑖 | 𝑖 ∈ 𝐼 } of 𝜌 has

some form that differs from those in the statement. Then the set of premises of 𝜌 has one of the

following two forms:

• {𝑥𝑖
𝛼−→ 𝑦𝑖 } for some 𝑖 ∈ {1, 2} and 𝛼 ∈ {𝑎, 𝑎}, or

• {𝑥1

`1−−→ 𝑦1, 𝑥2

`2−−→ 𝑦2} for some `1, `2 ∈ A such that

– either `1 = 𝜏 or `2 = 𝜏 , or

– `1 = `2 = 𝛼 for some 𝛼 ∈ {𝑎, 𝑎}.
We now proceed to argue that the existence of either of these rules for 𝑓 contradicts the soundness

of Equation (4).

• Assume that the set of premises of 𝜌 has the form {𝑥𝑖
𝛼−→ 𝑦𝑖 } for some 𝑖 ∈ {1, 2} and 𝛼 ∈ {𝑎, 𝑎}.

In this case, we can use that rule to prove the existence of the transition 𝑓 (𝛼, 0) 𝜏−→ 𝑡 (0, 0), or of
𝑓 (0, 𝛼) 𝜏−→ 𝑡 (0, 0), depending on whether 𝑖 = 1 or 𝑖 = 2. Therefore 𝑓 (𝛼, 0) + 𝑓 (0, 𝛼) 𝜏−→ 𝑡 (0, 0)
also holds. However, the existence of this transition immediately contradicts the soundness

of Equation (4) modulo bisimilarity because 𝛼 ∥ 0 affords no 𝜏-transition.
• Assume that the set of premises of 𝜌 has the form {𝑥1

`1−−→ 𝑦1, 𝑥2

`2−−→ 𝑦2} for some `1, `2 ∈ A
such that

– either `1 = 𝜏 or `2 = 𝜏 , or

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 11

– `1 = `2 = 𝛼 for some 𝛼 ∈ {𝑎, 𝑎}.
In this case, we can use that rule to prove the existence of the transition 𝑓 (`1, `2)

𝜏−→ 𝑡 (0, 0).
Therefore 𝑓 (`1, `2) + 𝑓 (`2, `1)

𝜏−→ 𝑡 (0, 0) also holds. By the soundness of Equation (4), we

have that `1∥`2 ↔ 𝑓 (`1, `2) + 𝑓 (`2, `1). Hence `1∥`2

𝜏−→ 𝑝 for some 𝑝 such that 𝑝 ↔ 𝑡 (0, 0).
If `1 = `2 = 𝛼 for some 𝛼 ∈ {𝑎, 𝑎}, then the above transition cannot exist, because 𝛼 ∥ 𝛼
affords no 𝜏-transition. This immediately contradicts the soundness of Equation (4) modulo

bisimilarity. We therefore proceed with the proof by assuming that at least one of `1 and `2

is 𝜏 . In this case, we have that `1 ∥ `2

𝜏−→ 𝑝 implies that 𝑝 ↔ `1 and `2 = 𝜏 , or 𝑝 ↔ `2 and

`1 = 𝜏 . Assume, without loss of generality, that `1 = 𝜏 and

𝑡 (0, 0) ↔ `2 . (5)

Pick now an action 𝛼 ≠ `2. (Such an action exists as we have three actions in our language.)

The soundness of Equation (4) yields that 𝜏 ∥ (`2 + 𝛼) ↔ 𝑓 (𝜏, `2 + 𝛼) + 𝑓 (`2 + 𝛼, 𝜏). Using
the rule for 𝑓 we assumed we had and the rules for +, we can prove the existence of the

transition 𝑓 (𝜏, `2 + 𝛼) + 𝑓 (`2 + 𝛼, 𝜏) 𝜏−→ 𝑡 (0, 0). Since the source of the above transition is

bisimilar to 𝜏 ∥ (`2 + 𝛼), there must be a term 𝑝 such that 𝜏 ∥ (`2 + 𝛼) 𝜏−→ 𝑝 and 𝑝 ↔ 𝑡 (0, 0).
We can distinguish two cases, according to the semantics of ∥:
– 𝜏

𝜏−→ 0, so that 𝜏 ∥ (`2 +𝛼)
𝜏−→ 0 ∥ (`2 +𝛼). Since 𝛼 ≠ `2, we have that `2 +𝛼 ↔/ `2 and thus

𝑝 = 0 ∥ (`2 + 𝛼) ↔ `2 + 𝛼 ↔/ 𝑡 (0, 0). Hence, we need to discard this case.

– `2 = 𝜏 , so that `2 +𝛼
𝜏−→ 0 and 𝑡 ∥ (`2 +𝛼)

𝜏−→ 𝜏 ∥ 0. Hence, 𝑝 = 𝜏 ∥ = `2 ∥ 0↔ `2 ↔ 𝑡 (0, 0),
and 𝑝 is the term we are looking for.

We have therefore obtained that `1 = `2 = 𝜏 .

We are now ready to reach the promised contradiction to the soundness of Equation (4). In fact,

consider the term 𝑓 (𝜏 +𝑎, 𝜏 +𝑎). Using the rule for 𝑓 we assumed we had, we can again prove

the existence of the transition 𝑓 (𝜏 + 𝑎, 𝜏 + 𝑎) 𝜏−→ 𝑡 (0, 0). By Equation (5) and our observation

that `2 = 𝜏 , the term 𝑡 (0, 0) is bisimilar to 𝜏 . On the other hand, (𝜏 + 𝑎) ∥ (𝜏 + 𝑎) 𝜏−→ 𝑝 implies

that 𝑝 ↔ (𝜏 + 𝑎) ↔/ 𝜏 , contradicting the soundness of Equation (4) modulo bisimilarity. □

The previous lemma limits the form of the premises that rules for 𝑓 may have in order for

Equation (4) to hold modulo bisimilarity. We now characterise the rules that 𝑓 must have in order

for it to satisfy that equation. Firstly, we deal with synchronisation.

Lemma 4.2. Assume that Equation (4) holds modulo bisimilarity. Then the operator 𝑓 must have a
rule of the form

𝑥1

𝛼−→ 𝑦1 𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑡 (𝑦1, 𝑦2)

(6)

for some 𝛼 ∈ {𝑎, 𝑎} and term 𝑡 . Moreover, for each rule for 𝑓 of the above form the term 𝑡 (𝑥,𝑦) is
bisimilar to 𝑥 ∥ 𝑦.

Proof. We first argue that 𝑓 must have a rule of the form (6) for some 𝛼 ∈ {𝑎, 𝑎} and term 𝑡 .

To this end, assume, towards a contradiction, that 𝑓 has no such rule. Observe that the term 𝑎 ∥ 𝑎
affords the transition 𝑎 ∥ 𝑎 𝜏−→ 0 ∥ 0. However, neither the term 𝑓 (𝑎, 𝑎) nor the term 𝑓 (𝑎, 𝑎) affords
a 𝜏-transition. In fact, using our assumption that 𝑓 has no rule of the form (6) and Lemma 4.1(1),

each rule for 𝑓 with a 𝜏-transition as a consequent must have the form

𝑥𝑖
𝜏−→ 𝑦𝑖

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑡

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

12 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

for some 𝑖 ∈ {1, 2} and term 𝑡 . Such a rule cannot be used to infer a transition from 𝑓 (𝑎, 𝑎) or 𝑓 (𝑎, 𝑎).
It follows that 𝑎 ∥ 𝑎 ↔/ 𝑓 (𝑎, 𝑎) + 𝑓 (𝑎, 𝑎), contradicting the soundness of Equation (4). Therefore 𝑓

must have a rule of the form (6).

We now proceed to argue that 𝑡 (𝑥,𝑦) is bisimilar to 𝑥 ∥ 𝑦, for each rule of the form (6) for 𝑓 .

Pick a rule for 𝑓 of the form (6). We shall argue that 𝑝 ∥ 𝑞 ↔ 𝑡 (𝑝, 𝑞), for all closed CCS𝑓 terms 𝑝

and 𝑞. To this end, consider the terms 𝛼.𝑝 ∥ 𝛼.𝑞 and 𝑓 (𝛼.𝑝, 𝛼 .𝑞) + 𝑓 (𝛼.𝑞, 𝛼 .𝑝). Using rule (6) and

the rules for +, we have that 𝑓 (𝛼.𝑝, 𝛼 .𝑞) + 𝑓 (𝛼.𝑞, 𝛼 .𝑝) 𝜏−→ 𝑡 (𝑝, 𝑞). By the soundness of Equation (4),

we have that 𝛼.𝑝 ∥ 𝛼.𝑞 ↔ 𝑓 (𝛼.𝑝, 𝛼 .𝑞) + 𝑓 (𝛼.𝑞, 𝛼 .𝑝). Therefore there is a closed term 𝑟 such that

𝛼.𝑝 ∥ 𝛼.𝑞 𝜏−→ 𝑟 and 𝑟 ↔ 𝑡 (𝑝, 𝑞). Note that the only 𝜏-transition by 𝛼.𝑝 ∥ 𝛼.𝑞 is 𝛼.𝑝 ∥ 𝛼.𝑞 𝜏−→ 𝑝 ∥ 𝑞.
Hence 𝑟 = 𝑝 ∥ 𝑞 ↔ 𝑡 (𝑝, 𝑞), which was to be shown. □

Henceforth we assume, without loss of generality that the target of a rule of the form (6) is 𝑦1∥𝑦2.

We introduce the unary predicates 𝑆
𝑓

𝑎,𝑎 and 𝑆
𝑓

𝑎,𝑎 to identify which rules of type (6) are available for

𝑓 . In detail, 𝑆
𝑓

𝑎,𝑎 holds if 𝑓 has a rule of type (6) with premises 𝑥1

𝑎−→ 𝑦1 and 𝑥2

𝑎−→ 𝑦2. 𝑆
𝑓

𝑎,𝑎 holds in

the symmetric case.

We consider now the interleaving behaviour in the rules for 𝑓 . In order to properly characterise

the rules for 𝑓 as done in the previous Lemma 4.2, we consider an additional simplifying assumption

on the form that the targets of the rules for 𝑓 might have.

Simplifying Assumption 3. If 𝑡 is the target of a rule for 𝑓 , then 𝑡 is either a variable or a term

obtained by applying a single CCS𝑓 operator to the variables of the rule, according to the constraints

of the de Simone format.

Remark 1. We remark that Assumption 3 is used only in the proof of the following lemma. Although

we conjecture that the assumption is not necessary to obtain this result, we were unable to prove it

without the assumption.

Lemma 4.3. Let ` ∈ A. Then the operator 𝑓 must have a rule of the form

𝑥1

`
−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
`
−→ 𝑡 (𝑦1, 𝑥2)

(7)

or a rule of the form

𝑥2

`
−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
`
−→ 𝑡 (𝑥1, 𝑦2)

(8)

for some term 𝑡 . Moreover, under Assumption 3, for each rule for 𝑓 of the above forms the term 𝑡 (𝑥,𝑦)
is bisimilar to 𝑥 ∥ 𝑦.

Proof. Let ` ∈ A. We first argue that 𝑓 must have a rule of the form (7) or (8) for some term 𝑡 .

To this end, assume, towards a contradiction, that 𝑓 has no such rules. Observe that the term ` ∥ 0
affords the transition ` ∥ 0

`
−→ 0 ∥ 0. However, neither the term 𝑓 (`, 0) nor the term 𝑓 (0, `) affords

a `-transition. In fact, if 𝑓 has no rule of the form (7) or (8), Lemma 4.1 yields that

• either 𝑓 has no rule with a `-transition as a consequent,

• or ` = 𝜏 , and each rule for 𝑓 with a 𝜏-transition as a consequent has the form

𝑥1

𝛼−→ 𝑦1 𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑡 (𝑦1, 𝑦2)

for some 𝛼 ∈ {𝑎, 𝑎}.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 13

In the latter case, such a rule cannot be used to infer a transition from 𝑓 (`, 0) or 𝑓 (0, `). Hence
` ∥ 0↔/ 𝑓 (`, 0) + 𝑓 (0, `), contradicting the soundness of Equation (4). Therefore 𝑓 must have a rule

of the form (7) or (8) for each action `.

To conclude the proof we need to show that for each rule of the form (7) or (8) the target term

𝑡 (𝑥,𝑦) is bisimilar to 𝑥 ∥ 𝑦. For simplicity, we expand the proof only for the case of rules of the

form (7). The proof for rules of the form (8) follows by the same reasoning.

We proceed by a case analysis over the structure of 𝑡 (𝑦1, 𝑥2), which, we recall, under Assumption 3

can be either a variable in {𝑦1, 𝑥2} or a term of the form 𝑔(𝑦1, 𝑥2) for some CCS𝑓 operator 𝑔. Our

aim is to show that the only possibility is to have 𝑡 (𝑦1, 𝑥2) = 𝑦1 ∥ 𝑥2, as any other process term

would invalidate one of our simplifying assumptions.

• Case 𝑡 is a variable in {𝑦1, 𝑥2}. We can distinguish two cases, according to which variable

is considered:

– 𝑡 = 𝑦1. Consider process 𝑝 = `.0. Since 𝑝
`
−→ 0, from an application of rule (7) we can infer

that 𝑓 (𝑝, 𝑝)
`
−→ 0, and thus 𝑓 (𝑝, 𝑝) + 𝑓 (𝑝, 𝑝)

`
−→ 0. However, there is no `-transition from

𝑝 ∥ 𝑝 to a process bisimilar to 0, as whenever 𝑝 ∥ 𝑝
`
−→ 𝑞, then 𝑞 is a process that will always

be able to perform a second `-transition. Hence, we would have 𝑝 ∥ 𝑝 ↔/ 𝑓 (𝑝, 𝑝) + 𝑓 (𝑝, 𝑝),
thus contradicting the soundness of Equation (4).

– 𝑡 = 𝑥2. Consider process 𝑝 = `.`.0. Since 𝑝
`
−→ `.0, from an application of rule (7) we

can infer that 𝑓 (𝑝, 0)
`
−→ 0 and thus 𝑓 (𝑝, 0) + 𝑓 (0, 𝑝)

`
−→ 0. However, there is no `-

transition from 𝑝 ∥ 0 to a process bisimilar to 0, as whenever 𝑝 ∥ 0
`
−→ 𝑞, then 𝑞 is a

process that will always be able to perform a second `-transition. Hence we would have

𝑝 ∥ 0↔/ 𝑓 (𝑝, 0) + 𝑓 (0, 𝑝), thus contradicting the soundness of Equation (4).

• Case 𝑡 is a term of the form 𝑔(𝑦1, 𝑥2) for some CCS𝑓 operator 𝑔. We can distinguish three

cases, according to which operator is used:

– 𝑔 is the prefix operator.We can distinguish two cases, according to which variable of

the rule occurs in 𝑡 :

∗ 𝑡 = a.𝑦1. Consider process 𝑝 = `.0. Since 𝑝
`
−→ 0, from an application of rule (7)

we can infer that 𝑓 (𝑝, 0)
`
−→ a.0

a−→ 0, and thus 𝑓 (𝑝, 0) + 𝑓 (0, 𝑝)
`
−→ a−→ 0. However,

𝑝 ∥ 0
`
−→ 0 ∥ 0 a−↛ . Hence, we would have that 𝑝 ∥ 0↔/ 𝑓 (𝑝, 0) + 𝑓 (0, 𝑝), thus contradicting

the soundness of Equation (4).

∗ 𝑡 = a.𝑥2. This case is analogous to the previous one.

– 𝑔 is the nondeterministic choice operator and thus 𝑡 = 𝑦1 + 𝑥2. Consider processes

𝑝 = `.`.0 and 𝑞 = `.0. Since 𝑝
`
−→ 𝑞, from an application of rule (7) we can infer that

𝑓 (𝑝, 𝑞)
`
−→ 𝑞 + 𝑞

`
−→ 0, and thus 𝑓 (𝑝, 𝑞) + 𝑓 (𝑞, 𝑝)

`
−→

`
−→ 0. However, there is no process

𝑝 ′
such that 𝑝 ∥ 𝑞

`
−→

`
−→ 𝑝 ′

and 𝑝 ′ ↔ 0, since 𝑝 ′
can always perform an additional `-

transition. Hence, we would have 𝑝 ∥𝑞 ↔/ 𝑓 (𝑝, 𝑞) + 𝑓 (𝑞, 𝑝), which contradicts the soundness

of Equation (4).

– 𝑔 = 𝑓 . First of all, we notice that in this case we can infer that 𝑓 cannot have both types of

rules of the form (6), and both types of rules, (7) and (8), for all actions. In fact, if this was

the case, due to Lemmas 4.2 and 4.3, the set of rules defining the behaviour of 𝑓 (𝑥1, 𝑥2)
would be

𝑥1

`
−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
`
−→ 𝑓 (𝑦1, 𝑥2)

𝑥2

`
−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
`
−→ 𝑓 (𝑥1, 𝑦2)

𝑥1

𝛼−→ 𝑦1 𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑦1 ∥ 𝑦2

𝑥1

𝛼−→ 𝑦1 𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑦1 ∥ 𝑦2

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

14 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

with ` ∈ A and 𝛼 ∈ {𝑎, 𝑎}. Operator 𝑓 would then be a mere renaming of the parallel

composition operator. In particular, as a one-to-one correspondence between the rules

for 𝑓 and those for ∥ could be established, we have that 𝑓 (𝑥,𝑦) would be bisimilar under
formal hypothesis to 𝑥 ∥ 𝑦 (see [27, Definition 1.10]) and therefore, by [27, Theorem 1.12],

we could directly conclude that 𝑓 (𝑥,𝑦) ≈ 𝑥 ∥ 𝑦 for all 𝑥,𝑦. However, this would contradict

the fact that 𝑥 ∥ 𝑦 0 𝑓 (𝑥,𝑦). Let us now consider the case of an operator 𝑓 having both

types of rules, (7) and (8), and only one type of rules of the form (6), say the rule 𝑆
𝑓

𝛼,𝛼 . We

proceed towards contradiction and distinguish two subcases, according to whether the

order of the arguments is preserved or not by the rules of type (7) with label 𝛼 . Similar

arguments would allow us to deal with rules of type (8).

∗ The target of the rule is 𝑓 (𝑦1, 𝑥2). Then 𝑓 (𝛼.𝛼, 𝛼) 𝛼−→ 𝑓 (𝛼, 𝛼) ↔ 𝛼.𝛼 + 𝛼.𝛼 . However,

there is no 𝛼-transition from 𝛼.𝛼 ∥𝛼 to a process bisimilar to 𝛼.𝛼 +𝛼.𝛼 , thus contradicting
the soundness of Equation (4).

∗ The target of the rule is 𝑓 (𝑥2, 𝑦1). Then 𝑓 (𝛼.𝛼, 𝛼 .𝛼) 𝛼−→ 𝑓 (𝛼.𝛼, 𝛼) 𝜏−↛ . However, whenever

𝛼.𝛼 ∥𝛼.𝛼 performs an 𝛼-transition, it always reaches a process that can perform a 𝜏-move.

This contradicts the soundness of Equation (4).

Finally, let us deal with the case in which there is at least one action ` ∈ A for which only

one rule among (7) and (8) is available. According to our current simplifying assumptions,

let (7) be the available rule for 𝑓 with label `. We can distinguish two cases, according to

the occurrences of the variables of the rule in 𝑡 :

∗ 𝑡 = 𝑓 (𝑦1, 𝑥2). Consider process 𝑝 = `.0. Since 𝑝
`
−→ 0, from an application of rule (7) we

can infer that 𝑓 (𝑝, 𝑝)
`
−→ 𝑓 (0, 𝑝), and thus 𝑓 (𝑝, 𝑝) + 𝑓 (𝑝, 𝑝)

`
−→ 𝑓 (0, 𝑝), with 𝑓 (0, 𝑝) ↔ 0,

since only rules of the form (7) are available with respect to action `. However, there is

no `-transition from 𝑝 ∥ 𝑝 to a process bisimilar to 0, as whenever 𝑝 ∥ 𝑝
`
−→ 𝑞 then 𝑞 is a

process that will always be able to perform a second `-transition. Hence, we would have

𝑝 ∥ 𝑝 ↔/ 𝑓 (𝑝, 𝑝) + 𝑓 (𝑝, 𝑝), thus contradicting the soundness of Equation (4).

∗ 𝑡 = 𝑓 (𝑥2, 𝑦1). Consider process 𝑝 = `.`.0. Since 𝑝
`
−→ `.0, and only rules of the from

(7) are available with respect to action `, we can infer that 𝑓 (𝑝, 0)
`
−→ 𝑓 (0, `.0)

`
−↛

and 𝑓 (0, 𝑝) −↛ , which means that 𝑓 (𝑝, 0) + 𝑓 (0, 𝑝) cannot perform two `-transitions

in a row. However, we have that 𝑝 ∥ 0
`
−→ `.0 ∥ 0

`
−→ 0 ∥ 0. Hence, we would have

𝑝 ∥ 0↔/ 𝑓 (𝑝, 0) + 𝑓 (0, 𝑝), thus contradicting the soundness of Equation (4). □

Henceforth we assume, without loss of generality, that the target of a rule of the form (7) is 𝑦1∥𝑥2

and the target of a rule of the form (8) is 𝑥1∥𝑦2.

For each ` ∈ A, we introduce two unary predicates, 𝐿
𝑓

` and 𝑅
𝑓

` , that allow us to identify which

rules with label ` are available for 𝑓 . In detail,

• 𝐿
𝑓

` holds if 𝑓 has a rule of the form (7) with label `;

• 𝑅
𝑓

` holds if 𝑓 has a rule of the form (8) with label `.

We let 𝐿
𝑓

` ∧ 𝑅
𝑓

` denote that 𝑓 has both a rule of the form (7) and one of the form (8) with label `.

We stress that, for each `, the validity of predicate 𝐿
𝑓

` does not prevent 𝑅
𝑓

` from holding, and vice

versa. Throughout the paper, in case only one of the two predicates holds, we will clearly state it.

Summing up, we have obtained that:

Proposition 4.4. If 𝑓 meets Assumptions 1 and 3 and Equation (4) is sound modulo bisimilarity,
then 𝑓 must satisfy 𝑆 𝑓𝛼,𝛼 for at least one 𝛼 ∈ {𝑎, 𝑎}, and, for each ` ∈ A, at least one of 𝐿𝑓

` and 𝑅
𝑓

` .

The next proposition states that this is enough to obtain the soundness of Equation (4).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 15

Proposition 4.5. Assume that all of the rules for 𝑓 have the form (6), (7), or (8). If 𝑆 𝑓𝛼,𝛼 holds for at
least one 𝛼 ∈ {𝑎, 𝑎}, and, for each ` ∈ A, at least one of 𝐿𝑓

` and 𝑅
𝑓

` holds, then Equation (4) is sound
modulo bisimilarity.

Proof. We argue that the relation

B = {(𝑝 ∥ 𝑞, 𝑓 (𝑝, 𝑞) + 𝑓 (𝑞, 𝑝)) | 𝑝, 𝑞 closed terms} ∪ ↔
is a bisimulation. To this end, pick closed terms 𝑝, 𝑞. Now show, using the information on the rules

for 𝑓 given in the proviso of the proposition, that, for each action ` and closed term 𝑟 ,

• whenever 𝑝 ∥ 𝑞
`
−→ 𝑟 , there is a term 𝑟 ′ that is equal to 𝑟 up to commutativity of ∥ such that

𝑓 (𝑝, 𝑞) + 𝑓 (𝑞, 𝑝)
`
−→ 𝑟 ′, and

• whenever 𝑓 (𝑝, 𝑞) + 𝑓 (𝑞, 𝑝)
`
−→ 𝑟 , there is a term 𝑟 ′ that is equal to 𝑟 up to commutativity of ∥

such that 𝑝 ∥ 𝑞
`
−→ 𝑟 ′.

The claim follows because ∥ is commutative modulo ↔. □

When the set of actions is {𝑎, 𝑎, 𝜏}, there are 81 operators that satisfy the constraints in Proposi-

tions 4.4 and 4.5, including parallel composition and Hennessy’s merge. In general, when the set of

actions has 2𝑛 + 1 elements, there are 3
3𝑛+1

possible operators meeting those constraints.

As an immediate consequence of the form of the rules for 𝑓 given in Proposition 4.5, we have

the following lemma:

Lemma 4.6. Assume that all of the rules for 𝑓 have the form (6), (7), or (8). Then each closed term 𝑝

in CCS𝑓 is finitely branching, that is, the set {(`, 𝑞) | 𝑝
`
−→ 𝑞} is finite.

Remark 2. A standard consequence of the finiteness of the depth (Lemma 3.6), and of CCS𝑓 processes

being finite branching, is that each closed CCS𝑓 term is bisimilar to a synchronisation tree [37], that

is, a closed term built using only the constant 0, the unary prefixing operations and the binary +
operation. Since bisimilarity is a congruence over CCS𝑓 , this means, in particular, that an equation

𝑡 ≈ 𝑢 over CCS𝑓 is sound modulo bisimilarity if, and only if, the closed terms 𝜎 (𝑡) and 𝜎 (𝑢) are
bisimilar for each substitution mapping variables to synchronisation trees. Moreover, we can use the

sub-language of synchronisation trees, which is common to all of the languages CCS𝑓 , to compare

terms from these languages for different choices of binary operation 𝑓 with respect to bisimilarity.

5 THE MAIN THEOREM AND ITS PROOF STRATEGY
So far we have discussed the three simplifying assumptions and the structural operational semantics

of the operators satisfying them:

Assumption 1 The behaviour of 𝑓 is described by rules in de Simone format.

Assumption 2 Equation

𝑥 ∥ 𝑦 ≈ 𝑓 (𝑥,𝑦) + 𝑓 (𝑦, 𝑥) (4)

is sound modulo bisimilarity.

Assumption 3 If 𝑡 is the target of a rule for 𝑓 , then 𝑡 is either a variable or a term obtained by

applying a single CCS𝑓 operator to the variables of the rule, according to the constraints of

the de Simone format.

We have obtained that if a binary operator 𝑓 meets these assumptions, then it must satisfy 𝑆
𝑓

𝛼,𝛼 for

at least one 𝛼 ∈ {𝑎, 𝑎} (i.e., it must guarantee a form of synchronisation between its arguments),

and, for each ` ∈ A, at least one of 𝐿
𝑓

` and 𝑅
𝑓

` (i.e., for each action `, at least one of its arguments is

allowed to interleave a `-transition).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

16 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Our order of business will now be to use this information to prove our main result, namely the

following theorem:

Theorem 5.1. Assume that 𝑓 satisfies Assumptions 1–3. Then bisimilarity admits no finite equa-
tional axiomatisation over CCS𝑓 .

This is achieved by using the proof-theoretic technique from [40–42] to prove a stronger result,

of which Theorem 5.1 is an immediate consequence, namely:

Theorem 5.2. Assume that 𝑓 satisfies Assumptions 1–3. Then bisimilarity admits no finite, ground-
complete axiomatisation over CCS𝑓 .

In this section, we discuss the general reasoning behind the proof of Theorem 5.2. In light of

Propositions 4.4 and 4.5, to prove Theorem 5.2 we will proceed by a case analysis over the possible

sets of allowed SOS rules for operator 𝑓 . In each case, our proof method will follow the same general

schema, which has its roots in Moller’s arguments to the effect that bisimilarity is not finitely based

over CCS (see, e.g., [8, 40–42]), and that we present here at an informal level.

The main idea is to identify a witness property of the negative result. This is a specific property
of CCS𝑓 terms, say𝑊𝑛 for 𝑛 ≥ 0, that, when 𝑛 is large enough, is preserved by provability from

finite axiom systems. Roughly, this means that if E is a finite set of axioms that are sound modulo

bisimilarity, the equation 𝑝 ≈ 𝑞 is provable from E, and 𝑛 is greater than the size of all the terms in

the equations in E, then either both 𝑝 and 𝑞 satisfy𝑊𝑛 , or none of them does. Then, we exhibit

an infinite family of valid equations, say 𝑒𝑛 , called accordingly witness family of equations for the
negative result, in which𝑊𝑛 is not preserved, namely it is satisfied only by one side of each equation.

Thus, Theorem 5.2 specialises to:

Theorem 5.3. Suppose that Assumptions 1–3 are met. Let E be a finite axiom system over CCS𝑓
that is sound modulo bisimilarity. Then there is an infinite family {𝑒𝑛}𝑛≥0 of sound equations such
that E does not prove equation 𝑒𝑛 for each 𝑛 larger than the size of each term in the equations in E.

In this paper, the property𝑊𝑛 corresponds to having a summand that is bisimilar to a specific

process. In detail:

(1) We identify, for each case, a family of processes 𝑓 (`, 𝑝𝑛), for 𝑛 ≥ 0, with the choices of ` and

𝑝𝑛 tailored to the particular set of SOS rules allowed for 𝑓 . Moreover, process 𝑝𝑛 will have

size at least 𝑛, for each 𝑛 ≥ 0. We shall refer to the processes 𝑓 (`, 𝑝𝑛) as the witness processes.
(2) We prove that by choosing 𝑛 large enough, given a finite set of valid equations E and processes

𝑝, 𝑞 ↔ 𝑓 (`, 𝑝𝑛), if E ⊢ 𝑝 ≈ 𝑞 and 𝑝 has a summand bisimilar to 𝑓 (`, 𝑝𝑛), then also 𝑞 has a

summand bisimilar to 𝑓 (`, 𝑝𝑛). Informally, we will choose 𝑛 greater than the size of all the

terms in the equations in E, so that we are guaranteed that the behaviour of the summand

bisimilar to 𝑓 (`, 𝑝𝑛) is due to a closed substitution instance of a variable.

(3) We provide an infinite family of valid equations 𝑒𝑛 in which one side has a summand bisimilar

to 𝑓 (`, 𝑝𝑛), but the other side does not. In light of item 2, this implies that such a family of

equations cannot be derived from any finite collection of valid equations over CCS𝑓 , modulo

bisimilarity, thus proving Theorem 5.3.

To narrow down the combinatorial analysis over the allowed sets of SOS rules for 𝑓 , we examine

first the distributivity properties, modulo ↔, of the operator 𝑓 over summation.

Firstly, we notice that 𝑓 cannot distribute over summation in both arguments. This is a conse-

quence of our previous analysis of the operational rules that such an operator 𝑓 may and must

have in order for Equation (4) to hold. However, it can also be shown in a purely algebraic manner.

Lemma 5.4. A binary operator satisfying Equation (4) cannot distribute over + in both arguments.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 17

Hence, we can limit ourselves to considering binary operators satisfying our constraints that,

modulo bisimilarity, distribute over + in one argument or in none.

We consider these two possibilities in turn.

Distributivity in one argument. Due to our Assumptions 1–3, we can exploit a result from [3] to

characterise the rules for an operator 𝑓 that distributes over summation in one of its arguments.

More specifically, [3, Lemma 4.3] gives a condition on the rules for a smooth operator 𝑔 in a GSOS

system that includes the + operator in its signature, which guarantees that 𝑔 distributes over

summation in one of its arguments. (The rules defining the semantics of smooth operators are a

generalisation of those in de Simone format.) Here we show that, for operator 𝑓 , the condition in

[3, Lemma 4.3] is both necessary and sufficient for distributivity of 𝑓 in one of its two arguments.

Lemma 5.5. Let 𝑖 ∈ {1, 2}. Modulo bisimilarity, operator 𝑓 distributes over summation in its 𝑖-th
argument if and only if each rule for 𝑓 has a premise 𝑥𝑖

`𝑖−−→ 𝑦𝑖 , for some `𝑖 .

By Proposition 4.4, Lemma 5.5 implies that, when 𝑓 is distributive in one argument, either 𝐿
𝑓

`

holds for all ` ∈ A or 𝑅
𝑓

` holds for all ` ∈ A, and 𝑆𝛼,𝛼 holds for at least one 𝛼 ∈ {𝑎, 𝑎}. Notice that
if 𝐿

𝑓

` holds for each action ` and both 𝑆
𝑓

𝑎,𝑎 and 𝑆
𝑓

𝑎,𝑎 hold, then 𝑓 behaves as Hennessy’s merge |/ [31],
and our Theorem 5.3 specialises to [8, Theorem 22]. Hence we assume, without loss of generality,

that 𝑆
𝑓

𝛼,𝛼 holds for only one 𝛼 ∈ {𝑎, 𝑎}. A similar reasoning applies if 𝑅
𝑓

` holds for each action `.

In Section 8 we will present the proof of Theorem 5.3 in the case of an operator 𝑓 that distributes

over summation in its first argument (see Theorem 8.1).

Distributivity in neither argument. We now consider the case in which 𝑓 does not distribute over

summation in either argument.

Also in this case, we can exploit Lemma 5.5 to obtain a characterisation of the set of rules allowed

for an operator 𝑓 satisfying the desired constraints. In detail, we infer that there must be `, a ∈ A,

not necessarily distinct, such that 𝐿
𝑓

` and 𝑅
𝑓

a hold. Otherwise, as 𝑓 must have at least one rule for

each action (see Proposition 4.4), at least one argument would be involved in the premises of each

rule, and this would entail distributivity over summation in that argument.

We will split the proof of Theorem 5.3 for an operator 𝑓 that, modulo bisimilarity, does not

distribute over summation in either argument into three main cases:

(1) In Section 9, we consider the case of 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holding, for some 𝛼 ∈ {𝑎, 𝑎} (Theorem 9.1).

(2) In Section 10, we deal with the case of 𝑓 having only one rule for 𝛼 , only one rule for 𝛼 , and

such rules are of different forms. As we will see, we will need to distinguish two subcases,

according to which predicate 𝑆
𝑓

𝛼,𝛼 holds (Theorem 10.1 and Theorem 10.5).

(3) Finally, in Section 11, we study the case of 𝑓 having only one rule with label 𝛼 , only one rule

with label 𝛼 , and such rules are of the same type (Theorem 11.1).

Before proceeding to the proofs of the various cases, we devote Sections 6 and 7 to the introduction

of some general preliminary results and observations, concerning, respectively, the equational

theory over CCS𝑓 and the decomposition of the semantics of terms, that will play a key role in the

technical development of our proofs.

6 THE EQUATIONAL THEORY OF CCS𝑓

In this section we study some aspects of the equational theory of CCS𝑓 modulo bisimilarity that are

useful in the proofs of our negative results. In particular, we show that, due to Equation (4), proving

the negative result over CCS𝑓 is equivalent to proving it over its reduct CCS
−
𝑓
, whose signature

does not contain occurrences of ∥ (Proposition 6.2 below).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

18 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Furthermore, we discuss the relation between the available rules for 𝑓 and the bisimilarity of

terms of the form 𝑓 (𝑝, 𝑞) with 0. As we will see, in the case of an operator 𝑓 that distributes over

summation in one argument, it is possible to saturate the axiom systems [40] yielding a simplification

in the proofs (Proposition 6.10 below). On the other hand, we cannot rely on saturation for an

operator 𝑓 that distributes with respect to + in neither of its arguments.

6.1 Simplifying equational proofs
We show that it is sufficient to prove that bisimilarity admits no finite equational axiomatisation

over CCS
−
𝑓
, consisting of the CCS𝑓 terms that do not contain occurrences of ∥.

Definition 6.1. For each CCS𝑓 term 𝑡 , we define 𝑡 as follows:

0̂ = 0 𝑥 = 𝑥 ̂̀𝑡 = `𝑡

𝑡 + 𝑢 = 𝑡 + 𝑢 �𝑓 (𝑡,𝑢) = 𝑓 (𝑡,𝑢) 𝑡 ∥𝑢 = 𝑓 (𝑡,𝑢) + 𝑓 (𝑢, 𝑡) .

Then, for any axiom system E over CCS𝑓 , we let Ê = {𝑡 ≈ 𝑢 | (𝑡 ≈ 𝑢) ∈ E}.

We notice that, for each CCS𝑓 term 𝑡 , the term 𝑡 is in CCS−
𝑓
. Moreover, if 𝑡 contains no occurrences

of the parallel composition operator, then 𝑡 = 𝑡 . Since Equation (4) is sound modulo bisimilarity,

which is a congruence relation, it is not hard to show that each term 𝑡 in CCS𝑓 is bisimilar to 𝑡 .

Therefore if E is an axiom system over CCS𝑓 that is sound modulo bisimilarity, then Ê is an axiom

system over CCS
−
𝑓
that is sound modulo bisimilarity.

The following result states the reduction of the non-finite axiomatisability of↔ over CCS𝑓 to

that of↔ over CCS
−
𝑓
.

Proposition 6.2. Let E be an axiom system over CCS𝑓 . Then:

(1) If E ⊢ 𝑡 ≈ 𝑢, then Ê ⊢ 𝑡 ≈ 𝑢.
(2) If E is a complete axiomatisation of↔ over CCS𝑓 , then Ê completely axiomatises↔ over CCS−

𝑓
.

(3) If bisimilarity is not finitely axiomatisable over CCS−
𝑓
, then it is not finitely axiomatisable over

CCS𝑓 either.

In light of this result, henceforth we shall focus on proving that ↔ affords no finite equational

axiomatisation over CCS
−
𝑓
.

6.2 Bisimilarity with 0
As a further simplification, we can focus on the 0 absorption properties of CCS−

𝑓
operators. Informally,

we can restrict the axiom system to a collection of equations that do not introduce unnecessary

terms that are bisimilar to 0 in the equational proofs, namely 0 summands and 0 factors.

Definition 6.3. We say that a CCS
−
𝑓
term 𝑡 has a 0 factor if it contains a subterm of the form

𝑓 (𝑡 ′, 𝑡 ′′), where either 𝑡 ′ or 𝑡 ′′ is bisimilar to 0.

The 0 absorption properties of 𝑓 depend crucially on the allowed set of SOS rules for 𝑓 . Notably,

we have different results, according to the distributivity properties of 𝑓 .

6.2.1 0 absorption for 𝑓 that distributes in one argument. We examine first the case of an operator

𝑓 that, modulo bisimilarity, distributes over summation in its first argument.

In this case, an example of a collection of equations over CCS
−
𝑓
that are sound modulo↔ is given

by axioms A1–A4, F0–F2 in Table 2. Interestingly, axioms A4 and F1 in Table 2 (used from left to

right) are enough to establish that each CCS
−
𝑓
term that is bisimilar to 0 is also provably equal to 0.

Before proceeding, we observe the following:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 19

Some common axioms Some axioms for 𝐿
𝑓

A 𝑅
𝑓

∅ Some axioms for 𝐿
𝑓

∅ 𝑅
𝑓

A
A1 𝑥 + 𝑥 ≈ 𝑥 F1 𝑓 (0, 𝑥) ≈ 0 F3 𝑓 (𝑥, 0) ≈ 0
A2 𝑥 + 𝑦 ≈ 𝑦 + 𝑥 F2 𝑓 (𝑥, 0) ≈ 𝑥 F4 𝑓 (0, 𝑥) ≈ 𝑥

A3 (𝑥 + 𝑦) + 𝑧 ≈ 𝑥 + (𝑦 + 𝑧)
A4 𝑥 + 0 ≈ 𝑥

F0 𝑓 (0, 0) ≈ 0

Table 2. Some basic axioms, according to which rules are available for 𝑓 , where, for 𝑋 ∈ {𝐿, 𝑅}, we use 𝑋 𝑓

A
as a shorthand for

∧
`∈A 𝑋

𝑓
` , and 𝑋

𝑓

∅ to denote that 𝑋 𝑓
` does not hold for any action ` ∈ A.

Remark 3. Whenever a process term 𝑡 has neither 0 summands nor factors then we can assume

that, for some finite non-empty index set 𝐼 , 𝑡 =
∑

𝑖∈𝐼 𝑡𝑖 for some terms 𝑡𝑖 such that none of them

has + as head operator and moreover, none of them has 0 summands nor factors.

Lemma 6.4. Let 𝑡 be a CCS−
𝑓
term. Then 𝑡 ↔ 0 if, and only if, the equation 𝑡 ≈ 0 is provable using

axioms A4 and F1 in Table 2 from left to right.

In light of the above result, in the technical developments to follow, when dealing with an operator

𝑓 that distributes over + in its first argument we shall assume, without loss of generality, that each

axiom system we consider includes the equations A1–A4, F0–F2 in Table 2. This assumption means,

in particular, that our axiom systems will allow us to identify each term that is bisimilar to 0 with 0.
It is well-known (see, e.g., Sect. 2 in [29]) that if an equation relating two closed terms can be

proved from an axiom system E, then there is a closed proof for it. Moreover, if E satisfies a further

closure property, called saturation, in addition to those mentioned earlier, and that closed equation

relates two terms containing no occurrences of 0 as a summand or factor, then there is a closed

proof for it in which all of the terms have no occurrences of 0 as a summand or factor.

Definition 6.5. For each CCS
−
𝑓
term 𝑡 , we define 𝑡/0 thus:

0/0 = 0 𝑥/0 = 𝑥 `𝑡/0 = ` (𝑡/0)

(𝑡 + 𝑢)/0 =

𝑢/0 if 𝑡 ↔ 0
𝑡/0 if 𝑢 ↔ 0
(𝑡/0) + (𝑢/0) otherwise

𝑓 (𝑡,𝑢)/0 =

0 if 𝑡 ↔ 0
𝑡/0 if 𝑢 ↔ 0
𝑓 (𝑡/0, 𝑢/0) otherwise

Intuitively, 𝑡/0 is the term that results by removing all occurrences of 0 as a summand or factor

from 𝑡 .

The following lemma, whose simple proof by structural induction on terms is omitted, collects

the basic properties of the above construction.

Lemma 6.6. For each CCS−
𝑓
term 𝑡 , the following statements hold:

(1) the equation 𝑡 ≈ 𝑡/0 can be proven using the equations A1–A4, F0–F2, and therefore 𝑡 ↔ 𝑡/0;
(2) the term 𝑡/0 has no occurrence of 0 as a summand or factor;
(3) 𝑡/0 = 𝑡 , if 𝑡 has no occurrence of 0 as a summand or factor;
(4) 𝜎 (𝑡/0)/0 = 𝜎 (𝑡)/0, for each substitution 𝜎 .

Definition 6.7. We say that a substitution 𝜎 is a 0-substitution iff 𝜎 (𝑥) ≠ 𝑥 implies that 𝜎 (𝑥) = 0,
for each variable 𝑥 .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

20 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Definition 6.8. Let E be an axiom system. We define the axiom system cl(E) thus:
cl(E) = E ∪ {𝜎 (𝑡)/0 ≈ 𝜎 (𝑢)/0 | (𝑡 ≈ 𝑢) ∈ E, 𝜎 a 0-substitution} .

An axiom system E is saturated if E = cl(E).

The following lemma collects some basic sanity properties of the closure operator cl(·). (Note
that the application of cl(·) to an axiom system preserves closure with respect to symmetry.)

Lemma 6.9. Let E be an axiom system. Then the following statements hold.
(1) cl(E) = cl(cl(E)).
(2) cl(E) is finite, if so is E.
(3) cl(E) is sound, if so is E.
(4) cl(E) is closed with respect to symmetry, if so is E.
(5) cl(E) and E prove the same equations, if E contains the equations A1–A4, F0–F2.

In light of this result, the saturation of a finite axiom system that includes the equations A1–A4,

F0–F2 results in an equivalent, finite collection of equations (Lemma 6.9(2) and (5)).

We are now ready to state our counterpart of [40, Proposition 5.1.5].

Proposition 6.10. Assume that E is a saturated axiom system. Suppose furthermore that we have
a closed proof from E of the closed equation 𝑝 ≈ 𝑞. Then replacing each term 𝑟 in that proof with 𝑟/0
yields a closed proof of the equation 𝑝/0 ≈ 𝑞/0. In particular, the proof from E of an equation 𝑝 ≈ 𝑞,
where 𝑝 and 𝑞 are terms not containing occurrences of 0 as a summand or factor, need not use terms
containing occurrences of 0 as a summand or factor.

In light of Proposition 6.10, henceforth, when dealing with an operator 𝑓 that distributes over +
in one of its arguments, we shall limit ourselves to considering saturated axiom systems.

6.2.2 0 absorption for a non distributive 𝑓 . In Section 5, we argued that the set of allowed rules

for an operator 𝑓 that does not distribute over summation in either argument has to include at

least a rule of type (7) and at least one of type (8). We also notice that for an operator 𝑓 having

both types of rules for all actions we can distinguish two cases, according to which rules of type (6)

are available: (1) If 𝑓 has both rules of type (6), then it would be a mere rewriting of the parallel

composition operator (see the proof of Lemma 4.3). (2) If 𝑓 has only one rule of type (6), then one

can observe that Moller’s argument to the effect that bisimilarity is not finitely based over the

fragment of CCS with action prefixing, nondeterministic choice and purely interleaving parallel

composition, could be applied to 𝑓 , yielding the desired negative result.

Hence, we can assume that there is an action ` ∈ A such that 𝑓 has only one rule, of type either

(7) or (8), with ` as label. This asymmetry in the set of rules for 𝑓 can cause some CCS
−
𝑓
term to

behave as 0 when occurring in the scope of 𝑓 , despite not being bisimilar to 0 at all.

Example 6.11. Consider the term 𝑡 = 𝑓 (𝑎 + 𝑎.𝑢, 𝜏), for some term 𝑢, and assume that 𝑓 has only

rules of type (7) with labels 𝑎 and 𝜏 and only a rule of type (8) with label 𝑎. One can easily check

that, since the initial execution of the 𝜏-move in the second argument is prevented by the rules

for 𝑓 , then the subterm 𝑎.𝑢 can never contribute to the behaviour of 𝑡 . Thus, 𝑡 ↔ 𝑎.𝜏 , even though

𝑎.𝑢 ↔/ 0 for each term 𝑢.

From a technical point of view, this implies that Lemmas 6.4 and 6.6.1 no longer hold. In fact, one

can always construct a term 𝑡 of the form 𝑡 = 𝑓 (∑𝑛
𝑖=1

`.𝑥𝑖 ,
∑𝑚

𝑗=1
a.𝑦 𝑗) for some 𝑛,𝑚 ≥ 0, with `, a

chosen according to the available set of rules for 𝑓 , such that 𝑡 ↔ 0. We conjecture that since we
are considering an operator 𝑓 that does not distribute over summation in either of its arguments, the
valid equations, modulo bisimilarity, of the form 𝑡 ≈ 0 cannot be proved by means of any finite, sound

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 21

set of axioms. Roughly speaking, this is due to the fact that no valid axiom can be established for a

term of the form 𝑓 (`.𝑥 + 𝑧, a .𝑦 +𝑤) in that the behaviour of the terms substituted for the variables

𝑧 and𝑤 is crucial to determine that of a closed instantiation of the term.

Summarizing, this would imply that, in the case at hand, we cannot assume that we can use

saturation to simplify the axiom systems and, moreover, the family of equations

𝑓 (
𝑛∑
𝑖=1

`.𝑝𝑖 ,

𝑚∑
𝑗=1

a.𝑞 𝑗) ≈ 0 𝑛,𝑚 ≥ 0

for some processes 𝑝𝑖 , 𝑞 𝑗 , could play the role of witness family of equations for our desired negative

result. Unfortunately, the presence of two summations would force us to introduce a number of

additional technical results that would make the proof of the negative results even heavier than it

already is. Moreover, those supplementary results are not necessary to treat the case of the witness

families that we are going to introduce in Sections 9–11 to obtain the proof of Theorem 5.3.

7 PRELIMINARY RESULTS
As briefly outlined in Section 5, to obtain the desired negative results we will proceed by a case

analysis on the actual set of rules that are available for operator 𝑓 . However, there are a few

preliminary results that hold for all the allowed behaviours of 𝑓 and that will be useful in the

upcoming proofs. We devote this section to presenting such results and notions.

7.1 Unique prime decomposition
In the proof of our main results, we shall often make use of some notions from [39, 40]. These we

now proceed to introduce for the sake of completeness and readability.

Definition 7.1. A closed term 𝑝 is irreducible if 𝑝 ↔ 𝑞 ∥ 𝑟 implies 𝑞 ↔ 0 or 𝑟 ↔ 0, for all closed
terms 𝑞, 𝑟 . We say that 𝑝 is prime if it is irreducible and is not bisimilar to 0.

Note that each process 𝑝 of depth 1 is prime, as every term of the form 𝑞∥𝑟 (without 0 factors)
has depth at least 2, and cannot be thus bisimilar to 𝑝 . Similarly, each process of norm 1 is prime.

The following lemma states the primality of two families of closed terms that will play a key

role in the proof of our main result.

Lemma 7.2. (1) The term `≤𝑚 is prime, for each𝑚 ≥ 1.
(2) Let a ∈ {𝑎, 𝑎}, ` ∈ A, a ≠ `,𝑚 ≥ 1 and 1 ≤ 𝑖1 < . . . < 𝑖𝑚 . Then the term a.`≤𝑖1 + · · · + a.`≤𝑖𝑚

is prime.

In [39] the notion of unique prime decomposition of a process 𝑝 was introduced, as the unique

multiset {| 𝑞1, . . . , 𝑞𝑛 |} of primes s.t. 𝑝 ↔ 𝑞1∥ . . . ∥𝑞𝑛 . Inspired by the unique prime decomposition

result of [39], the authors of [35] proposed the notion of decomposition order for commutative
monoids, and proved that the existence of a decomposition order on a commutative monoid implies

that the monoid has the unique prime decomposition property. CCS𝑓 modulo ↔ is a commutative
monoid with respect to ∥, having 0 as unit, and the transition relation defines a decomposition order
over bisimilarity equivalence classes of closed terms. Then, by [35, Theorem 32], the following

result holds:

Proposition 7.3. Any CCS𝑓 term can be expressed uniquely, up to ↔, as a parallel composition of
primes.

As we will see, this property will play a crucial role in some of the upcoming proofs.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

22 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

7.2 Decomposing the semantics of terms
In the proofs to follow, we shall sometimes need to establish a correspondence between the

behaviour of open terms and the semantics of their closed instances, with a special focus on the

role of variables. In detail, we need to consider the possible origins of a transition of the form

𝜎 (𝑡) 𝛼−→ 𝑝 , for some action 𝛼 ∈ {𝑎, 𝑎}, closed substitution 𝜎 , CCS−
𝑓
term 𝑡 and closed term 𝑝 . In

fact, the equational theory is defined over process terms, whereas the semantic properties can be

verified only on their closed instances.

Lemma 7.4. Let ` ∈ A. Then, for all 𝑡, 𝑡 ′ and substitutions 𝜎 , if 𝑡
`
−→ 𝑡 ′ then 𝜎 (𝑡)

`
−→ 𝜎 (𝑡 ′).

However, a transition 𝜎 (𝑡)
`
−→ 𝑝 may also derive from the initial behaviour of some closed term

𝜎 (𝑥), provided that the collection of initial moves of 𝜎 (𝑡) depends, in some formal sense, on that of

the closed term substituted for the variable 𝑥 . Roughly speaking, our aim is now to provide the

conditions under which 𝜎 (𝑡)
`
−→ 𝑝 can be inferred from 𝜎 (𝑥) a−→ 𝑞, for some `, a ∈ A and processes

𝑝, 𝑞. As one might expect, in our setting the provability of transitions needs to be parametric with

respect to the rules for 𝑓 .

Example 7.5. Consider the CCS−
𝑓
term 𝑡 = 𝑓 (𝑥, 𝜏). Firstly, we notice that if 𝑅𝑓

𝜏 holds then we can

infer that 𝜎 (𝑡) 𝜏−→ 𝜎 (𝑥)∥0 for all closed substitutions 𝜎 . Assume now that 𝜎 (𝑥) = 𝑎. Clearly, we

can derive 𝜎 (𝑡) 𝑎−→ 0∥𝜏 only if 𝐿
𝑓

𝑎 holds.

To fully describe this situation, for each ` ∈ A, we introduce the auxiliary transition relation −→`

over open terms. To this end, we present the notion of configuration over CCS
−
𝑓
terms, which stems

from [12]. Configurations are terms defined over a set of variables Vd = {𝑥𝑑 | 𝑥 ∈ V}, disjoint
from V , and CCS

−
𝑓
terms. Intuitively, the symbol 𝑥𝑑 (read “𝑥 derivative”) will be used to denote

that the closed term substituted for an occurrence of variable 𝑥 has begun its execution.

Definition 7.6. The collection of CCS−
𝑓
configurations is given by the following grammar:

𝑐 ::= 𝑡 | 𝑥𝑑 | 𝑐 ∥ 𝑡 | 𝑡 ∥ 𝑐 ,

where 𝑡 is a CCS−
𝑓
term, and 𝑥𝑑 ∈ V𝑑 .

For example, the configuration 𝑥𝑑 ∥ 𝑓 (𝑎, 𝑥) is meant to describe a state of the computation of

some term in which the (closed term substituted for the) occurrence of variable 𝑥 on the left-hand

side of the ∥ operator has begun its execution, but the one on the right-hand side has not.

We introduce also special labels for the auxiliary transitions −→` , to keep track of which rules for

𝑓 are available, and thus which one triggered the move by the closed instance of 𝑥 . In detail, we let

𝑥l denote that the closed instance of 𝑥 is responsible for the transition when 𝐿
𝑓

` holds. In case 𝑅
𝑓

`

holds, we use 𝑥r. Finally, 𝑥b is used when 𝐿
𝑓

` ∧ 𝑅
𝑓

` holds.

The auxiliary transitions of the form −→` are then defined via the inference rules in Table 3.

Example 7.7. Consider the term 𝑡 = 𝑓 (𝑥, 𝜏) from Example 7.5. Assume, for instance, that 𝐿
𝑓

𝑎

holds, yielding the transition 𝑥
𝑥

l−−→𝑎 𝑥d, due to rule (𝑎1). Then, an application of rule (𝑎6) would

give 𝑓 (𝑥, 𝜏) 𝑥
l−−→𝑎 𝑥d∥𝜏 with the following meaning: since the rules for 𝑓 allow 𝑎-moves of the first

argument to yield 𝑎-moves of terms of the form 𝑓 (𝑝, 𝑞), then an 𝑎-transition by (an instance of)

variable 𝑥 occurring in the first argument of 𝑓 will induce an 𝑎-move of 𝑓 (𝑥, 𝜏).
Conversely, assume that only 𝑅

𝑓

𝑎 holds. Then, by applying rule (𝑎2) we obtain that 𝑥
𝑥r−−→𝑎 𝑥d and,

from the rules, it is not possible to derive any −→𝑎 transition of 𝑓 (𝑥, 𝜏) from that of 𝑥 , modelling the

fact that the rules for 𝑓 prevent the execution of 𝑎-moves from the first argument.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 23

(𝑎1)
𝐿
𝑓

`

𝑥
𝑥

l−−→` 𝑥d

(𝑎2)
𝑅

𝑓

`

𝑥
𝑥r−−→` 𝑥d

(𝑎3)
𝐿
𝑓

` ∧ 𝑅
𝑓

`

𝑥
𝑥

b−−→` 𝑥d

(𝑎4)
𝑡1

𝑥w−−→` 𝑐

𝑡1 + 𝑡2
𝑥w−−→` 𝑐

w ∈ {l, r, b} (𝑎5)
𝑡2

𝑥w−−→` 𝑐

𝑡1 + 𝑡2
𝑥w−−→` 𝑐

w ∈ {l, r, b}

(𝑎6)
𝑡1

𝑥
l−−→` 𝑐

𝑓 (𝑡1, 𝑡2)
𝑥

l−−→` 𝑐 ∥𝑡2
(𝑎7)

𝑡2
𝑥r−−→` 𝑐

𝑓 (𝑡1, 𝑡2)
𝑥r−−→` 𝑡1∥𝑐

(𝑎8)
𝑡1

𝑥
b−−→` 𝑐

𝑓 (𝑡1, 𝑡2)
𝑥

b−−→` 𝑐 ∥𝑡2
(𝑎9)

𝑡2
𝑥

b−−→` 𝑐

𝑓 (𝑡1, 𝑡2)
𝑥

b−−→` 𝑡1∥𝑐
Table 3. The auxiliary rules.

The structure of the targets of the auxiliary rules in Table 3 can be characterised modulo ↔.

Lemma 7.8. Let 𝑡 be a CCS−
𝑓
term, 𝑥 be a variable and w ∈ {l, r, b}. If 𝑡 𝑥w−−→` 𝑐 can be inferred from

the rules in Table 3, for some action `, then 𝑐 ↔ 𝑥d ∥ 𝑡 ′ for some CCS𝑓 term 𝑡 ′.

Lemmas 7.9 and 7.10 below formalise the decomposition of the semantics of CCS
−
𝑓
terms. We

recall that, due to Lemma 4.3, at least one between 𝐿
𝑓

` and 𝑅
𝑓

` holds for each `.

Lemma 7.9. Let ` ∈ A, 𝑡 be a CCS−
𝑓
term, 𝑥 be a variable, w ∈ {l, r, b} and 𝜎 be a closed substitution.

If 𝜎 (𝑥)
`
−→ 𝑝 for some process 𝑝 , and 𝑡

𝑥w−−→` 𝑐 for some configuration 𝑐 , then 𝜎 (𝑡)
`
−→ 𝜎 [𝑥d ↦→ 𝑝] (𝑐).

Lemma 7.10. Let 𝛼 ∈ {𝑎, 𝑎}, 𝑡 be a CCS−
𝑓
term, 𝜎 be a closed substitution and 𝑝 be a closed term.

Whenever 𝜎 (𝑡) 𝛼−→ 𝑝 , then one of the following holds:

(1) There is term 𝑡 ′ such that 𝑡
𝛼−→ 𝑡 ′ and 𝜎 (𝑡 ′) = 𝑝 .

(2) There are a variable 𝑥 , a process 𝑞 and a configuration 𝑐 such that:
(a) only 𝐿𝑓

𝛼 holds, 𝜎 (𝑥) 𝛼−→ 𝑞, 𝑡
𝑥

l−−→𝛼 𝑐 and 𝜎 [𝑥d ↦→ 𝑞] (𝑐) = 𝑝 ;
(b) only 𝑅𝑓

𝛼 holds, 𝜎 (𝑥) 𝛼−→ 𝑞, 𝑡
𝑥r−−→𝛼 𝑐 and 𝜎 [𝑥d ↦→ 𝑞] (𝑐) = 𝑝 ; or

(c) 𝐿𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds, 𝜎 (𝑥) 𝛼−→ 𝑞, 𝑡
𝑥

b−−→𝛼 𝑐 and 𝜎 [𝑥d ↦→ 𝑞] (𝑐) = 𝑝 .

Next, we proceed to a more detailed analysis of the contribution of variables to the behaviour of

closed instantiations of terms in which they occur.

Lemma 7.11. Let 𝑡 be a term in CCS−
𝑓
, 𝜎 be a closed substitution and 𝛼 ∈ {𝑎, 𝑎}. Assume that

𝜎 (𝑡) ↔ ∑𝑛
𝑖=1

𝛼.𝑝𝑖 +𝑞 for some 𝑛 greater than the size of 𝑡 and closed terms 𝑝𝑖 , 𝑞 with 𝑝𝑖 ↔/ 𝑝 𝑗 whenever
𝑖 ≠ 𝑗 . Then 𝑡 has a summand 𝑥 , for some variable 𝑥 , such that 𝜎 (𝑥) ↔ ∑

𝑗 ∈𝐽 𝛼.𝑞 𝑗 + 𝑞′ for some
𝐽 ⊆ {1, . . . , 𝑛}, with |𝐽 | ≥ 2, some process 𝑞′, and processes 𝑞 𝑗 such that:

• 𝑞 𝑗 ↔/ 𝑞𝑘 whenever 𝑗 ≠ 𝑘 .
• Either 𝑞 𝑗 ↔ 𝑝 𝑗 , for each 𝑗 ∈ 𝐽 , or there is a process 𝑟 such that 𝑝 𝑗 ↔ 𝑞 𝑗 ∥ 𝑟 , for each 𝑗 ∈ 𝐽 .

The next result shows a particular case of Lemma 7.11, in which we can infer that, provided the

term 𝑡 has only one summand and has neither 0 summands nor factors, not only is a variable 𝑥

responsible for the additional behaviour of 𝑡 , but that 𝑡 coincides with 𝑥 .

Lemma 7.12. Let 𝑡 be a term in CCS−
𝑓
that does not have + as head operator, and let 𝜎 be a closed

substitution. Let 𝛼 ∈ {𝑎, 𝑎} and ` ∈ A with 𝛼 ≠ `. Assume that 𝜎 (𝑡) has neither 0 summands nor

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

24 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

factors, and that 𝜎 (𝑡) ↔ 𝛼.`≤𝑖1 + · · · + 𝛼.`≤𝑖𝑚 , for some𝑚 > 1 and 1 ≤ 𝑖1 < . . . < 𝑖𝑚 . Then 𝑡 = 𝑥 , for
some variable 𝑥 .

We can now establish whether some of the initial behaviour of two bisimilar terms is determined

by the same variable (Proposition 7.18).

We start by arguing that we can also give a syntactic characterisation of the occurrences in a

term of the variables that can contribute to the behaviour of closed instances of that term. Formally,

to infer the behaviour of a term 𝑡 from that of (a closed instance of) a variable 𝑥 , the latter must

occur unguarded in 𝑡 , namely 𝑥 cannot occur in the scope of a prefixing operator in 𝑡 . Inspired

by [6], for ` ∈ A and w ∈ {l, r, b}, we introduce a relation ⊳
`
w
between a variable 𝑥 and a term 𝑡 .

Intuitively, the role of the label w is the same as in the auxiliary transitions, namely, to identify

which predicates hold for 𝑓 (and thus which rules for 𝑓 are available) with respect to action `. Then

𝑥 ⊳
`
w
𝑡 holds if the predicate associated with w holds for 𝑓 , and whenever 𝑡 has a subterm of the

form 𝑓 (𝑡1, 𝑡2) and 𝑥 occurs in 𝑡𝑖 (with 𝑖 = 1 if w ∈ {l, b} and 𝑖 = 2 if w ∈ {r, b}) then the occurrence

of 𝑥 is unguarded and can contribute to an initial `-transition of 𝜎 (𝑡) when 𝜎 (𝑥)
`
−→.

Definition 7.13 (Relation ⊳). Let ` ∈ A and w ∈ {l, r, b}. The relation ⊳
`
w
between variables and

terms is defined inductively as follows:

1. 𝑥 ⊳
`

l
𝑥 if 𝐿

𝑓

` 2. 𝑥 ⊳
`
r
𝑥 if 𝑅

𝑓

` 3. 𝑥 ⊳
`

b
𝑥 if 𝐿

𝑓

` ∧ 𝑅
𝑓

`

4. 𝑥 ⊳
`
w
𝑡 ⇒ 𝑥 ⊳

`
w
𝑡 + 𝑢 ∧ 𝑥 ⊳

`
w
𝑢 + 𝑡 5. 𝑥 ⊳

`

l
𝑡 ⇒ 𝑥 ⊳

`

l
𝑓 (𝑡,𝑢)

6. 𝑥 ⊳
`
r
𝑡 ⇒ 𝑥 ⊳

`
r
𝑓 (𝑢, 𝑡) 7. 𝑥 ⊳

`

b
𝑡 ⇒ 𝑥 ⊳

`

b
𝑓 (𝑡,𝑢) ∧ 𝑥 ⊳

`

b
𝑓 (𝑢, 𝑡).

Example 7.14. Assume, for instance, that 𝐿
𝑓

𝑎 , 𝑅
𝑓

𝑎 and 𝐿
𝑓

𝜏 ∧𝑅
𝑓

𝜏 are the only predicates holding. Then,

for 𝑡 = 𝑓 (𝑥, 𝜏) we have that 𝑥 ⊳𝑎
l
𝑡 , 𝑥 ⊳𝜏

l
𝑡 and 𝑥 ⊳𝜏

b
𝑡 .

There is a close relation between unguarded occurrences of variables in terms and the auxiliary

transitions, as stated in the following:

Lemma 7.15. Let ` ∈ A and w ∈ {l, r, b}. Then 𝑥 ⊳
`
w
𝑡 if and only if 𝑡

𝑥w−−→` 𝑐 for a configuration
𝑐 ↔ 𝑥d∥𝑡 ′ for some CCS−

𝑓
term 𝑡 ′.

We now discuss the necessary conditions to relate the depth of closed instances of a term to the

depth of the closed instances of the variables occurring in it.

Lemma 7.16. Let 𝑡 be a CCS−
𝑓
term and 𝜎 be a closed substitution. If 𝑡 has no 0 summands or factors

and 𝑥 ⊳
`
w
𝑡 , for some w ∈ {l, r, b} and ` ∈ A with init(𝜎 (𝑥)) ⊆ {` | 𝑥 ⊳

`
w
𝑡}, then depth(𝜎 (𝑡)) ≥

depth(𝜎 (𝑥)).
Example 7.17. We remark that, due to the potential asymmetry of the rules for 𝑓 , the requirement

on the set of initials of 𝜎 (𝑥) cannot be relaxed in any trivial way. Consider, for instance, the term

𝑡 = 𝑓 (𝑥, 𝜏) from our running example and assume that the only predicates holding are 𝐿
𝑓

𝛼 , 𝐿
𝑓

𝜏 and

𝑅
𝑓

𝛼 . Notice that 𝑥 ⊳𝛼
l
𝑡 and 𝑥 ⊳𝜏

l
𝑡 . Consider the closed substitution 𝜎 with 𝜎 (𝑥) = 𝛼 + 𝜏 + 𝛼.𝛼𝑛 , for

some 𝑛 ≥ 2, so that {𝛼, 𝜏} ⊂ init(𝜎 (𝑥)) = {𝛼, 𝜏, 𝛼}. As 𝐿𝑓

𝛼 and 𝑅
𝑓

𝜏 do not hold, the only inferable

initial transitions for 𝜎 (𝑡) are those resulting from the 𝛼-move and the 𝜏-move by 𝜎 (𝑥). Thus, we
get that depth(𝜎 (𝑡)) = 2, whereas depth(𝜎 (𝑥)) ≥ 3. This is due to the fact that the computation

of 𝜎 (𝑥) starting with a 𝛼-move is blocked by the rules for 𝑓 and, thus, it cannot contribute to the

behaviour of 𝑡 .

The following proposition then holds:

Proposition 7.18. Let 𝛼 ∈ {𝑎, 𝑎}, 𝑥 be a variable and 𝑡,𝑢 be CCS−
𝑓
with 𝑡 ↔ 𝑢 and such that

neither 𝑡 nor 𝑢 has 0 summands or factors. If 𝑥 ⊳𝛼
w
𝑡 for some w ∈ {l, r, b}, then 𝑥 ⊳𝛼

w
𝑢. In particular, if

𝑥 ⊳𝛼
w
𝑡 because 𝑡 has a summand 𝑥 , then so does 𝑢.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 25

8 NEGATIVE RESULT: THE CASE 𝐿
𝑓

𝑎, 𝐿
𝑓

𝑎, 𝐿
𝑓

𝜏

In this section we discuss the nonexistence of a finite axiomatisation of CCS𝑓 in the case of an

operator 𝑓 that, modulo bisimilarity, distributes over summation in one of its arguments. We

expand only the case of 𝑓 distributing in the first argument. (The case of distributivity in the second

argument follows by a straightforward adaptation of the arguments we use in this section.) Hence,

in the current setting, we can assume the following set of SOS rules for 𝑓 :

𝑥1

`
−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
`
−→ 𝑦1∥𝑥2

∀ ` ∈ A 𝑥1

𝛼−→ 𝑦1 𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑦1∥𝑦2

namely, only 𝐿
𝑓

` holds for each action `, and only 𝑆𝛼,𝛼 holds for some 𝛼 ∈ {𝑎, 𝑎}.
According to the proof strategy sketched in Section 5, we now introduce a particular family of

equations on which we will build our negative result. We define

𝑝𝑛 =

𝑛∑
𝑖=0

𝛼𝛼 ≤𝑖 (𝑛 ≥ 0)

𝑒𝑛 : 𝑓 (𝛼, 𝑝𝑛) ≈ 𝛼𝑝𝑛 +
𝑛∑
𝑖=0

𝜏𝛼 ≤𝑖 (𝑛 ≥ 0) .

It is not difficult to check that the infinite family of equations 𝑒𝑛 is sound modulo bisimilarity.

Our order of business is now to prove the instance of Theorem 5.3 considering the family of

equations 𝑒𝑛 above, showing that no finite collection of equations over CCS𝑓 that are sound modulo

bisimilarity can prove all of the equations 𝑒𝑛 (𝑛 ≥ 0).

Formally, we prove the following theorem:

Theorem 8.1. Assume an operator 𝑓 such that only 𝐿𝑓

` holds for each action ` and only 𝑆 𝑓𝛼,𝛼 holds.
Let E be a finite axiom system over CCS𝑓 that is sound modulo↔, 𝑛 be larger than the size of each
term in the equations in E, and 𝑝, 𝑞 be closed terms such that 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑝𝑛). If E ⊢ 𝑝 ≈ 𝑞 and 𝑝 has
a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), then so does 𝑞.

Then, since the left-hand side of equation 𝑒𝑛 , viz. the term 𝑓 (𝛼, 𝑝𝑛), has a summand bisimilar to

𝑓 (𝛼, 𝑝𝑛), whilst the right-hand side, viz. the term 𝛼𝑝𝑛 +∑𝑛
𝑖=0

𝜏𝛼 ≤𝑖
, does not, we can conclude that

the infinite collection of equations {𝑒𝑛 | 𝑛 ≥ 0} is the desired witness family. Theorem 5.3 is then

proved for the considered class of auxiliary binary operators.

The remainder of this section is entirely devoted to a proof of the above statement.

8.1 Case specific properties of 𝑓 (𝛼, 𝑝𝑛)
Firstly, we present a technical lemma stating that, under the considered set of rules for 𝑓 , if a closed

term 𝜎 (𝑡) is not bisimilar to 0, then by instantiating the variables in 𝑡 with a process which is not

bisimilar to 0 we cannot obtain a closed instance of 𝑡 which is bisimilar to 0.

Lemma 8.2. Let 𝑡 be a CCS−
𝑓
term and let 𝜎 be a substitution with 𝜎 (𝑡) ↔/ 0. Assume that 𝑢 is a

CCS−
𝑓
term that is not bisimilar to 0. Then 𝜎 [𝑥 ↦→ 𝑢] (𝑡) ↔/ 0 for each variable 𝑥 .

Remark 4. We have defined the processes 𝑝𝑛 in a such a way that an initial synchronization, in

the scope of operator 𝑓 , with the process 𝛼 is always possible. This choice will allow us to slightly

simplify the reasoning in the proof of the upcoming Proposition 8.5 and thus of the negative

result (cf., for instance, with the proof of Proposition 9.4 in Section 9). Clearly, the possibility of

synchronization is directly related to which rules of type (6) are available for 𝑓 . However, since

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

26 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

𝑓 has a rule of type (7) for all actions, it is then always possible to identify a pair `, 𝑝𝑛 such that

𝑓 (`, 𝑝𝑛)
𝜏−→ due to an application of the rule of type (6) allowed for 𝑓 .

We now study some properties of the processes 𝑓 (𝛼, 𝑝𝑛), which also depend on the particular

configuration of rules for 𝑓 that we are considering.

Lemma 8.3. The term 𝑓 (𝛼, 𝑝𝑛) is prime, for each 𝑛 ≥ 0.

Proof. Since 𝑓 (𝛼, 𝑝𝑛) is not bisimilar to 0, to prove the statement it suffices only to show that

𝑓 (𝛼, 𝑝𝑛) is irreducible for 𝑛 ≥ 0.

If 𝑛 = 0 then 𝑓 (𝛼, 𝑝𝑛) = 𝑓 (𝛼, 0) is a term of depth 1, and is therefore irreducible as claimed.

Consider now𝑛 ≥ 1. Assume, towards a contradiction, that 𝑓 (𝛼, 𝑝𝑛) ↔ 𝑝 ∥𝑞 for two closed terms 𝑝

and 𝑞 with 𝑝 ↔/ 0 and 𝑞↔/ 0, that is, 𝑓 (𝛼, 𝑝𝑛) is not irreducible. We have that 𝑓 (𝛼, 𝑝𝑛)
𝛼−→ 0∥𝑝𝑛 ↔ 𝑝𝑛 .

As 𝑓 (𝛼, 𝑝𝑛) ↔ 𝑝 ∥𝑞, there is a transition 𝑝 ∥𝑞 𝛼−→ 𝑟 for some 𝑟 ↔ 𝑝𝑛 . Without loss of generality, we

may assume that 𝑝
𝛼−→ 𝑝 ′

and 𝑟 = 𝑝 ′∥𝑞. Since we have assumed that 𝑛 ≥ 1, by Lemma 7.2.(2) and

our assumption that 𝑞 ↔/ 0, we have that 𝑝 ′ ↔ 0 and 𝑞 ↔ 𝑝𝑛 . Again using that 𝑛 ≥ 1, it follows that

𝑞
𝛼−→ 𝑞′ for some 𝑞′. This means that 𝑝 ∥𝑞 𝛼−→, contradicting the assumption that 𝑓 (𝛼, 𝑝𝑛) ↔ 𝑝 ∥𝑞.

Thus 𝑓 (𝛼, 𝑝𝑛) is irreducible, which was to be shown. □

Lemma 8.4. Let 𝑛 ≥ 1. Assume that 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝛼, 𝑝𝑛), where 𝑞 ↔/ 0. Then 𝑝 ↔ 𝛼 and 𝑞 ↔ 𝑝𝑛 .

Proof. Since 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝛼, 𝑝𝑛) and 𝑓 (𝛼, 𝑝𝑛)
𝛼−→ 0∥𝑝𝑛 ↔ 𝑝𝑛 , there is a 𝑝

′
such that 𝑝

𝛼−→ 𝑝 ′

and 𝑝 ′∥𝑞 ↔ 𝑝𝑛 . It follows that 𝑞 ↔ 𝑝𝑛 and 𝑝 ′ ↔ 0, because 𝑝𝑛 is prime (Lemma 7.2(2)) and 𝑞 ↔/ 0.
We are therefore left to prove that 𝑝 is bisimilar to 𝛼 . To this end, note, first of all, that, as ↔ is a

congruence over the language CCS𝑓 , we have that 𝑓 (𝑝, 𝑝𝑛) ↔ 𝑓 (𝛼, 𝑝𝑛).
Assume now that 𝑝

`
−→ 𝑝 ′′

for some action ` and closed term 𝑝 ′′
. In light of the above equivalence,

one of the following two cases may arise:

(1) ` = 𝛼 and 𝑝 ′′∥𝑝𝑛 ↔ 𝑝𝑛 or

(2) ` = 𝜏 and 𝑝 ′′∥𝑝𝑛 ↔ 𝛼 ≤𝑖
, for some 𝑖 ∈ {1, . . . , 𝑛}.

In the former case, 𝑝 ′′
must have depth 0 and is thus bisimilar to 0. The latter case is impossible,

because the depth of 𝑝 ′′∥𝑝𝑛 is at least 𝑛 + 1.

We may therefore conclude that every transition of 𝑝 is of the form 𝑝
𝛼−→ 𝑝 ′′

, for some 𝑝 ′′ ↔ 0.
Since we have already seen that 𝑝 affords an 𝛼-labelled transition leading to 0, modulo bisimilarity,

it follows that 𝑝 ↔ 𝛼 , which was to be shown. □

8.2 Proving Theorem 8.1
We now proceed to present a detailed proof of Theorem 8.1. The following result, stating that the

invariant property of having a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛) holds for all closed instantiations of

axioms in E, will be the crux in such a proof.

Proposition 8.5. Assume an operator 𝑓 that, modulo↔, distributes over + in its first argument
and such that only 𝐿𝑓

` holds for each action `, and only 𝑆 𝑓𝛼,𝛼 holds. Let 𝑡 ≈ 𝑢 be an equation over CCS−
𝑓

that is sound modulo↔. Let 𝜎 be a closed substitution with 𝑝 = 𝜎 (𝑡) and 𝑞 = 𝜎 (𝑢). Suppose that 𝑝
and 𝑞 have neither 0 summands or factors and 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑝𝑛) for some 𝑛 larger than the size of 𝑡 . If
𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), then so does 𝑞.

Proof. Observe, first of all, that since 𝜎 (𝑡) = 𝑝 and 𝜎 (𝑢) = 𝑞 have no 0 summands or factors,

then neither do 𝑡 and 𝑢. Hence, by Remark 3, we have that for some finite non-empty index sets

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 27

𝐼 , 𝐽 , 𝑡 =
∑

𝑖∈𝐼 𝑡𝑖 and 𝑢 =
∑

𝑗 ∈𝐽 𝑢 𝑗 , where none of the 𝑡𝑖 (𝑖 ∈ 𝐼) and 𝑢 𝑗 (𝑗 ∈ 𝐽) is 0, has + as its head

operator, has 0 summands and factors.

As 𝑝 = 𝜎 (𝑡) has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), there is an index 𝑖 ∈ 𝐼 such that𝜎 (𝑡𝑖) ↔ 𝑓 (𝛼, 𝑝𝑛).
Our aim is now to show that there is an index 𝑗 ∈ 𝐽 such that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛), proving that

𝑞 = 𝜎 (𝑢) also has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛).
We proceed by a case analysis on the form 𝑡𝑖 may have.

(1) Case 𝑡𝑖 = 𝑥 for some variable 𝑥 . In this case, we have 𝜎 (𝑥) ↔ 𝑓 (𝛼, 𝑝𝑛), and 𝑡 has 𝑥 as a

summand. As 𝑡 ≈ 𝑢 is sound modulo bisimilarity and neither 𝑡 nor 𝑢 have 0 summands or

factors, it follows that 𝑢 also has 𝑥 as a summand (Proposition 7.18). Thus there is an index

𝑗 ∈ 𝐽 such that 𝑢 𝑗 = 𝑥 , and, modulo bisimulation, 𝜎 (𝑢) has 𝑓 (𝛼, 𝑝𝑛) as a summand, which

was to be shown.

(2) Case 𝑡𝑖 = `𝑡 ′ for some term 𝑡 ′. This case is vacuous because, since `𝜎 (𝑡 ′)
`
−→ 𝜎 (𝑡 ′) is the

only transition afforded by 𝜎 (𝑡𝑖), this term cannot be bisimilar to 𝑓 (𝛼, 𝑝𝑛). Indeed 𝑓 (𝛼, 𝑝𝑛)
can perform both, an 𝛼-labelled transition triggered by the first argument, and the 𝜏-move

due to the synchronization between 𝛼 and 𝑝𝑛 .

(3) Case 𝑡𝑖 = 𝑓 (𝑡 ′, 𝑡 ′′) for some terms 𝑡 ′, 𝑡 ′′. In this case, we have 𝑓 (𝜎 (𝑡 ′), 𝜎 (𝑡 ′′)) ↔ 𝑓 (𝛼, 𝑝𝑛).
As 𝜎 (𝑡𝑖) has no 0 factors, it follows that 𝜎 (𝑡 ′) ↔/ 0 and 𝜎 (𝑡 ′′) ↔/ 0. Thus 𝜎 (𝑡 ′) ↔ 𝛼 and

𝜎 (𝑡 ′′) ↔ 𝑝𝑛 (Lemma 8.4). Now, 𝑡 ′′ can be written as 𝑡 ′′ = 𝑣1 + · · · + 𝑣ℓ , (ℓ > 0), where none of
the summands 𝑣𝑖 is 0 or a sum. Observe that, since 𝑛 is larger than the size of 𝑡 , we have that

ℓ < 𝑛. Hence, since 𝜎 (𝑡 ′′) ↔ 𝑝𝑛 =
∑𝑛

𝑖=1
𝛼𝛼 ≤𝑖

, there must be some ℎ ∈ {1, . . . , ℓ} such that

𝜎 (𝑣ℎ) ↔ 𝛼.𝛼 ≤𝑖1 + · · · + 𝛼.𝛼 ≤𝑖𝑚
for some𝑚 > 1 and 1 ≤ 𝑖1 < . . . < 𝑖𝑚 ≤ 𝑛. The term 𝜎 (𝑣ℎ)

has no 0 summands or factors—or else, so would 𝜎 (𝑡 ′′), and thus 𝑝 = 𝜎 (𝑡). By Lemma 7.12, it

follows that 𝑣ℎ can only be a variable 𝑥 and thus that

𝜎 (𝑥) ↔ 𝛼.𝛼 ≤𝑖1 + · · · + 𝛼.𝛼 ≤𝑖𝑚 . (9)

Observe, for later use, that, since 𝑡 ′ has no 0 factors, the above equation yields that𝑥 ∉ var (𝑡 ′)—
or else 𝜎 (𝑡 ′) ↔/ 𝛼 (Lemma 7.16). So, modulo bisimilarity, 𝑡𝑖 has the form 𝑓 (𝑡 ′, (𝑥 + 𝑡 ′′′)), for
some term 𝑡 ′′′, with 𝑥 ∉ var (𝑡 ′) and 𝜎 (𝑡 ′) ↔ 𝛼 .

Our order of business will now be to use the information collected so far to argue that 𝜎 (𝑢)
has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛). To this end, consider the substitution

𝜎 ′ = 𝜎 [𝑥 ↦→ 𝛼 𝑓 (𝛼, 𝑝𝑛)] .

We have that

𝜎 ′(𝑡𝑖) = 𝑓 (𝜎 ′(𝑡 ′), 𝜎 ′(𝑡 ′′))
= 𝑓 (𝜎 (𝑡 ′), 𝜎 ′(𝑡 ′′)) (As 𝑥 ∉ var (𝑡 ′))
↔ 𝑓 (𝛼, (𝛼 𝑓 (𝛼, 𝑝𝑛) + 𝜎 ′(𝑡 ′′′)) (As 𝑡 ′′ = 𝑥 + 𝑡 ′′′).

Thus, 𝜎 ′(𝑡𝑖)
𝜏−→ 𝑝 ′ ↔ 𝑓 (𝛼, 𝑝𝑛) for some 𝑝 ′

, so that

𝜎 ′(𝑡) 𝜏−→ 𝑝 ′ ↔ 𝑓 (𝛼, 𝑝𝑛)

also holds. Since 𝑡 ≈ 𝑢 is sound modulo ↔, it follows that

𝜎 ′(𝑡) ↔ 𝜎 ′(𝑢) .

Hence, we can infer that there are a 𝑗 ∈ 𝐽 and a 𝑞′ such that

𝜎 ′(𝑢 𝑗)
𝜏−→ 𝑞′ ↔ 𝑓 (𝛼, 𝑝𝑛) . (10)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

28 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Recall that, by one of the assumptions of the proposition, 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛), and thus 𝜎 (𝑢)
has depth 𝑛 + 2. On the other hand, by (10),

depth(𝜎 ′(𝑢 𝑗)) ≥ 𝑛 + 3 .

Since 𝜎 and 𝜎 ′
differ only in the closed term they map variable 𝑥 to, it follows that

𝑥 ∈ var (𝑢 𝑗) . (11)

We now proceed to show that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛) by a further case analysis on the form a term

𝑢 𝑗 satisfying (10) and (11) may have.

(a) Case 𝑢 𝑗 = 𝑥 . This case is vacuous because 𝜎 ′(𝑥) = 𝛼 𝑓 (𝛼, 𝑝𝑛)
𝜏
↛, and thus this possible

form for 𝑢 𝑗 does not meet (10).

(b) Case𝑢 𝑗 = `𝑢 ′
for some term𝑢 ′

. In light of (10), we have ` = 𝜏 and 𝑞′ = 𝜎 ′(𝑢 ′) ↔ 𝑓 (𝛼, 𝑝𝑛).
Using (11) and the fact that 𝑢 ′

has no 0 factors, we get depth(𝜎 ′(𝑢 ′)) ≥ 𝑛 + 3 (Lemma 7.16).

Since 𝑓 (𝛼, 𝑝𝑛) has depth 𝑛 + 2, this contradicts 𝑞′ ↔ 𝑓 (𝛼, 𝑝𝑛).
(c) Case 𝑢 𝑗 = 𝑓 (𝑢 ′, 𝑢 ′′) for some terms 𝑢 ′, 𝑢 ′′

. Our assumption that 𝜎 (𝑢) has no 0 factors

yields that none of the terms 𝑢 ′, 𝑢 ′′, 𝜎 (𝑢 ′) and 𝜎 (𝑢 ′′) is bisimilar to 0. Moreover, by (11),

either 𝑥 ∈ var (𝑢 ′) or 𝑥 ∈ var (𝑢 ′′).
Since 𝜎 ′(𝑢 𝑗) = 𝑓 (𝜎 ′(𝑢 ′), 𝜎 ′(𝑢 ′′)) affords transition (10), we have that 𝑞′ = 𝑞1∥𝑞2 for some

𝑞1, 𝑞2. As 𝑓 (𝛼, 𝑝𝑛) is prime (Lemma 8.3), it follows that either 𝑞1 ↔ 0 or 𝑞2 ↔ 0. Hence, we
can distinguish two cases, according to the possible origins for transition (10):

(i) 𝜎 ′(𝑢 ′) 𝜏−→ 𝑞1 and 𝑞2 = 𝜎 ′(𝑢 ′′). We now proceed to argue that this case produces a

contradiction.

To this end, note first of all that 𝜎 ′(𝑢 ′′) ↔/ 0, because 𝜎 (𝑢 ′′) ↔/ 0 (Lemma 8.2). Thus it

must be the case that 𝑞1 ↔ 0 and 𝑞2 = 𝜎 ′(𝑢 ′′) ↔ 𝑓 (𝛼, 𝑝𝑛). In light of the definition of 𝜎 ′
,

it follows that 𝑥 occurs in 𝑢 ′
, but not in 𝑢 ′′

(Lemma 7.16). Therefore, since 𝜎 and 𝜎 ′
only

differ at the variable 𝑥 ,

𝜎 (𝑢 ′′) = 𝜎 ′(𝑢 ′′) ↔ 𝑓 (𝛼, 𝑝𝑛) .

Since ↔ is a congruence, we derive that

𝜎 (𝑢 𝑗) = 𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)) ↔ 𝑓 (𝜎 (𝑢 ′), 𝑓 (𝛼, 𝑝𝑛)) . (12)

Since 𝜎 (𝑢 ′) ↔/ 0 because 𝑞 = 𝜎 (𝑢) has no 0-factors, we may infer that

𝑛 + 2 = depth(𝑓 (𝛼, 𝑝𝑛))
= depth(𝜎 (𝑢)) (As 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛))
≥ depth(𝜎 (𝑢 𝑗))
= depth(𝜎 (𝑢 ′)) + 𝑛 + 2 (By (12))

> 𝑛 + 2 (As depth(𝜎 (𝑢 ′)) > 0),

which is the desired contradiction.

(ii) 𝜎 ′(𝑢 ′) 𝛼−→ 𝑞1 and 𝜎 ′(𝑢 ′′) 𝛼−→ 𝑞2. Recall that exactly one of 𝑞1, 𝑞2 is bisimilar to 0. We

proceed with the proof by considering these two possible cases in turn.

• Case 𝑞1 ↔ 0. Our order of business will be to argue that, in this case, 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛),
and thus that 𝑞 = 𝜎 (𝑢) has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛).
To this end, observe, first of all, that 𝑞2 ↔ 𝑓 (𝛼, 𝑝𝑛) by (10). It follows that 𝑥 ∈ var (𝑢 ′′),
for otherwise we could derive a contradiction thus:

depth(𝑓 (𝛼, 𝑝𝑛)) = depth(𝜎 (𝑢)) (As 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛))
≥ depth(𝜎 (𝑢 𝑗))

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 29

> depth(𝜎 (𝑢 ′′)) (As depth(𝜎 (𝑢 ′)) > 0)

= depth(𝜎 ′(𝑢 ′′)) (As 𝑥 ∉ var (𝑢 ′′))

> depth(𝑓 (𝛼, 𝑝𝑛)) (As 𝜎 ′(𝑢 ′′) 𝛼−→ 𝑞2 ↔ 𝑓 (𝛼, 𝑝𝑛)).
Moreover, we claim that 𝑥 ∉ var (𝑢 ′). Indeed, if 𝑥 also occurred in 𝑢 ′

, then, since 𝑢 ′
has

no 0 factors, the term 𝜎 (𝑥) would contribute to the behaviour of 𝜎 (𝑢 𝑗). Therefore, by
(9), the term 𝜎 (𝑢 𝑗) would afford a sequence of actions containing two occurrences of

𝛼 , contradicting our assumption that 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛).
Observe now that, as 𝜎 ′(𝑢 ′′) 𝛼−→ 𝑞2 ↔ 𝑓 (𝛼, 𝑝𝑛), it must be the case that 𝑢 ′′

has

a summand 𝑥 . To see that this does hold, we examine the other possible forms a

summand𝑤 of 𝑢 ′′
responsible for the transition

𝜎 ′(𝑢 ′′) 𝛼−→ 𝑞2 ↔ 𝑓 (𝛼, 𝑝𝑛)
may have, and argue that each of them leads to a contradiction.

(A) Case 𝑤 = 𝛼𝑤 ′
, for some term 𝑤 ′

. In this case, 𝑞2 = 𝜎 ′(𝑤 ′). However, the depth
of such a 𝑞2 is either smaller than 𝑛 + 2 (if 𝑥 ∉ var (𝑤 ′)), or larger than 𝑛 + 2 (if 𝑥 ∈
var (𝑤 ′)). More precisely, in the former case 𝑥 ∉ var (𝑤 ′) implies 𝜎 (𝑤) = 𝜎 ′(𝑤) and
thus 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) gives 𝑛 + 2 = depth(𝜎 (𝑢)) ≥ depth(𝜎 (𝑤)) = 1 + depth(𝜎 (𝑤 ′)),
giving depth(𝜎 ′(𝑤 ′)) ≤ 𝑛 + 1. In the latter case, as 𝑥 ∈ var (𝑤 ′) and𝑤 ′

does not have

0 factors (or otherwise 𝑢 ′′
would have 0 factors), by Lemma 7.16, we would have

depth(𝜎 ′(𝑤 ′)) ≥ depth(𝜎 ′(𝑥)) = 𝑛 + 3. Both cases then contradict the fact that 𝑞2 is

bisimilar to 𝑓 (𝛼, 𝑝𝑛), because the latter term has depth 𝑛 + 2.

(B) Case 𝑤 = 𝑓 (𝑤1,𝑤2), for some terms 𝑤1 and 𝑤2. Observe, first of all, that 𝜎 (𝑤1)
and 𝜎 (𝑤2) are not bisimilar to 0, because 𝜎 (𝑢) has no 0 factors. It follows that 𝜎 ′(𝑤1)
and 𝜎 ′(𝑤2) are not bisimilar to 0 either (Lemma 8.2).

Now, since

𝜎 ′(𝑤) = 𝑓 (𝜎 ′(𝑤1), 𝜎 ′(𝑤2))
𝛼−→ 𝑞2 ,

there is a closed term 𝑞3 such that 𝜎 ′(𝑤1)
𝛼−→ 𝑞3 and

𝑞2 = 𝑞3∥𝜎 ′(𝑤2) ↔ 𝑓 (𝛼, 𝑝𝑛) .

As the term 𝑓 (𝛼, 𝑝𝑛) is prime, and 𝜎 ′(𝑤2) is not bisimilar to 0, we may infer that

𝑞3 ↔ 0 and
𝜎 ′(𝑤2) ↔ 𝑓 (𝛼, 𝑝𝑛) .

It follows that 𝑥 ∉ var (𝑤2), or else the depth of 𝜎 ′(𝑤2) would be at least 𝑛 + 3, and

therefore that

𝜎 ′(𝑤2) = 𝜎 (𝑤2) ↔ 𝑓 (𝛼, 𝑝𝑛) .

However, this contradicts our assumption that

𝑞 = 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) .

Summing up, we have argued that 𝑢 ′′
has a summand 𝑥 . Therefore, by (9),

𝜎 (𝑢 ′′) ↔ 𝛼.𝛼 ≤𝑖1 + · · · + 𝛼.𝛼 ≤𝑖𝑚 + 𝑟 ′′ ,

for some closed term 𝑟 ′′. We have already noted that

𝜎 (𝑢 ′) = 𝜎 ′(𝑢 ′) 𝛼−→ 𝑞1 ↔ 0 .

Therefore, we have that

𝜎 (𝑢 ′) ↔ 𝛼 + 𝑟 ′ ,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

30 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

for some closed term 𝑟 ′. Using the congruence properties of bisimilarity, we may infer

𝜎 (𝑢 𝑗) = 𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)) ↔ 𝑓 ((𝛼 + 𝑟 ′), (
𝑚∑
𝑗=1

𝛼.𝛼 ≤𝑖 𝑗 + 𝑟 ′′)) .

In light of this equivalence, we have that

𝜎 (𝑢 𝑗)
𝛼−→ 𝑟 ↔

𝑚∑
𝑗=1

𝛼.𝛼 ≤𝑖 𝑗 + 𝑟 ′′ ↔ 𝜎 (𝑢 ′′),

for some closed term 𝑟 , and thus 𝑞 = 𝜎 (𝑢) 𝛼−→ 𝑟 . Since 𝑞 = 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) by our

assumption, it must be the case that 𝑟 ↔ 𝜎 (𝑢 ′′) ↔ 𝑝𝑛 . So, again using the congruence

properties of ↔ , we have that

𝜎 (𝑢 𝑗) = 𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)) ↔ 𝑓 ((𝛼 + 𝑟 ′), 𝑝𝑛).
As 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛), using Lemma 8.4 it is now a simple matter to infer that

𝜎 (𝑢 ′) ↔ 𝛼 .

Hence 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛). Note that 𝜎 (𝑢 𝑗) is a summand of 𝑞 = 𝜎 (𝑢). Therefore 𝑞 has a

summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), which was to be shown.

• Case 𝑞2 ↔ 0. We now proceed to argue that this case produces a contradiction. To

this end, observe, first of all, that 𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛). Reasoning as in the analysis of the

previous case, we may infer that 𝑥 occurs in 𝑢 ′
, but 𝑥 does not occur in 𝑢 ′′

. Moreover,

as 𝜎 ′(𝑢 ′) 𝛼−→ 𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛), it must be the case that 𝑢 ′ 𝛼−→ 𝑢 ′′′
for some 𝑢 ′′′

such that

𝜎 ′(𝑢 ′′′) = 𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛) .

(For, otherwise, using Lemma 7.10.2a, we would have that 𝜎 ′(𝑢 ′) 𝛼−→ 𝑞1 because

𝑢 ′ 𝑦
−→ 𝑐 , 𝜎 (𝑦) 𝛼−→ 𝑞′

1
and 𝑞1 = 𝜎 ′[𝑦𝑑 ↦→ 𝑞′

1
] (𝑐), for some variable 𝑦, configuration 𝑐 and

closed term 𝑞′
1
. Then we would necessarily have that 𝑦 ≠ 𝑥 . In fact, if 𝑦 = 𝑥 , then we

would have that 𝛼 = 𝛼 by the definition of 𝜎 ′
, contradicting the distinctness of these

two complementary actions. Observe now that, again in light of the definition of 𝜎 ′
,

the variable 𝑥 cannot occur in 𝑐 , or else the depth of 𝑞1 = 𝜎 ′[𝑦𝑑 ↦→ 𝑞′
1
] (𝑐) would be at

least 𝑛+3, contradicting our assumption that 𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛) . Hence, since the variable

𝑦 is different from 𝑥 , it is not hard to see that 𝜎 (𝑢 ′) 𝛼−→ 𝑞1 also holds, and thus that

depth(𝑞1) < depth(𝜎 (𝑢)) = 𝑛 + 2 , contradicting our assumption that 𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛).)
Since 𝑢 contains no 0 factors, in light of the definition of 𝜎 ′

, this 𝑢 ′′′
cannot con-

tain occurrences of the variable 𝑥 . (For, otherwise, Lemma 7.16 would yield that

depth(𝜎 ′(𝑢 ′′′)) = depth(𝑞1) ≥ 𝑛+3 , contradicting our assumption that𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛).)
So

𝜎 (𝑢 ′′′) = 𝑞1 ↔ 𝑓 (𝛼, 𝑝𝑛)
also holds. Thus

𝑛 + 2 = depth(𝑓 (𝛼, 𝑝𝑛))
= depth(𝜎 (𝑢)) (As 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛))
≥ depth(𝜎 (𝑢 𝑗))
= depth(𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)))

> depth(𝜎 (𝑢 ′′′)) + depth(𝜎 (𝑢 ′′)) (As 𝜎 (𝑢 ′) 𝛼−→ 𝜎 (𝑢 ′′′))
> 𝑛 + 2

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 31

where the last inequality follows by the fact that depth(𝜎 (𝑢 ′′)) > 0 and depth(𝜎 (𝑢 ′′′)) =
𝑛 + 2, and gives the desired contradiction.

This completes the proof for the case 𝑢 𝑗 = 𝑓 (𝑢 ′, 𝑢 ′′) for some terms 𝑢 ′, 𝑢 ′′
.

The proof of Proposition 8.5 is now complete. □

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Assume that E is a finite axiom system over the language CCS
−
𝑓
that is

sound modulo bisimilarity, and that the following hold, for some closed terms 𝑝 and 𝑞 and positive

integer 𝑛 larger than the size of each term in the equations in E:
(1) E ⊢ 𝑝 ≈ 𝑞,

(2) 𝑝 ↔ 𝑞 ↔ 𝑓 (𝛼, 𝑝𝑛),
(3) 𝑝 and 𝑞 contain no occurrences of 0 as a summand or factor, and

(4) 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛).
We prove that 𝑞 also has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛) by induction on the depth of the closed

proof of the equation 𝑝 ≈ 𝑞 from E. Recall that, without loss of generality, we may assume that

the closed terms involved in the proof of the equation 𝑝 ≈ 𝑞 have no 0 summands or factors (by

Proposition 6.10, as E may be assumed to be saturated), and that applications of symmetry happen

first in equational proofs (that is, E is closed with respect to symmetry).

We proceed by a case analysis on the last rule used in the proof of 𝑝 ≈ 𝑞 from E. The case of
reflexivity is trivial, and that of transitivity follows immediately by using the inductive hypothesis

twice. Below we only consider the other possibilities.

• Case E ⊢ 𝑝 ≈ 𝑞, because 𝜎 (𝑡) = 𝑝 and 𝜎 (𝑢) = 𝑞 for some eqation (𝑡 ≈ 𝑢) ∈ 𝐸 and

closed substitution 𝜎 . Since 𝜎 (𝑡) = 𝑝 and 𝜎 (𝑢) = 𝑞 have no 0 summands or factors, and

𝑛 is larger than the size of each term mentioned in equations in E, the claim follows by

Proposition 8.5.

• Case E ⊢ 𝑝 ≈ 𝑞, because 𝑝 = `𝑝 ′
and 𝑞 = `𝑞′ for some 𝑝 ′, 𝑞′ such that 𝐸 ⊢ 𝑝 ′ ≈ 𝑞′. This

case is vacuous because 𝑝 = `𝑝 ′ ↔/ 𝑓 (𝛼, 𝑝𝑛), and thus 𝑝 does not have a summand bisimilar

to 𝑓 (𝛼, 𝑝𝑛).
• Case E ⊢ 𝑝 ≈ 𝑞, because 𝑝 = 𝑝 ′ + 𝑝 ′′

and 𝑞 = 𝑞′ + 𝑞′′ for some 𝑝 ′, 𝑞′, 𝑝 ′′, 𝑞′′ such that

𝐸 ⊢ 𝑝 ′ ≈ 𝑞′ and 𝐸 ⊢ 𝑝 ′′ ≈ 𝑞′′. Since 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), we have

that so does either 𝑝 ′
or 𝑝 ′′

. Assume, without loss of generality, that 𝑝 ′
has a summand

bisimilar to 𝑓 (𝛼, 𝑝𝑛). Since 𝑝 is bisimilar to 𝑓 (𝛼, 𝑝𝑛), so is 𝑝 ′
. Using the soundness of E

modulo bisimulation, it follows that 𝑞′ ↔ 𝑓 (𝛼, 𝑝𝑛). The inductive hypothesis now yields that

𝑞′ has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛). Hence, 𝑞 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), which
was to be shown.

• Case E ⊢ 𝑝 ≈ 𝑞, because 𝑝 = 𝑓 (𝑝 ′, 𝑝 ′′) and 𝑞 = 𝑓 (𝑞′, 𝑞′′) for some 𝑝 ′, 𝑞′, 𝑝 ′′, 𝑞′′ such that

𝐸 ⊢ 𝑝 ′ ≈ 𝑞′ and 𝐸 ⊢ 𝑝 ′′ ≈ 𝑞′′. Since the proof involves no uses of 0 as a summand or a

factor, we have that 𝑝 ′, 𝑝 ′′ ↔/ 0 and 𝑞′, 𝑞′′ ↔/ 0. It follows that 𝑞 is a summand of itself. By our

assumptions, 𝑓 (𝛼, 𝑝𝑛) ↔ 𝑞. Therefore we have that 𝑞 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛),
and we are done.

This completes the proof of Theorem 8.1 and thus of Theorem 5.3 in the case of an operator 𝑓 that,

modulo bisimilarity distributes over summation in its first argument. □

9 NEGATIVE RESULT: THE CASE 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼

In this section we investigate the first case, out of three, related to an operator 𝑓 that, modulo

bisimilarity, does not distribute over summation in either of its arguments.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

32 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

We choose 𝛼 ∈ {𝑎, 𝑎} and we assume that the set of rules for 𝑓 includes

𝑥1

𝛼−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
𝛼−→ 𝑦1∥𝑥2

𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝛼−→ 𝑥1∥𝑦2

,

namely, predicate 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds for 𝑓 .

We stress that the validity of the negative result we prove in this section does not depend on

which types of rules with labels 𝛼 and 𝜏 are available for 𝑓 . Moreover, the case of an operator for

which 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds can be obtained from the one we are considering, and it is therefore omitted.

We now introduce the infinite family of valid equations, modulo bisimilarity, that will allow us

to obtain the negative result in the case at hand. We define

𝑞𝑛 =

𝑛∑
𝑖=0

𝛼𝛼 ≤𝑖 (𝑛 ≥ 0)

𝑒𝑛 : 𝑓 (𝛼, 𝑞𝑛) ≈ 𝛼𝑞𝑛 +
𝑛∑
𝑖=0

𝛼 (𝛼 ∥𝛼 ≤𝑖) (𝑛 ≥ 0) .

Following the proof strategy from Section 5, we aim to show that, when 𝑛 is large enough, the
witness property of having a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛) is preserved by derivations from a

finite, sound axiom system E, as stated in the following theorem:

Theorem 9.1. Assume an operator 𝑓 such that 𝐿𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds. Let E be a finite axiom system over
CCS𝑓 that is sound modulo↔, 𝑛 be larger than the size of each term in the equations in E, and 𝑝, 𝑞 be
closed terms such that 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑞𝑛). If E ⊢ 𝑝 ≈ 𝑞 and 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛), then
so does 𝑞.

Then, we can conclude that the infinite collection of equations {𝑒𝑛 | 𝑛 ≥ 0} is the desired witness
family. In fact, the left-hand side of equation 𝑒𝑛 , viz. the term 𝑓 (𝛼, 𝑞𝑛), has a summand bisimilar to

𝑓 (𝛼, 𝑞𝑛), whilst the right-hand side, viz. the term 𝛼𝑞𝑛 +∑𝑛
𝑖=0

𝛼 (𝛼 ∥𝛼 ≤𝑖), does not.

9.1 Case specific properties of 𝑓 (𝛼, 𝑞𝑛)
Before proceeding to the proof of Theorem 9.1, we discuss a few useful properties of the processes

𝑓 (𝛼, 𝑞𝑛). Such properties are stated in Lemmas 9.2 and 9.3 and they are the updated versions of,

respectively, Lemmas 8.3 and 8.4 with respect to the current set of SOS rules that are allowed for 𝑓 .

Lemma 9.2. For each 𝑛 ≥ 0 it holds that 𝑓 (𝛼, 𝑞𝑛) ↔ 𝛼 ∥𝑞𝑛 .

Lemma 9.3. Let 𝑛 ≥ 1. Assume that 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝛼, 𝑞𝑛) for 𝑝, 𝑞 ↔/ 0. Then (1) either 𝑝 ↔ 𝛼 and
𝑞 ↔ 𝑞𝑛 , (2) or 𝑞 ↔ 𝛼 and 𝑝 ↔ 𝑞𝑛 .

Proof. Since 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝛼, 𝑞𝑛) and 𝑓 (𝛼, 𝑞𝑛)
𝛼−→ 0∥𝑞𝑛 ↔ 𝑞𝑛 , we can distinguish the following

two cases depending on whether a matching transition from 𝑓 (𝑝, 𝑞) stems from 𝑝 or 𝑞:

• There is a 𝑝 ′
such that 𝑝

𝛼−→ 𝑝 ′
and 𝑝 ′∥𝑞 ↔ 𝑞𝑛 . It follows that 𝑞 ↔ 𝑞𝑛 and 𝑝 ′ ↔ 0, because 𝑞𝑛

is prime (Lemma 7.2(2)) and 𝑞 ↔/ 0. We are therefore left to prove that 𝑝 is bisimilar to 𝛼 . To

this end, note, first of all, that, as ↔ is a congruence over the language CCS𝑓 , we have that

𝑓 (𝑝, 𝑞𝑛) ↔ 𝑓 (𝛼, 𝑞𝑛) .

First of all, notice that the equivalence above implies that depth(𝑝) = 1. We proceed to prove

that 𝑝 ↔ 𝛼 . Assume towards a contradiction that 𝑝 ↔/ 𝛼 and thus that 𝑝
`
−→ 0 for some ` ≠ 𝛼 .

We can distinguish two cases, according to whether the predicate 𝐿
𝑓

` holds or not.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 33

– Assume first that 𝐿
𝑓

` holds. Then we would have init(𝑓 (𝑝, 𝑞𝑛)) = {𝛼, `} and init(𝑓 (𝛼, 𝑞𝑛)) =
{𝛼}, thus contradicting 𝑓 (𝑝, 𝑞𝑛) ↔ 𝑓 (𝛼, 𝑞𝑛).

– Assume now that 𝐿
𝑓

` does not hold. Then, in light of the above equivalence, from 𝑞𝑛 ↔/ 𝛼 ≤𝑛

and the fact that 𝑓 (𝛼, 𝑞𝑛)
𝛼−→ 𝛼 ∥𝛼 ≤𝑛

, we infer 𝑓 (𝑝, 𝑞𝑛)
𝛼−→ 𝑝 ∥𝛼 ≤𝑛

and 𝑝 ∥𝛼 ≤𝑛 ↔ 𝛼 ∥𝛼 ≤𝑛
.

Now, if ` = 𝜏 , then 𝑝 ∥𝛼 ≤𝑛 𝜏−→ 0∥𝛼 ≤𝑛 ↔ 𝛼 ≤𝑛
. However, 𝛼 ∥𝛼 ≤𝑛

can perform a 𝜏-move

only due to a synchronization between 𝛼 and one of the 𝛼 , thus implying that 𝛼 ∥𝛼 ≤𝑛 𝜏−→
0∥𝛼𝑖 ↔ 𝛼𝑖 for some 𝑖 ∈ {0, . . . , 𝑛 − 1}. Since there is no such index 𝑖 such that 𝛼 ≤𝑛 ↔ 𝛼𝑖 ,

this contradicts 𝑓 (𝑝, 𝑞𝑛) ↔ 𝑓 (𝛼, 𝑞𝑛).
Similarly, if ` = 𝛼 , then 𝑝 ∥𝛼 ≤𝑛

could perform a sequence of 𝑛 + 1 transitions all with label

𝛼 , whereas 𝛼 ∥𝛼 ≤𝑛
can perform at most 𝑛 𝛼-moves in a row. Therefore, also this case is in

contradiction with 𝑓 (𝑝, 𝑞𝑛) ↔ 𝑓 (𝛼, 𝑞𝑛).
We may therefore conclude that every transition of 𝑝 is of the form 𝑝

𝛼−→ 𝑝 ′′
, for some

𝑝 ′′ ↔ 0. Since we have already seen that 𝑝 affords an 𝛼-labelled transition leading to 0,
modulo bisimilarity, it follows that 𝑝 ↔ 𝛼 , which was to be shown.

• There is a 𝑞′ such that 𝑞
𝛼−→ 𝑞′ and 𝑝 ∥𝑞′ ↔ 𝑞𝑛 . This case can be treated similarly to the

previous case and allows us to conclude that 𝑞 ↔ 𝛼 and 𝑝 ↔ 𝑞𝑛 . □

9.2 Proving Theorem 9.1
The negative result stated in Theorem 9.1 is strongly based on the following proposition, which

ensures that the property of having a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛) is preserved by the closure

under substitution of equations in a finite sound axiom system.

Proposition 9.4. Assume an operator 𝑓 such that 𝐿𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds. Let 𝑡 ≈ 𝑢 be an equation over
CCS−

𝑓
that is sound modulo ↔. Let 𝜎 be a closed substitution with 𝑝 = 𝜎 (𝑡) and 𝑞 = 𝜎 (𝑢). Suppose

that 𝑝 and 𝑞 have neither 0 summands nor factors, and 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑞𝑛) for some 𝑛 larger than the size
of 𝑡 . If 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛), then so does 𝑞.

Proof. First of all we notice that since 𝜎 (𝑡) and 𝜎 (𝑢) have no 0 summands or factors, then

neither do 𝑡 and 𝑢. Therefore by Remark 3 we get that 𝑡 =
∑

𝑖∈𝐼 𝑡𝑖 and 𝑢 =
∑

𝑗 ∈𝐽 𝑢 𝑗 for some finite

non-empty index sets 𝐼 , 𝐽 with all the 𝑡𝑖 and 𝑢 𝑗 not having + as head operator, 0 summands nor

factors. By the hypothesis, there is some 𝑖 ∈ 𝐼 with 𝜎 (𝑡𝑖) ↔ 𝑓 (𝛼, 𝑞𝑛). We proceed by a case analysis

over the structure of 𝑡𝑖 to show that there is a 𝑢 𝑗 such that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑞𝑛).

(1) Case 𝑡𝑖 = 𝑥 for some variable 𝑥 such that 𝜎 (𝑥) ↔ 𝑓 (𝛼, 𝑞𝑛). By Proposition 7.18, 𝑡 having

a summand 𝑥 implies that 𝑢 has a summand 𝑥 as well. Thus, we can immediately conclude

that 𝜎 (𝑢) has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛) as required.
(2) Case 𝑡𝑖 = `.𝑡 ′ for some term 𝑡 ′. This case is vacuous, as it contradicts our assumption

𝜎 (𝑡𝑖) ↔ 𝑓 (𝛼, 𝑞𝑛). Indeed, if ` = 𝛼 then 𝜎 (𝑡 ′) cannot be bisimilar to both 𝑞𝑛 and 𝛼 ∥𝛼 ≤𝑖
, for

any 𝑖 ∈ {1, . . . , 𝑛}.
(3) Case 𝑡𝑖 = 𝑓 (𝑡 ′, 𝑡 ′′) for some terms 𝑡 ′, 𝑡 ′′. As 𝜎 (𝑡) has no 0 factors, we have 𝜎 (𝑡 ′), 𝜎 (𝑡 ′′) ↔/ 0.

Hence, from 𝑓 (𝜎 (𝑡 ′), 𝜎 (𝑡 ′′)) ↔ 𝑓 (𝛼, 𝑞𝑛) and Lemma 9.3 we can distinguish two cases: (a) ei-

ther 𝜎 (𝑡 ′) ↔ 𝛼 and 𝜎 (𝑡 ′′) ↔ 𝑞𝑛 , (b) or 𝜎 (𝑡 ′) ↔ 𝑞𝑛 and 𝜎 (𝑡 ′′) ↔ 𝛼 . We expand only the

former case, as the latter follows from an identical (symmetrical) reasoning. By Remark 3,

from 𝜎 (𝑡 ′′) ↔ 𝑞𝑛 we infer that 𝑡 ′′ =
∑

ℎ∈𝐻 𝑣ℎ for some terms 𝑣ℎ that do not have + as head

operator and have no 0-summands or factors. Since 𝑛 is larger that the size of 𝑡 , we have that

|𝐻 | < 𝑛 and thus there is some ℎ ∈ 𝐻 such that 𝜎 (𝑣ℎ) ↔
∑𝑚

𝑘=1
𝛼𝛼 ≤𝑖𝑘

for some𝑚 > 1 and

1 ≤ 𝑖1 < · · · < 𝑖𝑚 ≤ 𝑛. Since 𝜎 (𝑣ℎ) has no 0 summands or factors, from Lemma 7.12 we infer

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

34 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

that 𝑣ℎ can only be a variable 𝑥 with

𝜎 (𝑥) ↔
𝑚∑
𝑘=1

𝛼𝛼 ≤𝑖𝑘 . (13)

Therefore, 𝑡𝑖 = 𝑓 (𝑡 ′, 𝑥 + 𝑡 ′′′) for some 𝑡 ′′′ such that 𝜎 (𝑥 + 𝑡 ′′′) ↔ 𝑞𝑛 . We also notice that

since 𝜎 (𝑡 ′) ↔ 𝛼 and 𝜎 (𝑡 ′) has no 0 summands or factors, then it cannot be the case that

𝑥 ∈ var (𝑡 ′).
To prove that 𝑢 has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛), consider the closed substitution

𝜎 ′ = 𝜎 [𝑥 ↦→ 𝛼𝑞𝑛] .

Since 𝑅
𝑓

𝛼 and Lemma 9.2 hold, we have

𝜎 ′(𝑡𝑖)
𝛼−→ 𝑝 ′ ↔ 𝛼 ∥𝑞𝑛 ↔ 𝑓 (𝛼, 𝑞𝑛).

As 𝑡 ≈ 𝑢 implies 𝜎 ′(𝑡) ↔ 𝜎 ′(𝑢), we infer that there must be a summand 𝑢 𝑗 such that

𝜎 ′(𝑢 𝑗)
𝛼−→ 𝑟 for some 𝑟 ↔ 𝑓 (𝛼, 𝑞𝑛). Notice that, since 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛) and 𝜎 (𝑢 𝑗) = 𝜎 ′(𝑢 𝑗) if

𝑥 ∉ var (𝑢 𝑗), then it must be the case that 𝑥 ∈ var (𝑢 𝑗), or otherwise we get a contradiction
with 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛), as 𝜎 (𝑢 𝑗) = 𝜎 ′(𝑢 𝑗)

𝛼−→ 𝑟 would give 𝜎 (𝑢) 𝛼−→ 𝑟 ↔ 𝑓 (𝛼, 𝑞𝑛). However,
there is no 𝑟 ′ such that 𝑓 (𝛼, 𝑞𝑛)

𝛼−→ 𝑟 ′ and 𝑟 ′ ↔ 𝑓 (𝛼, 𝑞𝑛). By Lemma 7.10, as 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds,

we can distinguish two cases:

(a) There is a term 𝑢 ′
s.t. 𝑢 𝑗

𝛼−→ 𝑢 ′
and 𝜎 ′(𝑢 ′) ↔ 𝑓 (𝛼, 𝑞𝑛). Then, since 𝑓 (𝛼, 𝑞𝑛) ↔ 𝛼 ∥ 𝑞𝑛

(Lemma 9.2) we can apply the expansion law, obtaining

𝜎 ′(𝑢 ′) ↔
𝑛∑
𝑖=1

𝛼 (𝛼 ∥𝛼 ≤𝑖) + 𝛼𝑞𝑛 .

As 𝑛 is greater than the size of 𝑢, and thus of those of 𝑢 𝑗 and 𝑢
′
, by Lemma 7.11 we get that

𝑢 ′
has a summand 𝑦, for some variable 𝑦, such that

𝜎 ′(𝑦) ↔
𝑚′∑
𝑘=1

𝛼𝑞𝑖′
𝑘
+ 𝑟 ′,

for some𝑚′ > 1, 1 ≤ 𝑖 ′
1
< · · · < 𝑖 ′

𝑚′ ≤ 𝑛, closed term 𝑟 ′ and closed terms 𝑞𝑖′
𝑘
such that

either 𝑞𝑖′
𝑘
↔ 𝛼 ∥𝛼 ≤𝑖′

𝑘 or 𝑞𝑖′
𝑘
↔ 𝛼 ≤𝑖′

𝑘 , for each 𝑘 = 1, . . . ,𝑚′
. (We can infer the exact form of

the 𝑞𝑖′
𝑘
since 𝛼 and 𝛼 ≤𝑖′

𝑘 are prime, the parallel component 𝛼 is common to all summands

and 𝛼 ≤𝑖′
𝑘 ↔/ 𝛼 ≤𝑖′𝑗 if 𝑘 ≠ 𝑗). In both cases, we can infer that 𝑦 ≠ 𝑥 , as 𝜎 ′(𝑥) ↔/ 𝜎 ′(𝑦) for any

closed term 𝑟 ′. We have thus 𝜎 ′(𝑦) = 𝜎 (𝑦) and we get a contradiction with 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛)
in that 𝜎 (𝑢 𝑗) would be able to perform three 𝛼-moves in a row. In fact

𝜎 (𝑢 𝑗)
𝛼−→ 𝜎 (𝑢 ′) (𝑢 ′

has a summand 𝑦)

𝛼−→ 𝛼 ∥𝛼 ≤𝑖′
𝑘 for some 𝑘 ∈ {1, . . . ,𝑚′}

𝛼−→ 𝛼 ≤𝑖′
𝑘 ,

whereas 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛) can perform only two such transitions.

(b) There are a variable 𝑦, a closed term 𝑟 ′ and a configuration 𝑐 s.t. 𝜎 ′(𝑦) 𝛼−→ 𝑟 ′, 𝑢 𝑗

𝑦
b−−→𝛼 𝑐

and 𝜎 ′[𝑦d ↦→ 𝑟 ′] (𝑐) ↔ 𝑓 (𝛼, 𝑞𝑛). We claim that it must be the case that 𝑦 = 𝑥 . To see this,

assume towards a contradiction that 𝑦 ≠ 𝑥 . We proceed by a case analysis on the possible

occurrences of 𝑥 in 𝑐 .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 35

• 𝑥 ∉ var (𝑐) or 𝑥 ∈ var (𝑐) but its occurrence is in a guarded context that prevents the

execution of its closed instances. In this case we get 𝑟 = 𝜎 [𝑦d ↦→ 𝑟 ′] (𝑐) ↔ 𝜎 ′[𝑦d ↦→
𝑟 ′] (𝑐) ↔ 𝑓 (𝛼, 𝑞𝑛). This contradicts 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛) since we would have 𝜎 (𝑢) 𝛼−→
𝑟 ↔ 𝑓 (𝛼, 𝑞𝑛), and such a transition cannot be mimicked by 𝑓 (𝛼, 𝑞𝑛).

• 𝑥 ∈ var (𝑐) and its execution is not prevented.We can distinguish two sub-cases, according

to whether the occurrence of 𝑥 is guarded or not.

– Assume that 𝑥 occurs guarded in 𝑐 . In this case we get a contradiction with 𝑟 ↔ 𝑓 (𝛼, 𝑞𝑛),
as 𝑥 guarded implies:

𝑛 + 2 = depth(𝑓 (𝛼, 𝑞𝑛)) = depth(𝑟) ≥ 1 + depth(𝜎 ′(𝑥)) = 𝑛 + 3.

– Assume now that 𝑥 ⊳𝛼
b
𝑐 . We proceed by a case analysis on the structure of 𝑐 .

∗ 𝑐 ↔ 𝑦d∥(𝑥 +𝑢1)∥𝑢2. Notice that in this case we have 𝑟 = 𝑟 ′∥(𝜎 ′(𝑥) + 𝜎 ′(𝑢1))∥𝜎 ′(𝑢2).
Then, the only transition available for 𝜎 ′(𝑥) is 𝜎 ′(𝑥) 𝛼−→ 𝑞𝑛 , which gives 𝑟

𝛼−→
𝑟 ′∥𝑞𝑛 ∥𝜎 ′(𝑢2). Since 𝑟 ↔ 𝑓 (𝛼, 𝑞𝑛), then it must be the case that 𝑓 (𝛼, 𝑞𝑛)

𝛼−→ 𝑟 ′′ for
some 𝑟 ′′ ↔ 𝑟 ′∥𝑞𝑛 ∥𝜎 ′(𝑢2). Since 𝑞𝑛 is prime, we can infer that 𝑟 ′′ ↔ 𝑞𝑛 and thus that

𝑟 ′ ↔ 0↔ 𝜎 ′(𝑢2). Hence, we have that 𝑟 ↔ 𝜎 ′(𝑥) + 𝜎 ′(𝑢1). As the one we wrote is
the only transition available for 𝜎 ′(𝑥), we can infer that, for all 𝑖 ∈ {1, . . . , 𝑛}, the
transitions 𝑟

𝛼−→ 𝛼 ∥𝛼 ≤𝑖
cannot be derived from𝜎 ′(𝑥), but only from𝜎 ′(𝑢1). Moreover,

notice that 𝑦 ≠ 𝑥 gives 𝜎 ′(𝑦) = 𝜎 (𝑦), and from init(𝜎 ′(𝑥)) = init(𝜎 (𝑥)) = {𝛼} and
the fact that 𝐿

𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds, we can infer that 𝜎 (𝑢2) ↔ 𝜎 ′(𝑢2) ↔ 0. Therefore,
this contradicts 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛), since 𝜎 (𝑢)

𝛼−→ 𝑟 ′∥𝜎 (𝑥) + 𝜎 (𝑢1)∥𝜎 (𝑢2) ↔ 𝜎 (𝑥) +
𝜎 (𝑢1)

𝛼−→ 𝛼 ∥𝛼 ≤𝑖
, for any 𝑖 ∈ {1, . . . , 𝑛}. Process 𝑓 (𝛼, 𝑞𝑛), in turn, by performing two

𝛼-moves can only reach processes bisimilar to 𝛼 ≤𝑖
, for 𝑖 ∈ {1, . . . , 𝑛}.

∗ 𝑐 has a subterm𝑢3 of the form𝑢3 ↔ 𝑓 (𝑥+𝑢2, 𝑢1) or𝑢3 ↔ 𝑓 (𝑢1, 𝑥+𝑢2). In both cases, we
get that 𝜎 ′(𝑥) 𝛼−→ 𝑞𝑛 implies 𝜎 ′(𝑢3)

𝛼−→ 𝑞𝑛 ∥𝜎 ′(𝑢1). However, 𝑓 (𝛼, 𝑞𝑛)
𝛼−→ 0∥𝑞𝑛 ↔ 𝑞𝑛

and 𝑞𝑛 prime give 𝜎 ′(𝑢1) ↔ 0. One can then argue that, as init(𝜎 ′(𝑥)) = {𝛼}, either
𝑥 does not occur in 𝑢1, or it does it in a guarded context that prevents its execution.

Hence, we infer 𝜎 (𝑢1) ↔ 𝜎 ′(𝑢1) ↔ 0, thus contradicting 𝜎 (𝑢) not having 0 factors.
Therefore, we can conclude that 𝑦 = 𝑥 and 𝑟 ′ = 𝑞𝑛 . In particular, notice that 𝑥 ⊳𝛼

b
𝑢 𝑗 . We

now proceed by a case analysis on the structure of 𝑢 𝑗 to show that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑞𝑛).
(i) 𝑢 𝑗 = 𝑥 . This case is vacuous, as 𝜎 ′(𝑥) 𝛼−→ 𝑞𝑛 and 𝑞𝑛 ↔/ 𝑓 (𝛼, 𝑞𝑛).
(ii) 𝑢 𝑗 = 𝑓 (𝑢 ′, 𝑢 ′′) for some 𝑢 ′, 𝑢 ′′

. Notice that 𝑥 ⊳𝛼
b
𝑢 𝑗 can be due either to 𝑥 ⊳𝛼

b
𝑢 ′

or 𝑥 ⊳𝛼
b
𝑢 ′′

.

As both 𝜎 ′(𝑢 ′) and 𝜎 ′(𝑢 ′′) can be responsible for the 𝛼-move by 𝜎 ′(𝑢 𝑗), we distinguish
two cases:

(A) 𝜎 ′(𝑢 ′) 𝛼−→ 𝑟1 and 𝑟1∥𝜎 ′(𝑢 ′′) ↔ 𝑓 (𝛼, 𝑞𝑛). As 𝑓 (𝛼, 𝑞𝑛) ↔ 𝛼 ∥𝑞𝑛 and both 𝛼 and 𝑞𝑛 are

prime, by the existence of a unique prime decomposition, we distinguish two cases:

• 𝑟1 ↔ 𝛼 and 𝜎 ′(𝑢 ′′) ↔ 𝑞𝑛 . Since 𝑥 ⊳𝛼
b
𝑢 ′′

is in contradiction with 𝜎 ′(𝑢 ′′) ↔ 𝑞𝑛 , we

infer that 𝑥 ⊳𝛼
b
𝑢 ′
. Moreover init(𝜎 (𝑥)) = init(𝜎 ′(𝑥)) = {𝛼}, 𝐿𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 , 𝜎
′(𝑢 ′′) ↔ 𝑞𝑛

and the fact that 𝜎 (𝑢) has no 0 factors we get that either 𝑥 ∉ var (𝑢 ′′) or 𝑥 occurs in

𝑢 ′′
but its execution is prevented by the rules for 𝑓 . Therefore

𝜎 ′(𝑢 ′′) ↔ 𝜎 (𝑢 ′′) ↔ 𝑞𝑛 .

However, depth(𝜎 (𝑥)) ≥ 3, and 𝑥 ⊳𝛼
b
𝑢 ′

with init(𝜎 (𝑥)) = {𝛼} give us, by Lemma 7.16,

that depth(𝜎 (𝑢 ′)) ≥ depth(𝜎 (𝑥)). Therefore we get a contradiction, since
𝑛 + 2 = depth(𝑓 (𝛼, 𝑞𝑛)) = depth(𝜎 (𝑢)) ≥ depth(𝜎 (𝑢 𝑗))

= depth(𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′))) ≥ depth(𝜎 (𝑥)) + depth(𝜎 (𝑢 ′′)) ≥ 3 + 𝑛 + 1.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

36 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

• 𝑟1 ↔ 𝑞𝑛 and 𝜎
′(𝑢 ′′) ↔ 𝛼 . By reasoning as above, we can infer that either 𝑥 ∉ var (𝑢 ′′)

or its execution is blocked by the rules for 𝑓 , so that 𝜎 ′(𝑢 ′′) ↔ 𝜎 (𝑢 ′′). Moreover, we

get that 𝑥 ⊳𝛼
b
𝑢 ′
. We aim at showing that𝑢 ′

has a summand 𝑥 . We proceed by showing

that the only other possibility, namely 𝑢 ′ = 𝑓 (𝑤1,𝑤2) for some 𝑤1,𝑤2, leads to a

contradiction. As 𝑢 ′ = 𝑓 (𝑤1,𝑤2) we have that either 𝑥 ⊳𝛼
b
𝑤1 or 𝑥 ⊳𝛼

b
𝑤2. However,

𝜎 ′(𝑢 ′) 𝛼−→ 𝑟1 ↔ 𝑞𝑛 gives two possibilities:

– 𝜎 ′(𝑤1)
𝛼−→ 𝑟 ′

1
and 𝑟 ′

1
∥𝜎 ′(𝑤2) ↔ 𝑞𝑛 . Since 𝑞𝑛 is prime, then either 𝑟 ′

1
↔ 0 and

𝜎 ′(𝑤2) ↔ 𝑞𝑛 , or 𝑟
′
1
↔ 𝑞𝑛 and 𝜎 ′(𝑤2) ↔ 0. In both cases we infer that either

𝑥 ∉ var (𝑤2) or its execution in it is always prevented, so that 𝜎 (𝑤2) ↔ 𝜎 ′(𝑤2).
Therefore, the former case, combined with 𝜎 (𝑢 ′′) ↔ 𝛼 , gives a contradiction with

𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛). The latter case contradicts 𝜎 (𝑢) not having 0 factors.
– 𝜎 ′(𝑤2)

𝛼−→ 𝑟 ′
2
and 𝜎 ′(𝑤1)∥𝑟 ′2 ↔ 𝑞𝑛 . The same reasoning as in the previous case

allows us to conclude that this case gives a contradiction.

Summing up, we have argued that 𝑢 ′
has a summand 𝑥 . Therefore, by Equation (13),

𝜎 (𝑢 ′) ↔
𝑚∑
𝑘=1

𝛼.𝛼 ≤𝑖𝑘 + 𝑟 ′′ ,

for some closed term 𝑟 ′′. We have already noted that 𝜎 (𝑢 ′′) ↔ 𝜎 ′(𝑢 ′′) ↔ 𝛼 . Therefore,

using the congruence properties of bisimilarity, we may infer that

𝜎 (𝑢 𝑗) = 𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)) ↔ 𝑓 (
𝑚∑
𝑘=1

𝛼𝛼 ≤𝑖𝑘 + 𝑟 ′′, 𝛼) .

In light of this equivalence, we have 𝜎 (𝑢 𝑗)
𝛼−→ 𝑟 ′ ↔ 𝜎 (𝑢 ′) and thus 𝜎 (𝑢) 𝛼−→ 𝑟 ′. Since

by hypothesis 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑞𝑛) we have that either 𝑟 ′ ↔ 𝑞𝑛 , or 𝑟
′ ↔ 𝛼 ∥𝛼 ≤𝑖

for some

𝑖 ∈ {1, . . . , 𝑛}. However, the latter case is in contradiction with 𝑟 ′ ↔ 𝜎 (𝑢 ′), and thus

it must be the case that 𝑟 ′ ↔ 𝑞𝑛 . Therefore, we can conclude that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝑞𝑛, 𝛼).
It is easy to check that 𝑓 (𝛼, 𝑞𝑛) ↔ 𝑓 (𝑞𝑛, 𝛼). Hence, 𝜎 (𝑢) has the desired summand.

(B) 𝜎 ′(𝑢 ′′) 𝛼−→ 𝑟2 and 𝜎 ′(𝑢 ′)∥𝑟2 ↔ 𝑓 (𝛼, 𝑞𝑛). This case follows as the previous one and
allows us to conclude as well that 𝜎 (𝑢) has the desired summand.

The proof of Proposition 9.4 is now complete. □

We have now all the necessary ingredients for the proof of Theorem 9.1, which we present below.

Proof of Theorem 9.1. Assume that E is a finite axiom system over the language CCS
−
𝑓
that is

sound modulo bisimilarity, and that the following hold, for some closed terms 𝑝 and 𝑞 and positive

integer 𝑛 larger than the size of each term in the equations in E: (1) E ⊢ 𝑝 ≈ 𝑞, (2) 𝑝 ↔ 𝑞↔ 𝑓 (𝛼, 𝑞𝑛),
(3) 𝑝 and 𝑞 contain no occurrences of 0 as a summand or factor, and (4) 𝑝 has a summand bisimilar

to 𝑓 (𝛼, 𝑞𝑛). We proceed by induction on the depth of the closed proof of the equation 𝑝 ≈ 𝑞 from

E, to prove that also 𝑞 has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛). Recall that, without loss of generality,
we may assume that E is closed with respect to symmetry, and thus applications of symmetry

happen first in equational proofs. We proceed by a case analysis on the last rule used in the proof

of 𝑝 ≈ 𝑞 from E. The case of reflexivity is trivial, and that of transitivity follows by applying twice

the inductive hypothesis. We proceed now to a detailed analysis of the remaining cases:

(1) Case E ⊢ 𝑝 ≈ 𝑞 because 𝜎 (𝑡) = 𝑝 and 𝜎 (𝑢) = 𝑞 for some terms 𝑡,𝑢 with 𝐸 ⊢ 𝑡 ≈ 𝑢 and

closed substitution 𝜎 . The proof of this case follows by Proposition 9.4.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 37

(2) Case E ⊢ 𝑝 ≈ 𝑞 because 𝑝 = `.𝑝 ′
and 𝑞 = `.𝑞′ for some 𝑝 ′, 𝑞′ with 𝐸 ⊢ 𝑝 ′ ≈ 𝑞′. This case

is vacuous in that 𝑝 = `.𝑝 ′ ↔/ 𝑓 (𝛼, 𝑞𝑛) and thus 𝑝 does not have a summand ↔ 𝑓 (𝛼, 𝑞𝑛).
(3) Case E ⊢ 𝑝 ≈ 𝑞 because 𝑝 = 𝑟1 + 𝑟2 and 𝑞 = 𝑠1 + 𝑠2 for some 𝑟𝑖 , 𝑠𝑖 with 𝐸 ⊢ 𝑟𝑖 ≈ 𝑠𝑖 , for

𝑖 ∈ {1, 2}. Since 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛) then so does either 𝑟1 or 𝑟2. Assume

without loss of generality that 𝑟1 has such a summand. As 𝑝 ↔ 𝑓 (𝛼, 𝑞𝑛) then 𝑟1 ↔ 𝑓 (𝛼, 𝑞𝑛)
holds as well. Then, from 𝐸 ⊢ 𝑟1 ≈ 𝑠1 we infer 𝑠1 ↔ 𝑓 (𝛼, 𝑞𝑛). Thus, by the inductive hypothesis
we obtain that 𝑠1 has a summand bisimilar to 𝑓 (𝛼, 𝑞𝑛) and, consequently, so does 𝑞.

(4) Case E ⊢ 𝑝 ≈ 𝑞 because 𝑝 = 𝑓 (𝑟1, 𝑟2) and 𝑞 = 𝑓 (𝑠1, 𝑠2) for some 𝑟𝑖 , 𝑠𝑖 with 𝐸 ⊢ 𝑟𝑖 ≈ 𝑠𝑖 ,

for 𝑖 ∈ {1, 2}. By the proviso of the theorem 𝑝, 𝑞 have neither 0 summands nor factors, thus

implying 𝑟𝑖 , 𝑠𝑖 ↔/ 0. Hence, from 𝑝 ↔ 𝑓 (𝛼, 𝑞𝑛) and 𝑝 = 𝑓 (𝑟1, 𝑟2) and Lemma 9.3 we obtain

𝑟𝑖 ↔ 𝛼 and 𝑟3−𝑖 ↔ 𝑞𝑛 , thus implying, by the soundness of the equations in E, that 𝑠𝑖 ↔ 𝛼

and 𝑠3−𝑖 ↔ 𝑞𝑛 , so that either 𝑞 = 𝑓 (𝛼, 𝑞𝑛) or 𝑞 = 𝑓 (𝑞𝑛, 𝛼). In both cases, we can infer that 𝑞

has itself as the desired summand.

This completes the proof of Theorem 9.1 and thus of Theorem 5.3 in the case of an operator 𝑓 that

does not distribute over summation in either argument, case 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 . □

10 NEGATIVE RESULT: THE CASE 𝐿
𝑓

𝛼 , 𝑅
𝑓

𝛼

In this section we deal with the second case related to an operator 𝑓 that does not distribute over

summation in either argument. This time, given 𝛼 ∈ {𝑎, 𝑎}, we assume that operator 𝑓 has only

one rule with label 𝛼 and only one rule with label 𝛼 , and moreover we assume such rules to be of

different types. In detail, we expand the case in which for action 𝛼 only the predicate 𝐿
𝑓

𝛼 holds, and

for action 𝛼 only 𝑅
𝑓

𝛼 holds, namely 𝑓 has rules:

𝑥1

𝛼−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
𝛼−→ 𝑦1∥𝑥2

𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝛼−→ 𝑥1∥𝑦2

.

Once again, the proof for the symmetric case with 𝐿
𝑓

𝛼 and 𝑅
𝑓

𝛼 holding is omitted.

To obtain the proof of the negative result, we consider the same family of witness processes

𝑓 (𝛼, 𝑝𝑛) from Section 8. However, differently from the previous case, the definition of the witness

family of equations depends on which rules of type (6) are available for 𝑓 . More precisely, we need

to split the proof of the negative result into two cases, according to whether the rules for 𝑓 allow 𝛼

and 𝑝𝑛 to synchronise or not.

10.1 Case 1: Possibility of synchronisation

Assume first that 𝑆
𝑓

𝛼,𝛼 holds, so that the rule

𝑥1

𝛼−→ 𝑦1 𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑦1∥𝑦2

allows for synchronisation between 𝛼 and 𝑝𝑛 . In this setting, the infinite family of equations

𝑒𝑛 : 𝑓 (𝛼, 𝑝𝑛) ≈ 𝛼𝑝𝑛 +
𝑛∑
𝑖=0

𝛼 (𝛼 ∥𝛼 ≤𝑖) +
𝑛∑
𝑖=0

𝜏𝛼 ≤𝑖 (𝑛 ≥ 0)

is sound modulo bisimilarity and it constitutes a family of witness equations.

Theorem 10.1. Assume an operator 𝑓 such that only 𝐿𝑓

𝛼 holds for 𝛼 , only 𝑅𝑓

𝛼 holds for 𝛼 , and 𝑆 𝑓𝛼,𝛼
holds. Let E be a finite axiom system over CCS𝑓 that is sound modulo ↔, 𝑛 be larger than the size of
each term in the equations in E, and 𝑝, 𝑞 be closed terms such that 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑝𝑛). If E ⊢ 𝑝 ≈ 𝑞 and
𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), then so does 𝑞.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

38 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

This proves Theorem 5.3 in the considered setting, as the left-hand side of equation 𝑒𝑛 , viz. the

term 𝑓 (𝛼, 𝑝𝑛), has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), whilst the right-hand side, viz. the term

𝛼𝑝𝑛 +∑𝑛
𝑖=0

𝛼 (𝛼 ∥𝛼 ≤𝑖) +∑𝑛
𝑖=0

𝜏𝛼 ≤𝑖
, does not.

Before proceeding to the proof, we remark that the processes 𝑓 (𝛼, 𝑝𝑛) enjoy the following

properties, according to the current set of allowed rules for operator 𝑓 :

Lemma 10.2. For each 𝑛 ≥ 0 it holds that 𝑓 (𝛼, 𝑝𝑛) ↔ 𝛼 ∥𝑝𝑛 .
Lemma 10.3. Let 𝑛 ≥ 1. Assume that 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝛼, 𝑝𝑛) for 𝑝, 𝑞 ↔/ 0. Then 𝑝 ↔ 𝛼 and 𝑞 ↔ 𝑝𝑛 .

Proof. The proof is analogous to that of Lemma 8.4 and therefore omitted. □

10.1.1 Proving Theorem 10.1. The crucial point in the proof of the negative result is (also in this

case) the preservation of the witness property when instantiating an equation from a finite, sound

axiom system. We expand this case in the following proposition:

Proposition 10.4. Assume an operator 𝑓 such that only 𝐿𝑓

𝛼 holds for 𝛼 , only 𝑅𝑓

𝛼 holds for 𝛼 , and 𝑆𝛼,𝛼
holds. Let 𝑡 ≈ 𝑢 be an equation over CCS−

𝑓
that is sound modulo↔. Let 𝜎 be a closed substitution with

𝑝 = 𝜎 (𝑡) and𝑞 = 𝜎 (𝑢). Suppose that 𝑝 and𝑞 have neither 0 summands nor factors, and 𝑝, 𝑞↔ 𝑓 (𝛼, 𝑝𝑛)
for some 𝑛 larger than the size of 𝑡 . If 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), then so does 𝑞.

Proof. First of all we notice that since 𝜎 (𝑡) and 𝜎 (𝑢) have no 0 summands or factors, then

neither do 𝑡 and 𝑢. Therefore by Remark 3 we get that 𝑡 =
∑

𝑖∈𝐼 𝑡𝑖 and 𝑢 =
∑

𝑗 ∈𝐽 𝑢 𝑗 for some finite

non-empty index sets 𝐼 , 𝐽 with all the 𝑡𝑖 and 𝑢 𝑗 not having + as head operator, 0 summands nor

factors. By the hypothesis, there is some 𝑖 ∈ 𝐼 with 𝜎 (𝑡𝑖) ↔ 𝑓 (𝛼, 𝑝𝑛). We proceed by a case analysis

on the structure of 𝑡𝑖 to show that there is a 𝑢 𝑗 such that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛), establishing our claim.

(1) Case 𝑡𝑖 = 𝑥 for some variable 𝑥 such that 𝜎 (𝑥) ↔ 𝑓 (𝛼, 𝑝𝑛). By Proposition 7.18, 𝑡 having

a summand 𝑥 implies that 𝑢 has a summand 𝑥 as well. Thus, we can immediately conclude

that 𝜎 (𝑢) has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛) as required.
(2) Case 𝑡𝑖 = `.𝑡 ′ for some term 𝑡 ′. This case is vacuous, as it contradicts 𝜎 (𝑡𝑖) ↔ 𝑓 (𝛼, 𝑝𝑛).
(3) Case 𝑡𝑖 = 𝑓 (𝑡 ′, 𝑡 ′′) for some terms 𝑡 ′, 𝑡 ′′. Since𝜎 (𝑡) has no 0 factors, we have𝜎 (𝑡 ′), 𝜎 (𝑡 ′′) ↔/ 0.

Hence, from 𝑓 (𝜎 (𝑡 ′), 𝜎 (𝑡 ′′)) ↔ 𝑓 (𝛼, 𝑝𝑛) and Lemma 10.3 we obtain𝜎 (𝑡 ′) ↔𝛼 and𝜎 (𝑡 ′′) ↔ 𝑝𝑛 .

By Remark 3 we infer that 𝑡 ′′ =
∑

ℎ∈𝐻 𝑣ℎ for some terms 𝑣ℎ that do not have + as head

operator and have no 0-summands or factors. Since 𝑛 is larger that the size of 𝑡 , we have that

|𝐻 | < 𝑛 and thus there is some ℎ ∈ 𝐻 such that 𝜎 (𝑣ℎ) ↔
∑𝑚

𝑘=1
𝛼𝛼 ≤𝑖𝑘

for some𝑚 > 1 and

1 ≤ 𝑖1 < · · · < 𝑖𝑚 ≤ 𝑛. Since 𝜎 (𝑣ℎ) has no 0 summands or factors, from Lemma 7.12 we infer

that 𝑣ℎ can only be a variable 𝑥 with

𝜎 (𝑥) ↔
𝑚∑
𝑘=1

𝛼𝛼 ≤𝑖𝑘 . (14)

Therefore, 𝑡𝑖 = 𝑓 (𝑡 ′, 𝑥 + 𝑡 ′′′) for some 𝑡 ′′′ such that 𝜎 (𝑥 + 𝑡 ′′′) ↔ 𝑝𝑛 . We also notice that since

𝜎 (𝑡 ′) ↔ 𝛼 and init(𝜎 (𝑥)) = {𝛼}, we can infer that 𝑥 ⊳𝛼
r
𝑡 ′ does not hold (otherwise, 𝜎 ′(𝑡)

would afford an initial 𝛼-transition and would not be bisimilar to 𝛼).

To prove that 𝑢 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), consider the closed substitution

𝜎 ′ = 𝜎 [𝑥 ↦→ 𝛼𝑝𝑛] .
Notice that, since 𝜎 (𝑡 ′) ↔ 𝛼 , 𝜎 (𝑡 ′) has no 0 summands or factors, init(𝜎 (𝑥)) = init(𝜎 ′(𝑥)) =
{𝛼} and 𝑥 is the only variable which is affected when changing 𝜎 into 𝜎 ′

, then we can

infer that either 𝑥 ∉ var (𝑡 ′) or its execution is always prevented. In both cases we get

𝜎 (𝑡 ′) ↔ 𝜎 ′(𝑡 ′) ↔ 𝛼 . Then, using Lemma 10.2 and 𝑡𝑖 = 𝑓 (𝑡 ′, 𝑥 + 𝑡 ′′), we have

𝜎 ′(𝑡𝑖)
𝛼−→ 𝑝 ′ ↔ 𝛼 ∥𝑝𝑛 ↔ 𝑓 (𝛼, 𝑝𝑛).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 39

As 𝑡 ≈ 𝑢 implies 𝜎 ′(𝑡) ↔ 𝜎 ′(𝑢), we infer that there must be a summand 𝑢 𝑗 such that

𝜎 ′(𝑢 𝑗)
𝛼−→ 𝑟 for some 𝑟 ↔ 𝑓 (𝛼, 𝑝𝑛). Notice that, since 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) and 𝜎 (𝑢 𝑗) = 𝜎 ′(𝑢 𝑗) if

𝑥 ∉ var (𝑢 𝑗), then it must be the case that 𝑥 ∈ var (𝑢 𝑗), or otherwise we get a contradiction
with 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛). By Lemma 7.10, as only 𝑅

𝑓

𝛼 holds, we can distinguish two cases:

(a) There is a term 𝑢 ′
s.t. 𝑢 𝑗

𝛼−→ 𝑢 ′
and 𝜎 ′(𝑢 ′) ↔ 𝑓 (𝛼, 𝑝𝑛). Then, since 𝑓 (𝛼, 𝑝𝑛) ↔ 𝛼 ∥ 𝑝𝑛

(Lemma 10.2) we can apply the expansion law, obtaining 𝜎 ′(𝑢 ′) ↔ 𝛼𝑝𝑛 +∑𝑛
𝑖=1

𝛼 (𝛼 ∥𝛼 ≤𝑖) +∑𝑛
𝑖=1

𝜏𝛼 ≤𝑖
. As 𝑛 is greater than the size of 𝑢, and thus of those of 𝑢 𝑗 and 𝑢

′
, by Lemma 7.11

we get that 𝑢 ′
has a summand 𝑦, for some variable 𝑦, such that 𝜎 ′(𝑦) ↔ ∑𝑚′

𝑘=1
𝛼𝑞𝑖′

𝑘
+ 𝑟 ′, for

some𝑚′ > 1, 1 ≤ 𝑖 ′
1
< · · · < 𝑖 ′

𝑚′ ≤ 𝑛, closed term 𝑟 ′, and closed terms 𝑞𝑖′
𝑘
such that either

𝑞𝑖′
𝑘
↔ 𝛼 ∥𝛼 ≤𝑖′

𝑘 or 𝑞𝑖′
𝑘
↔ 𝛼 ≤𝑖′

𝑘 , for each 𝑘 = 1, . . . ,𝑚′
. (We can infer the exact form of the

𝑞𝑖′
𝑘
since 𝛼 and 𝛼 ≤𝑖′

𝑘 are prime, the parallel component 𝛼 is common to all summands and

𝛼 ≤𝑖′
𝑘 ↔/ 𝛼 ≤𝑖′𝑗 if 𝑘 ≠ 𝑗). In both cases, we can infer that𝑦 ≠ 𝑥 , as 𝜎 ′(𝑥) ↔/ 𝜎 ′(𝑦) for any closed

term 𝑟 ′. Thus we have 𝜎 ′(𝑦) = 𝜎 (𝑦) and we get a contradiction with 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) in
that 𝜎 (𝑢 𝑗) would be able to perform two 𝛼-moves in a row unlike 𝑓 (𝛼, 𝑝𝑛).

(b) There are a variable 𝑦, a closed term 𝑟 ′ and a configuration 𝑐 s.t. 𝜎 ′(𝑦) 𝛼−→ 𝑟 ′, 𝑢 𝑗

𝑦r−−→𝛼 𝑐

and 𝜎 ′[𝑦d ↦→ 𝑟 ′] (𝑐) ↔ 𝑓 (𝛼, 𝑝𝑛). We claim that it must be the case that 𝑦 = 𝑥 . To see this

claim, assume towards a contradiction that 𝑦 ≠ 𝑥 . We proceed by a case analysis on the

possible occurrences of 𝑥 in 𝑐 .

• 𝑥 ∉ var (𝑐) or 𝑥 ∈ var (𝑐) but its occurrence is in a guarded context that prevents

the execution of its closed instances. In this case we get 𝜎 [𝑦d ↦→ 𝑟 ′] (𝑐) ↔ 𝜎 ′[𝑦d ↦→
𝑟 ′] (𝑐) ↔ 𝑓 (𝛼, 𝑝𝑛). This contradicts 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) since we would have 𝜎 (𝑢) 𝛼−→
𝑟 ↔ 𝑓 (𝛼, 𝑝𝑛), and such a transitions cannot be mimicked by 𝑓 (𝛼, 𝑝𝑛).

• 𝑥 ∈ var (𝑐) and its execution is not prevented.We can distinguish two sub-cases, according

to whether the occurrence of 𝑥 is guarded or not.

– Assume that 𝑥 occurs guarded in 𝑐 . In this case we get a contradiction with 𝑟 ↔ 𝑓 (𝛼, 𝑝𝑛)
since 𝑥 being guarded implies:

𝑛 + 2 = depth(𝑓 (𝛼, 𝑝𝑛)) = depth(𝑟) ≥ 1 + depth(𝜎 ′(𝑥)) = 𝑛 + 3.

– Assume now that 𝑥 ⊳𝛼
b
𝑐 . This case contradicts our assumption that 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛)

since we would have 𝜎 (𝑢) 𝛼−→ 𝜎 [𝑦d ↦→ 𝑟 ′] (𝑐) 𝛼−→, due to Lemmas 7.15 and 7.9, whereas

𝑓 (𝛼, 𝑝𝑛) cannot perform two 𝛼-moves in a row.

Therefore, we can conclude that 𝑦 = 𝑥 and 𝑟 ′ = 𝑝𝑛 . In particular, notice that 𝑥 ⊳𝛼
r
𝑢 𝑗 . We

now proceed by a case analysis on the structure of 𝑢 𝑗 to show that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛).
(i) 𝑢 𝑗 = 𝑥 . This case is vacuous, as 𝜎 ′(𝑥) 𝛼−→ 𝑝𝑛 and 𝑝𝑛 ↔/ 𝑓 (𝛼, 𝑝𝑛).
(ii) 𝑢 𝑗 = 𝑓 (𝑢 ′, 𝑢 ′′) for some 𝑢 ′, 𝑢 ′′

. Notice that 𝑥 ⊳𝛼
r
𝑢 𝑗 can be due only to 𝑥 ⊳𝛼

r
𝑢 ′′

. We have

𝜎 ′(𝑢 ′′) 𝛼−→ 𝑟1 and 𝜎 ′(𝑢 𝑗)
𝛼−→ 𝜎 ′(𝑢 ′)∥𝑟1 ↔ 𝑓 (𝛼, 𝑝𝑛). Since 𝑓 (𝛼, 𝑝𝑛) ↔ 𝛼 ∥𝑝𝑛 and both 𝛼

and 𝑝𝑛 are prime, by Proposition 7.3, we distinguish two cases:

• Case 𝜎 ′(𝑢 ′) ↔ 𝛼 and 𝑟1 ↔ 𝑝𝑛 . As init(𝜎 (𝑥)) = init(𝜎 ′(𝑥)) = {𝛼}, 𝑅𝑓

𝛼 , 𝜎
′(𝑢 ′) ↔ 𝛼 and

𝜎 (𝑢) has no 0 factors, we get that either 𝑥 ∉ var (𝑢 ′) or 𝑥 occurs in 𝑢 ′
but its execution

is prevented by the rules for 𝑓 . Therefore 𝜎 ′(𝑢 ′) ↔ 𝜎 (𝑢 ′) ↔ 𝛼 . We aim at showing that

𝑢 ′′
has a summand 𝑥 . We proceed by proving that the only other possibility, namely

𝑢 ′′ = 𝑓 (𝑤1,𝑤2) for some𝑤1,𝑤2 with 𝑥 ⊳𝛼
r
𝑤2, leads to a contradiction.

As 𝜎 ′(𝑢 ′′) 𝛼−→ 𝑟1 ↔ 𝑝𝑛 , we have 𝜎
′(𝑤2)

𝛼−→ 𝑟2 and 𝜎
′(𝑤1)∥𝑟2 ↔ 𝑝𝑛 . Since, 𝑝𝑛 is prime,

we have that either 𝜎 ′(𝑤1) ↔ 0 and 𝑟2 ↔ 𝑝𝑛 , or 𝜎
′(𝑤1) ↔ 𝑝𝑛 and 𝑟2 ↔ 0. In both

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

40 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

cases, as 𝜎 ′(𝑥) ↔/ 𝜎 ′(𝑤1) and the previous considerations, we infer 𝜎 (𝑤1) ↔ 𝜎 ′(𝑤1).
Hence, the former case contradicts 𝜎 (𝑢) not having 0 factors. The latter case contradicts
𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) as, considering that 𝑥 ⊳𝛼r 𝑤2, the transition 𝜎

′(𝑤2)
𝛼−→ 𝑟2 ↔ 0 cannot be

due to 𝜎 ′(𝑥) and therefore it would be available also to 𝜎 (𝑤2) thus implying 𝜎 (𝑢 𝑗)
𝛼−→

𝑟 ′′ with 𝑟 ′′ ↔ 𝑓 (𝛼, 𝑝𝑛).
Summing up, we have argued that 𝑢 ′′

has a summand 𝑥 . Therefore, by Equation (14),

𝜎 (𝑢 ′′) ↔
𝑚∑
𝑘=1

𝛼.𝛼 ≤𝑖𝑘 + 𝑟 ′′ ,

for some closed term 𝑟 ′′. We have already noted that 𝜎 (𝑢 ′) ↔ 𝜎 ′(𝑢 ′) ↔ 𝛼 . Thus, using

the congruence properties of bisimilarity, we may infer that

𝜎 (𝑢 𝑗) = 𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)) ↔ 𝑓 (𝛼,
𝑚∑
𝑘=1

𝛼𝛼 ≤𝑖𝑘 + 𝑟 ′′) .

In light of this equivalence, we have 𝜎 (𝑢 𝑗)
𝛼−→ 𝑟 ′ ↔ 𝜎 (𝑢 ′′) and thus 𝜎 (𝑢) 𝛼−→ 𝑟 ′. Since,

by hypothesis, 𝜎 (𝑢) ↔ 𝑓 (𝛼, 𝑝𝑛) then it must be the case that 𝑟 ′ ↔ 𝑝𝑛 . Therefore, we

can conclude that 𝜎 (𝑢 𝑗) ↔ 𝑓 (𝛼, 𝑝𝑛). Hence, 𝜎 (𝑢) has the desired summand.

• Case 𝜎 ′(𝑢 ′) ↔ 𝑝𝑛 and 𝑟1 ↔ 𝛼 . By reasoning as above, we can infer that either 𝑥 ∉

var (𝑢 ′) or it is blocked by the rules for 𝑓 , so that 𝜎 ′(𝑢 ′) ↔ 𝜎 (𝑢 ′) ↔ 𝑝𝑛 . However,

depth(𝜎 (𝑥)) ≥ 3, and 𝑥 ⊳𝛼
r
𝑢 ′′

with init(𝜎 (𝑥)) = {𝛼} give us, by Lemma 7.16, that

depth(𝜎 (𝑢 ′′)) ≥ depth(𝜎 (𝑥)). Therefore we get a contradiction, in that

𝑛 + 2 = depth(𝑓 (𝛼, 𝑝𝑛)) = depth(𝜎 (𝑢)) ≥ depth(𝜎 (𝑢 𝑗)) = depth(𝑓 (𝜎 (𝑢 ′), 𝜎 (𝑢 ′′)))
≥ depth(𝜎 (𝑢 ′)) + depth(𝜎 (𝑢 ′′)) ≥ depth(𝜎 (𝑢 ′)) + depth(𝜎 (𝑥)) ≥ 𝑛 + 1 + 3.

The proof of Proposition 10.4 is now complete. □

We can now formalise the proof of Theorem 10.1.

Proof of Theorem 10.1. The proof follows the same lines of that of Theorem 9.1. The only

difference (besides the use of Proposition 10.4 in place of Proposition 9.4 in the case of substitutions)

is the following inductive step:

(4) Case E ⊢ 𝑝 ≈ 𝑞 because 𝑝 = 𝑓 (𝑝1, 𝑝2) and 𝑞 = 𝑓 (𝑞1, 𝑞2) for some 𝑝𝑖 , 𝑞𝑖 with 𝐸 ⊢ 𝑝𝑖 ≈ 𝑞𝑖 ,

for 𝑖 ∈ {1, 2}. As 𝑝, 𝑞 have neither 0 summands nor factors, it holds that 𝑝𝑖 , 𝑞𝑖 ↔/ 0. Hence,
from 𝑝 ↔ 𝑓 (𝛼, 𝑝𝑛) and 𝑝 = 𝑓 (𝑝1, 𝑝2) and Lemma 10.3 we obtain 𝑝1 ↔ 𝛼 and 𝑝2 ↔ 𝑝𝑛 ,

thus implying, by the soundness of the equations in E, that 𝑞1 ↔ 𝛼 and 𝑞2 ↔ 𝑝𝑛 , so that

𝑞 = 𝑓 (𝛼, 𝑝𝑛). In both cases, we can infer that 𝑞 has itself as the desired summand.

This completes the proof of Theorem 10.1 and thus of Theorem 5.3 in the case of an operator 𝑓 that

does not distribute over summation in either argument, case 𝐿
𝑓

𝛼 , 𝑅
𝑓

𝛼 , 𝑆
𝑓

𝛼,𝛼 . □

10.2 Case 2: No synchronisation

Assume now that the synchronisation between 𝛼 and 𝑝𝑛 is prevented, namely only 𝑆
𝑓

𝛼,𝛼 holds. Then,

the witness family of equations changes as follows:

𝑒𝑛 : 𝑓 (𝛼, 𝑝𝑛) ≈ 𝛼𝑝𝑛 +
𝑛∑
𝑖=0

𝛼 (𝛼 ∥𝛼 ≤𝑖) (𝑛 ≥ 0) .

Our order of business is then to prove the following:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 41

Theorem 10.5. Assume an operator 𝑓 such that only 𝐿𝑓

𝛼 holds for 𝛼 , only 𝑅𝑓

𝛼 holds for 𝛼 , and only
𝑆
𝑓

𝛼,𝛼 holds. Let E be a finite axiom system over CCS𝑓 that is sound modulo↔, 𝑛 be larger than the size
of each term in the equations in E, and 𝑝, 𝑞 be closed terms such that 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑝𝑛). If E ⊢ 𝑝 ≈ 𝑞

and 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), then so does 𝑞.

Once again, the validity of Theorem 5.3 follows by noticing that the left-hand side of equation

𝑒𝑛 , viz. the term 𝑓 (𝛼, 𝑝𝑛), has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛), whilst the right-hand side, viz. the

term 𝛼𝑝𝑛 +∑𝑛
𝑖=0

𝛼 (𝛼 ∥𝛼 ≤𝑖), does not.

10.2.1 Proving Theorem 10.5. The proof of Theorem 10.5 follows that of Theorem 10.1 in a step by

step manner, by exploiting Proposition 10.6 below in place of Proposition 10.4. The only difference

with the proof of Proposition 10.4 is that, in the case at hand, Lemma 10.2 does not hold anymore.

(In fact one could prove, as done for Lemma 8.3, that 𝑓 (𝛼, 𝑝𝑛) is prime for all 𝑛 ≥ 0.)

Proposition 10.6. Assume an operator 𝑓 such that only 𝐿𝑓

𝛼 holds for 𝛼 , only 𝑅𝑓

𝛼 holds for 𝛼 , and
only 𝑆𝛼,𝛼 holds. Let 𝑡 ≈ 𝑢 be an equation over CCS−

𝑓
that is sound modulo ↔. Let 𝜎 be a closed

substitution with 𝑝 = 𝜎 (𝑡) and 𝑞 = 𝜎 (𝑢). Suppose that 𝑝 and 𝑞 have neither 0 summands nor factors,
and 𝑝, 𝑞 ↔ 𝑓 (𝛼, 𝑝𝑛) for some 𝑛 larger than the size of 𝑡 . If 𝑝 has a summand bisimilar to 𝑓 (𝛼, 𝑝𝑛),
then so does 𝑞.

Proof. The proof follows as the proof of Proposition 10.4, with the only difference that, when

we consider the derived transition 𝜎 ′(𝑡1)
𝛼−→ 𝑝 ′

, we have that 𝑝 ′ ↔ 𝛼 ∥𝑝𝑛 ↔/ 𝑓 (𝛼, 𝑝𝑛). However, by
substituting 𝑓 (𝛼, 𝑝𝑛) with 𝛼 ∥𝑝𝑛 in the remainder of the proof, the same arguments hold. □

11 NEGATIVE RESULT: THE CASE 𝐿
𝑓

𝜏

This section considers the last case in our analysis, i.e., that of an operator 𝑓 that does not distribute,

modulo ↔ , over summation in either argument and that has the same rule type for actions 𝛼, 𝛼 .

Here, we present solely the case in which 𝐿
𝑓

𝜏 holds, and only 𝑅
𝑓

𝛼 , 𝑅
𝑓

𝛼 hold for 𝛼, 𝛼 , i.e., 𝑓 has rules:

𝑥1

𝜏−→ 𝑦1

𝑓 (𝑥1, 𝑥2)
𝜏−→ 𝑦1∥𝑥2

𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝛼−→ 𝑥1∥𝑦2

𝑥2

𝛼−→ 𝑦2

𝑓 (𝑥1, 𝑥2)
𝛼−→ 𝑥1∥𝑦2

.

The symmetric case can be obtained from this one in a straightforward manner.

Interestingly, the validity of the negative result we consider in this section is independent of

which rules of type (6) are available for 𝑓 , and of the validity of the predicate 𝑅
𝑓

𝜏 .

Consider the family of equations defined by:

𝑒𝑛 : 𝑓 (𝜏, 𝑞𝑛) ≈ 𝜏𝑞𝑛 +
𝑛∑
𝑖=0

𝛼 (𝜏 ∥𝛼 ≤𝑖) (𝑛 ≥ 0)

where the processes𝑞𝑛 are the same used in Section 9. Theorem 11.1 below proves that the collection

of equations 𝑒𝑛 , 𝑛 ≥ 0, is a witness family of equations for our negative result.

Theorem 11.1. Assume an operator 𝑓 such that 𝐿𝑓

𝜏 holds and only 𝑅
𝑓

𝛼 and 𝑅𝑓

𝛼 hold for actions 𝛼
and 𝛼 . Let E be a finite axiom system over CCS𝑓 that is sound modulo ↔, 𝑛 be larger than the size of
each term in the equations in E, and 𝑝, 𝑞 be closed terms such that 𝑝, 𝑞 ↔ 𝑓 (𝜏, 𝑞𝑛). If E ⊢ 𝑝 ≈ 𝑞 and 𝑝
has a summand bisimilar to 𝑓 (𝜏, 𝑞𝑛), then so does 𝑞.

As the left-hand side of equation 𝑒𝑛 , viz. the term 𝑓 (𝜏, 𝑞𝑛), has a summand bisimilar to 𝑓 (𝜏, 𝑞𝑛),
whilst the right-hand side, viz. the term 𝜏𝑞𝑛 +∑𝑛

𝑖=0
𝛼 (𝜏 ∥𝛼 ≤𝑖), does not, we can conclude that the

collection of infinitely many equations 𝑒𝑛 (𝑛 ≥ 0) is the desired witness family. This concludes the

proof of Theorem 5.3 for this case and our proof of Theorem 5.2.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

42 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

11.1 Case specific properties of 𝑓 (𝛼, 𝑞𝑛)
First of all, we remark that the witness processes 𝑓 (𝜏, 𝑞𝑛) enjoy the properties formalised in

Lemmas 11.2 and 11.3 below.

Lemma 11.2. For each 𝑛 ≥ 0 it holds that 𝑓 (𝜏, 𝑞𝑛) ↔ 𝜏 ∥𝑞𝑛 .
Lemma 11.3. Let 𝑛 ≥ 1. Assume that 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝜏, 𝑞𝑛) for 𝑝, 𝑞 ↔/ 0. Then 𝑝 ↔ 𝜏 and 𝑞 ↔ 𝑞𝑛 .

Proof. The proof is analogous to that of Lemma 8.4. We remark that the 𝜏-transition by 𝑓 (𝜏, 𝑞𝑛)
can be mimicked only by a 𝜏-move by 𝑝 . To see this, we show that any other case would lead

to a contradiction with the proviso of the lemma 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝜏, 𝑞𝑛). We distinguish three cases,

according to which rule of type (6) is available for 𝑓 and whether the predicates 𝑅
𝑓

𝜏 holds or not.

• Assume 𝑝
𝛼−→ 𝑝 ′

and 𝑞
𝛼−→ 𝑞′ with 𝑝 ′∥𝑞′ ↔ 𝑞𝑛 . This would contradict 𝑓 (𝜏, 𝑞𝑛) ↔ 𝑓 (𝑝, 𝑞)

since 𝑓 (𝑝, 𝑞) 𝛼−→ 𝑝 ∥𝑞′, whereas 𝑓 (𝜏, 𝑞𝑛)
𝛼−↛ .

• Assume 𝑝
𝛼−→ 𝑝 ′

and 𝑞
𝛼−→ 𝑞′ with 𝑝 ′∥𝑞′ ↔ 𝑞𝑛 . Notice that since 𝑞𝑛 is prime, then we

have that either 𝑝 ′ ↔ 0 and 𝑞′ ↔ 𝑞𝑛 , or 𝑝
′ ↔ 𝑞𝑛 and 𝑞′ ↔ 0. The latter case contradicts

𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝜏, 𝑞𝑛) since the transition 𝑓 (𝑝, 𝑞) 𝛼−→ 𝑝 ∥𝑞′ ↔ 𝑝 ∥𝑞𝑛 cannot be mimicked by

𝑓 (𝜏, 𝑞𝑛). The former case also contradicts the proviso of the lemma, since we would have

𝑓 (𝑝, 𝑞) 𝛼−→ 𝑝 ∥𝑞′ ↔ 𝑝
𝛼−→ 𝑝 ′ ↔ 𝑞𝑛 , whereas 𝑓 (𝜏, 𝑞𝑛)

𝛼−→ 𝜏 ∥𝛼 ≤𝑖
, for some 𝑖 ∈ {1, . . . , 𝑛}, and

there is no 𝑟 such that 𝜏 ∥𝛼 ≤𝑖 𝛼−→ 𝑟 and 𝑟 ↔ 𝑞𝑛 , for any 𝑖 ∈ {1, . . . , 𝑛}.
• Finally, assume that the predicate 𝑅

𝑓

` holds, and thus that 𝑓 has a rule of type (8) with label 𝜏 .

Hence, assume𝑞
𝜏−→ 𝑞′, for some 𝑞′, so that 𝑓 (𝑝, 𝑞) 𝜏−→ 𝑝 ∥𝑞′ ↔𝑞𝑛 . Since𝑞𝑛 is prime and 𝑝 ↔/ 0,

we have that 𝑝 ↔ 𝑞𝑛 and 𝑞′ ↔ 0. So, by congruence closure, 𝑓 (𝑝, 𝑞) ↔ 𝑓 (𝑞𝑛, 𝑞) ↔ 𝑓 (𝜏, 𝑞𝑛).
Since 𝑓 (𝜏, 𝑞𝑛)

𝛼−→ 𝜏 ∥𝛼 ≤𝑛
and only 𝑅

𝑓

𝛼 holds, we have that 𝑞
𝛼−→ 𝑞1 for some 𝑞1 such that

𝑞𝑛 ∥𝑞1 ↔ 𝜏 ∥𝛼 ≤𝑛
, which is a contradiction as 𝑞𝑛

𝛼−→ implies 𝑞𝑛 ∥𝑞1

𝛼−→, while 𝜏 ∥𝛼 ≤𝑛 𝛼−↛ . □

11.2 Proving Theorem 11.1
The same reasoning used in the proof of Theorem 10.1 allows us to prove Theorem 11.1, by exploiting

Proposition 11.4 in place of Proposition 10.4.

Proposition 11.4. Assume an operator 𝑓 such that only 𝑅𝑓

𝛼 and 𝑅𝑓

𝛼 hold for 𝛼, 𝛼 , and 𝐿𝑓

𝜏 holds. Let
𝑡 ≈ 𝑢 be an equation over CCS−

𝑓
that is sound modulo ↔. Let 𝜎 be a closed substitution with 𝑝 = 𝜎 (𝑡)

and 𝑞 = 𝜎 (𝑢). Suppose that 𝑝 and 𝑞 have neither 0 summands nor factors, and 𝑝, 𝑞 ↔ 𝑓 (𝜏, 𝑞𝑛) for
some 𝑛 larger than the size of 𝑡 . If 𝑝 has a summand bisimilar to 𝑓 (𝜏, 𝑞𝑛), then so does 𝑞.

Proof. The claim follows by the same arguments used in the proof of Proposition 10.4 and by

considering the substitution 𝜎 ′ = 𝜎 [𝑥 ↦→ 𝛼𝑞𝑛]. □

12 CONCLUSIONS
In this paper, we have shown that, under a number of simplifying assumptions, we cannot use

a single binary auxiliary operator 𝑓 , whose semantics is defined via inference rules in the de

Simone format, to obtain a finite axiomatisation of bisimilarity over the recursion-, restriction-, and

relabelling-free fragment of CCS. Our result constitutes a first step towards a definitive justification

of the canonical standing of the left and communication merge operators by Bergstra and Klop.

We envisage the following ways in which we might generalise the contribution presented in this

study. Firstly, we will try to relax Assumption 1 by considering the GSOS format [21] in place of

the de Simone format. However, as shown by the heavy amount of technical results necessary to

prove our main result even in our simplified setting, we believe that this generalisation cannot be

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 43

obtained in a straightforward manner and that it will require the introduction of new techniques.

It would also be very interesting to explore whether some version of problem (P) can be solved

using existing results from equational logic and universal algebra.

Recentily, in [2] the negative result by Moller on the non-finite axiomatisability of bisimilarity

[42] has been extended to a family of weak congruences. Formally, it has been proved that all

congruences that coincide with strong bisimilarity on processes without silent moves, impose the

root condition on initial silent moves, and satisfy a particular family of equations introduced by

Moller in [42], have no finite, complete axiomatisation over (recursion-, restriction-, and relabelling-
free) CCS. These include rooted weak bisimilarity (also known as obsevational congruence [32]), rooted
branching bisimilarity, rooted delay bisimilarity, and rooted [-bisimilarity [48]. It is still an open

question whether the use of auxiliary operators can be of help to obtain a finite axiomatisability

result, as in the case of strong bisimilarity. Hence, a generalisation of our results to weak semantics

would help to solve this problem.

Yet, this generalisation and other possible ones of our work, e.g. to other process algebras and/or

to other semantics, are related to some general open questions in equational logic:

Are there general techniques for lifting negative results across process algebras? And from
strong to weak congruences? And from qualitative to quantitative semantics?

Understanding whether it is possible to lift non-finite axiomatisability results among different

algebras and semantics, and under which constraints this can be done, is an interesting research

avenue and we aim to investigate it in future work. A methodology for transferring non-finite-

axiomatisability results across languages was presented in [11], where a reduction-based approach

was proposed. However, that method has some limitations and thus further studies are needed.

Similarly, the ever increasing interest in probabilistic systems has inspired a number of studies

on the axiomatisation of probabilistic congruences (see [28] for a survey). We can find studies on

strong probabilistic semantics [7, 17, 30, 34, 36, 45, 47, 50], weak probabilistic semantics [15, 16, 49],

as well as on metric semantics [26]. Further studies in this direction are encouraged by recent

achievements on probabilistic branching semantics [24, 25] and behavioural metrics [22, 23].

ACKNOWLEDGMENTS
We thank the reviewers for their careful reading of our paper, and for their valuable comments.

This work has been supported by the project ‘Open Problems in the Equational Logic of Processes’
(OPEL) of the Icelandic Research Fund (grant No. 196050-051).

REFERENCES
[1] Luca Aceto. 2003. Some of My Favourite Results in Classic Process Algebra. Bulletin of the EATCS 81 (2003), 90–108.
[2] Luca Aceto, Elli Anastasiadi, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik. 2021. In search of lost time:

Axiomatising parallel composition in process algebras. In Proceedings of LICS 2021. IEEE, 1–14. https://doi.org/10.

1109/LICS52264.2021.9470526

[3] Luca Aceto, Bard Bloom, and Frits W. Vaandrager. 1994. Turning SOS Rules into Equations. Inf. Comput. 111, 1 (1994),
1–52. https://doi.org/10.1006/inco.1994.1040

[4] Luca Aceto, Valentina Castiglioni, Wan J. Fokkink, Anna Ingólfsdóttir, and Bas Luttik. 2020. Are Two Binary Operators

Necessary to Obtain a Finite Axiomatisation of Parallel Composition? CoRR abs/2010.01943 (2020). arXiv:2010.01943

https://arxiv.org/abs/2010.01943

[5] Luca Aceto, Valentina Castiglioni, Wan J. Fokkink, Anna Ingólfsdóttir, and Bas Luttik. 2021. Are Two Binary Operators

Necessary to Finitely Axiomatise Parallel Composition?. In Proceedings of CSL 2021 (LIPIcs, Vol. 183). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 8:1–8:17. https://doi.org/10.4230/LIPIcs.CSL.2021.8

[6] Luca Aceto, Taolue Chen, Anna Ingólfsdóttir, Bas Luttik, and Jaco van de Pol. 2011. On the axiomatizability of priority

II. Theor. Comput. Sci. 412, 28 (2011), 3035–3044. https://doi.org/10.1016/j.tcs.2011.02.033

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1109/LICS52264.2021.9470526
https://doi.org/10.1109/LICS52264.2021.9470526
https://doi.org/10.1006/inco.1994.1040
https://arxiv.org/abs/2010.01943
https://doi.org/10.4230/LIPIcs.CSL.2021.8
https://doi.org/10.1016/j.tcs.2011.02.033

44 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

[7] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. 2002. Equational Axioms for Probabilistic Bisimilarity. In Proceedings of
AMAST 2002 (Lecture Notes in Computer Science, Vol. 2422). Springer, 239–253. https://doi.org/10.1007/3-540-45719-4_17

[8] Luca Aceto,Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. 2005. CCSwith Hennessy’s merge has no finite-equational

axiomatization. Theor. Comput. Sci. 330, 3 (2005), 377–405. https://doi.org/10.1016/j.tcs.2004.10.003

[9] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. 2005. Finite Equational Bases in Process Algebra:

Results and Open Questions. In Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan
Willem Klop, on the Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 3838). Springer, 338–367.
https://doi.org/10.1007/11601548_18

[10] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. 2009. A finite equational base for CCS with left merge

and communication merge. ACM Trans. Comput. Log. 10, 1 (2009), 6:1–6:26. https://doi.org/10.1145/1459010.1459016

[11] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Mohammad Reza Mousavi. 2010. Lifting non-finite axiomatizability

results to extensions of process algebras. Acta Inf. 47, 3 (2010), 147–177. https://doi.org/10.1007/s00236-010-0114-7

[12] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Sumit Nain. 2006. Bisimilarity is not finitely based over BPA with

interrupt. Theor. Comput. Sci. 366, 1-2 (2006), 60–81. https://doi.org/10.1016/j.tcs.2006.07.003

[13] Luca Aceto, Wan Fokkink, and Chris Verhoef. 2001. Structural Operational Semantics. In Handbook of Process Algebra.
North-Holland / Elsevier, 197–292. https://doi.org/10.1016/b978-044482830-9/50021-7

[14] Luca Aceto, Anna Ingólfsdóttir, Bas Luttik, and Paul van Tilburg. 2008. Finite Equational Bases for Fragments of

CCS with Restriction and Relabelling. In Proceedings of IFIP TCS 2008 (IFIP, Vol. 273). Springer, 317–332. https:

//doi.org/10.1007/978-0-387-09680-3_22

[15] Suzana Andova, Jos C. M. Baeten, and Tim A. C. Willemse. 2006. A Complete Axiomatisation of Branching Bisimulation

for Probabilistic Systems with an Application in Protocol Verification. In Proceedings of CONCUR 2006 (Lecture Notes in
Computer Science, Vol. 4137). Springer, 327–342. https://doi.org/10.1007/11817949_22

[16] Suzana Andova and Sonja Georgievska. 2009. On Compositionality, Efficiency, and Applicability of Abstraction in

Probabilistic Systems. In Proceedings of SOFSEM 2009 (Lecture Notes in Computer Science, Vol. 5404). Springer, 67–78.
https://doi.org/10.1007/978-3-540-95891-8_10

[17] Jos C. M. Baeten, Jan A. Bergstra, and Scott A. Smolka. 1995. Axiomatizing Probabilistic Processes: ACP with Generative

Probabilities. Inf. Comput. 121, 2 (1995), 234–255. https://doi.org/10.1006/inco.1995.1135

[18] Jan A. Bergstra and Jan Willem Klop. 1984. The Algebra of Recursively Defined Processes and the Algebra of

Regular Processes. In Proceedings of ICALP 2011 (Lecture Notes in Computer Science, Vol. 172). Springer, 82–94. https:

//doi.org/10.1007/3-540-13345-3_7

[19] Jan A. Bergstra and Jan Willem Klop. 1984. Process Algebra for Synchronous Communication. Information and Control
60, 1-3 (1984), 109–137. https://doi.org/10.1016/S0019-9958(84)80025-X

[20] Jan A. Bergstra and Jan Willem Klop. 1985. Algebra of Communicating Processes with Abstraction. Theor. Comput. Sci.
37 (1985), 77–121. https://doi.org/10.1016/0304-3975(85)90088-X

[21] Bard Bloom, Sorin Istrail, and Albert R. Meyer. 1995. Bisimulation Can’t be Traced. J. ACM 42, 1 (1995), 232–268.

https://doi.org/10.1145/200836.200876

[22] Valentina Castiglioni, Ruggero Lanotte, and Simone Tini. 2019. Fully Syntactic Uniform Continuity Formats for

Bisimulation Metrics. In The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security
and Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday (Lecture Notes in Computer
Science, Vol. 11760). Springer, 293–312. https://doi.org/10.1007/978-3-030-31175-9_17

[23] Valentina Castiglioni, Michele Loreti, and Simone Tini. 2020. The metric linear-time branching-time spectrum on

nondeterministic probabilistic processes. Theor. Comput. Sci. 813 (2020), 20–69. https://doi.org/10.1016/j.tcs.2019.09.019
[24] Valentina Castiglioni and Simone Tini. 2020. Probabilistic divide & congruence: Branching bisimilarity. Theor. Comput.

Sci. 802 (2020), 147–196. https://doi.org/10.1016/j.tcs.2019.09.037

[25] Valentina Castiglioni and Simone Tini. 2020. Raiders of the lost equivalence: Probabilistic branching bisimilarity. Inf.
Process. Lett. 159-160 (2020), 105947. https://doi.org/10.1016/j.ipl.2020.105947

[26] Pedro R. D’Argenio, Daniel Gebler, and Matias David Lee. 2014. Axiomatizing Bisimulation Equivalences and Metrics

from Probabilistic SOS Rules. In Proceedings of FOSSACS 2014 (Lecture Notes in Computer Science, Vol. 8412). Springer,
289–303. https://doi.org/10.1007/978-3-642-54830-7_19

[27] Robert de Simone. 1985. Higher-Level Synchronising Devices in Meije-SCCS. Theor. Comput. Sci. 37 (1985), 245–267.
https://doi.org/10.1016/0304-3975(85)90093-3

[28] Yuxin Deng. 2005. Axiomatisations and Types for Probabilistic and Mobile Processes. (Axiomatisations et types pour des
processus probabilistes et mobiles). Ph.D. Dissertation. Mines ParisTech, France. https://tel.archives-ouvertes.fr/tel-

00155225

[29] Jan Friso Groote. 1990. A New Strategy for Proving omega-Completeness applied to Process Algebra. In Proceedings of
CONCUR ’90 (Lecture Notes in Computer Science, Vol. 458). Springer, 314–331. https://doi.org/10.1007/BFb0039068

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1007/3-540-45719-4_17
https://doi.org/10.1016/j.tcs.2004.10.003
https://doi.org/10.1007/11601548_18
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1007/s00236-010-0114-7
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1016/b978-044482830-9/50021-7
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1007/11817949_22
https://doi.org/10.1007/978-3-540-95891-8_10
https://doi.org/10.1006/inco.1995.1135
https://doi.org/10.1007/3-540-13345-3_7
https://doi.org/10.1007/3-540-13345-3_7
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1145/200836.200876
https://doi.org/10.1007/978-3-030-31175-9_17
https://doi.org/10.1016/j.tcs.2019.09.019
https://doi.org/10.1016/j.tcs.2019.09.037
https://doi.org/10.1016/j.ipl.2020.105947
https://doi.org/10.1007/978-3-642-54830-7_19
https://doi.org/10.1016/0304-3975(85)90093-3
https://tel.archives-ouvertes.fr/tel-00155225
https://tel.archives-ouvertes.fr/tel-00155225
https://doi.org/10.1007/BFb0039068

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 45

[30] Jan Friso Groote and Erik P. de Vink. 2019. An Axiomatization of Strong Distribution Bisimulation for a Language

with a Parallel Operator and Probabilistic Choice. In From Software Engineering to Formal Methods and Tools, and Back -
Essays Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday (Lecture Notes in Computer Science, Vol. 11865).
Springer, 449–463. https://doi.org/10.1007/978-3-030-30985-5_26

[31] Matthew Hennessy. 1988. Axiomatising Finite Concurrent Processes. SIAM J. Comput. 17, 5 (1988), 997–1017.

https://doi.org/10.1137/0217063

[32] Matthew Hennessy and Robin Milner. 1985. Algebraic Laws for Nondeterminism and Concurrency. J. ACM 32, 1

(1985), 137–161. https://doi.org/10.1145/2455.2460

[33] Robert M. Keller. 1976. Formal Verification of Parallel Programs. Commun. ACM 19, 7 (1976), 371–384. https:

//doi.org/10.1145/360248.360251

[34] Kim Guldstrand Larsen and Arne Skou. 1992. Compositional Verification of Probabilistic Processes. In Proceedings of
CONCUR ’92 (Lecture Notes in Computer Science, Vol. 630). Springer, 456–471. https://doi.org/10.1007/BFb0084809

[35] Bas Luttik and Vincent van Oostrom. 2005. Decomposition orders another generalisation of the fundamental theorem

of arithmetic. Theor. Comput. Sci. 335, 2-3 (2005), 147–186. https://doi.org/10.1016/j.tcs.2004.11.019

[36] Cornelis A. Middelburg. 2020. Probabilistic Process Algebra and Strategic Interleaving. Sci. Ann. Comput. Sci. 30, 2
(2020), 205–243. https://doi.org/10.7561/SACS.2020.2.205

[37] Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92. Springer.

https://doi.org/10.1007/3-540-10235-3

[38] Robin Milner. 1989. Communication and concurrency. Prentice Hall.
[39] Robin Milner and Faron Moller. 1993. Unique Decomposition of Processes. Theor. Comput. Sci. 107, 2 (1993), 357–363.

https://doi.org/10.1016/0304-3975(93)90176-T

[40] Faron Moller. 1989. Axioms for Concurrency. Ph.D. Dissertation. Department of Computer Science, University of

Edinburgh. Report CST-59-89. Also published as ECS-LFCS-89-84.

[41] Faron Moller. 1990. The Importance of the Left Merge Operator in Process Algebras. In Proceedings of ICALP ‘90
(Lecture Notes in Computer Science, Vol. 443). Springer, 752–764. https://doi.org/10.1007/BFb0032072

[42] Faron Moller. 1990. The Nonexistence of Finite Axiomatisations for CCS Congruences. In Proceedings of LICS ’90. IEEE
Computer Society, 142–153. https://doi.org/10.1109/LICS.1990.113741

[43] David M. R. Park. 1981. Concurrency and Automata on Infinite Sequences. In Proceedings of GI-Conference (Lecture
Notes in Computer Science, Vol. 104). Springer, 167–183. https://doi.org/10.1007/BFb0017309

[44] Gordon D. Plotkin. 1981. A structural approach to operational semantics. Report DAIMI FN-19. Computer Science

Department, Aarhus University.

[45] Eugene W. Stark and Scott A. Smolka. 2000. A complete axiom system for finite-state probabilistic processes. In Proof,
Language, and Interaction, Essays in Honour of Robin Milner. The MIT Press, 571–596.

[46] Walter Taylor. 1977. Equational Logic. In Contributions to Universal Algebra. North-Holland, 465 – 501. https:

//doi.org/10.1016/B978-0-7204-0725-9.50040-X

[47] Ferry Timmers and Jan Friso Groote. 2020. A Complete Axiomatisation for Probabilistic Trace Equivalence. Sci. Ann.
Comput. Sci. 30, 1 (2020), 69–104. https://doi.org/10.7561/SACS.2020.1.69

[48] Rob J. van Glabbeek. 1993. The Linear Time - Branching Time Spectrum II. In Proceedings of CONCUR’93 (Lecture
Notes in Computer Science, Vol. 715). Springer, 66–81. https://doi.org/10.1007/3-540-57208-2_6

[49] Rob J. van Glabbeek, Jan Friso Groote, and Erik P. de Vink. 2019. A Complete Axiomatization of Branching Bisimilarity

for a Simple Process Language with Probabilistic Choice - (Extended Abstract). In The Art of Modelling Computational
Systems: A Journey from Logic and Concurrency to Security and Privacy - Essays Dedicated to Catuscia Palamidessi
on the Occasion of Her 60th Birthday (Lecture Notes in Computer Science, Vol. 11760). Springer, 139–162. https:

//doi.org/10.1007/978-3-030-31175-9_9

[50] Rob J. van Glabbeek, Scott A. Smolka, Bernhard Steffen, and Chris M. N. Tofts. 1990. Reactive, Generative, and

Stratified Models of Probabilistic Processes. In Proceedings of LICS ’90. IEEE Computer Society, 130–141. https:

//doi.org/10.1109/LICS.1990.113740

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/10.1007/978-3-030-30985-5_26
https://doi.org/10.1137/0217063
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/360248.360251
https://doi.org/10.1007/BFb0084809
https://doi.org/10.1016/j.tcs.2004.11.019
https://doi.org/10.7561/SACS.2020.2.205
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(93)90176-T
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/B978-0-7204-0725-9.50040-X
https://doi.org/10.1016/B978-0-7204-0725-9.50040-X
https://doi.org/10.7561/SACS.2020.1.69
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/978-3-030-31175-9_9
https://doi.org/10.1007/978-3-030-31175-9_9
https://doi.org/10.1109/LICS.1990.113740
https://doi.org/10.1109/LICS.1990.113740

46 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

A ELECTRONIC APPENDIX: PROOFS OF RESULTS IN SECTION 5
A.1 Proof of Lemma 5.4

Lemma 5.4. A binary operator satisfying Equation (4) cannot distribute over + in both arguments.

Proof. Assume, towards a contradiction, that 𝑓 distributes over summation in both arguments.

Then, using Equation (4), we have that:

(𝑥 + 𝑦) ∥ 𝑧 ≈ 𝑓 (𝑥 + 𝑦, 𝑧) + 𝑓 (𝑧, 𝑥 + 𝑦)
≈ 𝑓 (𝑥, 𝑧) + 𝑓 (𝑦, 𝑧) + 𝑓 (𝑧, 𝑥) + 𝑓 (𝑧,𝑦)
≈ (𝑥 ∥ 𝑧) + (𝑦 ∥ 𝑧) .

However, this is a contradiction because, as is well known, the equation

(𝑥 + 𝑦) ∥ 𝑧 ≈ (𝑥 ∥ 𝑧) + (𝑦 ∥ 𝑧)
is not sound in bisimulation semantics. For example, (𝑎 + 𝜏) ∥ 𝑎 ↔/ (𝑎 ∥ 𝑎) + (𝜏 ∥ 𝑎). □

A.2 Proof of Lemma 5.5
Lemma 5.5. Let 𝑖 ∈ {1, 2}. Modulo bisimilarity, operator 𝑓 distributes over summation in its 𝑖-th

argument if and only if each rule for 𝑓 has a premise 𝑥𝑖
`𝑖−−→ 𝑦𝑖 , for some `𝑖 .

Proof. The (⇐) implication follows by similar arguments to those used in the proof of [3, Lemma

4.3]. Hence, we omit it and we proceed to prove the (⇒) implication.

Assume that 𝑓 distributes over + in some argument. We recall that by Lemma 4.3 for each action

` at least one between 𝐿
𝑓

` and 𝑅
𝑓

` must hold. We aim to prove that either 𝐿
𝑓

` holds for all actions `

and none of the 𝑅
𝑓

` does, or vice versa. Indeed, suppose towards a contradiction that there are rules

satisfying 𝐿
𝑓

` and 𝑅
𝑓

a for some actions ` and a . Then

• 𝑓 (𝜏+𝜏2, a) ↔/ 𝑓 (𝜏, a)+ 𝑓 (𝜏2, a), because the validity of𝑅𝑓

a allows us to prove that 𝑓 (𝜏+𝜏2, a) a−→
(𝜏 + 𝜏2)∥0 and 𝑓 (𝜏, a) + 𝑓 (𝜏2, a) cannot match that transition up to bisimilarity.

• 𝑓 (`, 𝜏+𝜏2) ↔/ 𝑓 (`, 𝜏)+𝑓 (`, 𝜏2), because the validity of 𝐿𝑓

` allows us to prove that 𝑓 (`, 𝜏+𝜏2)
`
−→

0∥(𝜏 + 𝜏2) and 𝑓 (`, 𝜏) + 𝑓 (`, 𝜏2) cannot match that transition up to bisimilarity.

□

B ELECTRONIC APPENDIX: PROOFS OF RESULTS IN SECTION 6
B.1 Proof of Proposition 6.2

Proposition 6.2. Let E be an axiom system over CCS𝑓 . Then:

(1) If E ⊢ 𝑡 ≈ 𝑢, then Ê ⊢ 𝑡 ≈ 𝑢.
(2) If E is a complete axiomatisation of↔ over CCS𝑓 , then Ê completely axiomatises↔ over CCS−

𝑓
.

(3) If bisimilarity is not finitely axiomatisable over CCS−
𝑓
, then it is not finitely axiomatisable over

CCS𝑓 either.

Proof. We prove the three statements separately.

• Proof of Statement 1. Assume that E ⊢ 𝑡 ≈ 𝑢. We shall argue that Ê proves the equation

𝑡 ≈ 𝑢 by induction on the depth of the proof of 𝑡 ≈ 𝑢 from E. We proceed by a case analysis

on the last rule used in the proof. Below we only consider the two most interesting cases in

this analysis.

– Case E ⊢ 𝑡 ≈ 𝑢, because 𝜎 (𝑡 ′) = 𝑡 and 𝜎 (𝑢 ′) = 𝑢 for some eqation (𝑡 ′ ≈ 𝑢 ′) ∈ E. Note,
first of all, that, by the definition of Ê, the equation 𝑡 ′ ≈ 𝑢 ′

is contained in Ê. Observe now

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 47

that 𝑡 = �̂� (𝑡 ′) and 𝑢 = �̂� (𝑢 ′), where �̂� is the substitution mapping each variable 𝑥 to the

term
�𝜎 (𝑥). It follows that the equation 𝑡 ≈ 𝑢 can be proven from the axiom system Ê by

instantiating the equation 𝑡 ′ ≈ 𝑢 ′
with the substitution �̂� , and we are done.

– Case E ⊢ 𝑡 ≈ 𝑢, because 𝑡 = 𝑡1∥𝑡2 and 𝑢 = 𝑢1∥𝑢2 for some 𝑡𝑖 , 𝑢𝑖 (𝑖 = 1, 2) such that

E ⊢ 𝑡𝑖 ≈ 𝑢𝑖 (𝑖 = 1, 2). Using the inductive hypothesis twice, we have that Ê ⊢ 𝑡𝑖 ≈ 𝑢𝑖

(𝑖 = 1, 2). Therefore, using substitutivity, Ê proves that

𝑡 = 𝑓 (𝑡1, 𝑡2) + 𝑓 (𝑡2, 𝑡1) ≈ 𝑓 (𝑢1, 𝑢2) + 𝑓 (𝑢2, 𝑢1) = 𝑢 ,

which was to be shown.

The remaining cases are simpler, and we leave the details to the reader.

• Proof of Statement 2. Assume that 𝑡 and 𝑢 are two bisimilar terms in the language CCS
−
𝑓
.

We shall argue that Ê proves the equation 𝑡 ≈ 𝑢. To this end, notice that the equation 𝑡 ≈ 𝑢

also holds in the algebra of CCS𝑓 terms modulo bisimulation. In fact, for each term 𝑣 in the

language CCS𝑓 and closed substitution 𝜎 mapping variables to CCS𝑓 terms, we have that

𝜎 (𝑣) ↔ �̂� (𝑣) ,

where the substitution �̂� is defined as above.

Since E is complete for bisimilarity over CCS𝑓 by our assumptions, it follows that E proves

the equation 𝑡 ≈ 𝑢. Therefore, by statement 1 of the proposition, we have that Ê proves the

equation 𝑡 ≈ 𝑢. The claim now follows because 𝑡 = 𝑡 and 𝑢 = 𝑢.

• Proof of Statement 3. This is an immediate consequence of statement 2 because Ê has the

same cardinality of E, and is therefore finite, if so is E.
□

B.2 Proof of Lemma 6.4
Lemma 6.4. Let 𝑡 be a CCS−

𝑓
term. Then 𝑡 ↔ 0 if, and only if, the equation 𝑡 ≈ 0 is provable using

axioms A4 and F1 in Table 2 from left to right.

Proof. The “if” implication is an immediate consequence of the soundness of the equations A4

and F1 with respect to ↔ . To prove the “only if” implication, define, first of all, the collection NIL

of CCS
−
𝑓
terms as the set of terms generated by the following grammar:

𝑡 ::= 0 | 𝑡 + 𝑡 | 𝑓 (𝑡,𝑢) ,

where 𝑢 is an arbitrary CCS
−
𝑓
term. We claim that each CCS

−
𝑓
term 𝑡 is bisimilar to 0 if, and only if,

𝑡 ∈ NIL. Using this claim and structural induction on 𝑡 ∈ NIL, it is a simple matter to show that if

𝑡 ↔ 0, then 𝑡 ≈ 0 is provable using axioms A0 and F0 from left to right, which was to be shown.

To complete the proof, it therefore suffices to show the above claim. To establish the “if” impli-

cation one proves, using structural induction on 𝑡 and the congruence properties of bisimilarity,

that if 𝑡 ∈ NIL, then 𝜎 (𝑡) ↔ 0 for every closed substitution 𝜎 . To show the “only if” implication,

we establish the contrapositive statement, viz. that if 𝑡 ∉ NIL, then 𝜎 (𝑡) ↔/ 0 for some closed

substitution 𝜎 . To this end, it suffices only to show, using structural induction on 𝑡 , that if 𝑡 ∉ NIL,

then 𝜎𝑎 (𝑡)
`
−→ for some action ` ∈ A, where 𝜎𝑎 is the closed substitution mapping each variable to

the closed term 𝑎0. The details of this argument are not hard, and are therefore omitted. □

B.3 Proof of Lemma 6.9
Lemma 6.9. Let E be an axiom system. Then the following statements hold.
(1) cl(E) = cl(cl(E)).
(2) cl(E) is finite, if so is E.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

48 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

(3) cl(E) is sound, if so is E.
(4) cl(E) is closed with respect to symmetry, if so is E.
(5) cl(E) and E prove the same equations, if E contains the equations A1–A4, F0–F2.

Proof. We limit ourselves to sketching the proofs of statements 1 and 5 in the lemma.

In the proof of statement 1, the only non-trivial thing to check is that the equation

𝜎 (𝜎 ′(𝑡)/0))/0 ≈ 𝜎 (𝜎 ′(𝑢)/0))/0
is contained in cl(E), whenever (𝑡 ≈ 𝑢) ∈ E and 𝜎, 𝜎 ′

are 0-substitutions. This follows from
Lemma 6.6(4) because the collection of 0-substitutions is closed under composition.

To show statement 5, it suffices only to argue that each equation 𝑡 ≈ 𝑢 that is provable from

cl(E) is also provable from E, if E contains the equations A1–A4, F0–F2. This can be done by

induction on the depth of the proof of the equation 𝑡 ≈ 𝑢 from cl(E), using Lemma 6.6(1) for the

case in which 𝑡 ≈ 𝑢 is a substitution instance of an axiom in cl(E). □

C ELECTRONIC APPENDIX: PROOFS OF RESULTS IN SECTION 7
C.1 Proof of Lemma 7.2

Lemma 7.2. (1) The term `≤𝑚 is prime, for each𝑚 ≥ 1.
(2) Let a ∈ {𝑎, 𝑎}, ` ∈ A, a ≠ `,𝑚 ≥ 1 and 1 ≤ 𝑖1 < . . . < 𝑖𝑚 . Then the term a.`≤𝑖1 + · · · + a.`≤𝑖𝑚

is prime.

Proof. The first claim is immediate because the norm of `≤𝑚 is one, for each𝑚 ≥ 1.

For the second claim, assume by contradiction that there are process terms 𝑝, 𝑞 such that 𝑝, 𝑞 ↔/ 0
and a.`≤𝑖1 + · · · + a.`≤𝑖𝑚 ↔ 𝑝 ∥𝑞. Clearly, this would imply the existence of process terms 𝑝 ′, 𝑞′

such that 𝑝
a−→ 𝑝 ′

and 𝑞
a−→ 𝑞′ so that 𝑝 ∥𝑞 a−→ 𝑝 ′∥𝑞 and 𝑝 ∥𝑞 a−→ 𝑝 ∥𝑞′. However, these transitions

would in turn imply that 𝑝 ∥𝑞 a−→ 𝑝 ′∥𝑞 a−→ 𝑝 ′∥𝑞′, namely 𝑝 ∥𝑞 could perform two a-moves in a

row, whereas a.`≤𝑖1 + · · · + a.`≤𝑖𝑚 cannot perform such a sequence of actions, thus contradicting

a.`≤𝑖1 + · · · + a.`≤𝑖𝑚 ↔ 𝑝 ∥𝑞. □

C.2 Proof of Lemma 7.10
Lemma 7.10. Let 𝛼 ∈ {𝑎, 𝑎}, 𝑡 be a CCS−

𝑓
term, 𝜎 be a closed substitution and 𝑝 be a closed term.

Whenever 𝜎 (𝑡) 𝛼−→ 𝑝 , then one of the following holds:

(1) There is term 𝑡 ′ such that 𝑡
𝛼−→ 𝑡 ′ and 𝜎 (𝑡 ′) = 𝑝 .

(2) There are a variable 𝑥 , a process 𝑞 and a configuration 𝑐 such that:
(a) only 𝐿𝑓

𝛼 holds, 𝜎 (𝑥) 𝛼−→ 𝑞, 𝑡
𝑥

l−−→𝛼 𝑐 and 𝜎 [𝑥d ↦→ 𝑞] (𝑐) = 𝑝 ;
(b) only 𝑅𝑓

𝛼 holds, 𝜎 (𝑥) 𝛼−→ 𝑞, 𝑡
𝑥r−−→𝛼 𝑐 and 𝜎 [𝑥d ↦→ 𝑞] (𝑐) = 𝑝 ; or

(c) 𝐿𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds, 𝜎 (𝑥) 𝛼−→ 𝑞, 𝑡
𝑥

b−−→𝛼 𝑐 and 𝜎 [𝑥d ↦→ 𝑞] (𝑐) = 𝑝 .

Proof. The proof is by induction on the structure of 𝑡 . The interesting case is the inductive step

corresponding to 𝑡 = 𝑓 (𝑡1, 𝑡2), which we expand below. According to which rules are available for

𝑓 with respect to 𝛼 , we can distinguish three cases:

(1) Case only 𝐿
𝑓

𝛼 holds. Then, 𝑓 (𝜎 (𝑡1), 𝜎 (𝑡2))
𝛼−→ 𝑝 can be inferred only from a transition of the

form 𝜎 (𝑡1)
𝛼−→ 𝑝 ′

for some closed term 𝑝 ′
with 𝑝 = 𝑝 ′∥𝜎 (𝑡2). By induction over the derivation

of 𝜎 (𝑡1)
𝛼−→ 𝑝 ′

, and considering that only 𝐿
𝑓

𝛼 holds, we can then distinguish two cases:

• There is a term 𝑡 ′
1
such that 𝑡1

𝛼−→ 𝑡 ′
1
and 𝜎 (𝑡 ′

1
) = 𝑝 ′

. As 𝑓 has the rule of the form (7) for 𝛼

we can immediately infer that 𝑡
𝛼−→ 𝑡 ′

1
∥𝑡2. Hence, by letting 𝑡 ′ = 𝑡 ′

1
∥𝑡2, we obtain 𝑡

𝛼−→ 𝑡 ′

and 𝜎 (𝑡 ′) = 𝑝 .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 49

• There are a variable 𝑥 , a closed term 𝑞 and a configuration 𝑐1 such that 𝜎 (𝑥) 𝛼−→ 𝑞,

𝑡1
𝑥

l−−→𝛼 𝑐1 with 𝜎 [𝑥d ↦→ 𝑞] (𝑐1) = 𝑝 ′
. Hence, by applying the auxiliary rule (𝑎6) we

can infer that 𝑓 (𝑡1, 𝑡2)
𝑥

l−−→𝛼 𝑐1∥𝑡2 and moreover, since 𝑥d may occur only in 𝑐1, we have

𝑝 = 𝑝 ′∥𝜎 (𝑡2) = 𝜎 [𝑥d ↦→ 𝑞] (𝑐1∥𝑡2).
(2) Case only 𝑅

𝑓

𝛼 holds. This case is analogous to the previous one (it is enough to switch the

roles of 𝑡1 and 𝑡2 and consider 𝑥r in place of 𝑥l) and therefore omitted.

(3) Case 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼 holds. This case follows by noticing that 𝑡
𝑥

b−−→𝛼 can be inferred from both

𝑡1
𝑥

b−−→𝛼 and 𝑡2
𝑥

b−−→𝛼 , and therefore the follows from the structure of the previous two cases,

using rules (𝑎8) and (𝑎9).

□

C.3 Proof of Lemma 7.11
Lemma 7.11. Let 𝑡 be a term in CCS−

𝑓
, 𝜎 be a closed substitution and 𝛼 ∈ {𝑎, 𝑎}. Assume that

𝜎 (𝑡) ↔ ∑𝑛
𝑖=1

𝛼.𝑝𝑖 +𝑞 for some 𝑛 greater than the size of 𝑡 and closed terms 𝑝𝑖 , 𝑞 with 𝑝𝑖 ↔/ 𝑝 𝑗 whenever
𝑖 ≠ 𝑗 . Then 𝑡 has a summand 𝑥 , for some variable 𝑥 , such that 𝜎 (𝑥) ↔ ∑

𝑗 ∈𝐽 𝛼.𝑞 𝑗 + 𝑞′ for some
𝐽 ⊆ {1, . . . , 𝑛}, with |𝐽 | ≥ 2, some process 𝑞′, and processes 𝑞 𝑗 such that:

• 𝑞 𝑗 ↔/ 𝑞𝑘 whenever 𝑗 ≠ 𝑘 .
• Either 𝑞 𝑗 ↔ 𝑝 𝑗 , for each 𝑗 ∈ 𝐽 , or there is a process 𝑟 such that 𝑝 𝑗 ↔ 𝑞 𝑗 ∥ 𝑟 , for each 𝑗 ∈ 𝐽 .

Proof. For simplicity of notation let 𝐼 = {1, . . . , 𝑛}. Since there is a transition∑
𝑖∈𝐼 𝛼.𝑝𝑖 +𝑞

𝛼−→ 𝑝𝑖

for each 𝑖 ∈ 𝐼 , from 𝜎 (𝑡) ↔ ∑
𝑖∈𝐼 𝛼.𝑝𝑖 + 𝑞 we get that 𝜎 (𝑡) 𝛼−→ 𝑟𝑖 with 𝑟𝑖 ↔ 𝑝𝑖 , for all 𝑖 ∈ 𝐼 . Since 𝑛

is greater than the size of 𝑡 , we infer that Lemma 7.10.1 can be applied only to𝑚 such transitions,

for some𝑚 < 𝑛, so that there are an index set 𝐻 ⊂ 𝐼 (possibly empty) and CCS𝑓 terms 𝑡ℎ , for ℎ ∈ 𝐻

such that |𝐻 | =𝑚, 𝑡
𝛼−→ 𝑡ℎ and 𝜎 (𝑡ℎ) ↔ 𝑝ℎ . Notice that since 𝑝𝑖 ↔/ 𝑝 𝑗 for 𝑖 ≠ 𝑗 we get that the 𝑡ℎ are

pairwise distinct. Let 𝐽 = 𝐼 \ 𝐻 . For the remaining 𝛼-transitions 𝜎 (𝑡) 𝛼−→ 𝑟 𝑗 for 𝑗 ∈ 𝐽 we have that

one among cases 2a–2c of Lemma 7.10 applies, according to which rules are available for 𝑓 with

respect to action 𝛼 . Hence, we have that, for each 𝑗 ∈ 𝐽 there are a variable 𝑥 𝑗 , a closed term 𝑞 𝑗 and

a configuration 𝑐 𝑗 such that 𝜎 (𝑥 𝑗)
𝛼−→ 𝑞 𝑗 , 𝑡

𝑥 𝑗,w−−−→𝛼 𝑐 𝑗 and 𝜎 [𝑥 𝑗,d ↦→ 𝑞 𝑗] (𝑐 𝑗) = 𝑟 𝑗 , where w ∈ {l, r, b}
depends on the rules for 𝑓 . Since 𝑛 is greater than the size of 𝑡 there cannot be more than |𝐽 | − 1

distinct variables 𝑥 𝑗 occurring in 𝑡 and causing such 𝛼-moves (actually the constraint is also on the

number of distinct occurrences of variables in 𝑡). Hence, there is at least one variable 𝑥 ∈ var (𝑡)
such that 𝜎 (𝑥) ↔ 𝛼.𝑞 𝑗1 + 𝛼.𝑞 𝑗2 + 𝑞′ for some 𝑗1 ≠ 𝑗2 ∈ 𝐽 , 𝑞 𝑗1 ↔/ 𝑞 𝑗2 , and closed term 𝑞′.

Let 𝑐 be the configuration such that 𝑡
𝑥w−−→𝛼 𝑐 . By Lemma 7.8we have that, 𝑐↔𝑥d∥𝑡 ′, for some term

𝑡 ′. Moreover from the analysis carried out above, we have that 𝜎 [𝑥d ↦→ 𝑞 𝑗1] (𝑐) ↔ 𝑞 𝑗1 ∥ 𝜎 (𝑡 ′) ↔ 𝑝 𝑗1 ,

and 𝜎 [𝑥d ↦→ 𝑞 𝑗2] (𝑐) ↔ 𝑞 𝑗2 ∥ 𝜎 (𝑡 ′) ↔ 𝑝 𝑗2 . In particular, if 𝜎 (𝑡 ′) ↔ 0 we get that 𝑞 𝑗1 ↔ 𝑝 𝑗1 and

𝑞 𝑗2 ↔ 𝑝 𝑗2 . □

C.4 Proof of Lemma 7.12
Lemma 7.12. Let 𝑡 be a term in CCS−

𝑓
that does not have + as head operator, and let 𝜎 be a closed

substitution. Let 𝛼 ∈ {𝑎, 𝑎} and ` ∈ A with 𝛼 ≠ `. Assume that 𝜎 (𝑡) has neither 0 summands nor
factors, and that 𝜎 (𝑡) ↔ 𝛼.`≤𝑖1 + · · · + 𝛼.`≤𝑖𝑚 , for some𝑚 > 1 and 1 ≤ 𝑖1 < . . . < 𝑖𝑚 . Then 𝑡 = 𝑥 , for
some variable 𝑥 .

Proof. Assume, towards a contradiction, that 𝑡 is not a variable. We proceed by a case analysis

on the possible form this term may have.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

50 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

(1) Case 𝑡 = a.𝑡 ′ for some term 𝑡 ′. Then a = 𝛼 and `≤𝑖1 ↔ 𝜎 (𝑡 ′) ↔ `≤𝑖𝑚 . However, this is a
contradiction because, since 𝑖1 < 𝑖𝑚 , the terms `≤𝑖1 and `≤𝑖𝑚 have different depths, and are

therefore not bisimilar.

(2) Case 𝑡 = 𝑓 (𝑡 ′, 𝑡 ′′) for some terms 𝑡 ′, 𝑡 ′′. Since 𝜎 (𝑡) has no 0 factors, we have that 𝜎 (𝑡 ′) ↔/ 0
and 𝜎 (𝑡 ′′) ↔/ 0. Moreover, observe that 𝛼.`≤𝑖1 + 𝛼.`≤𝑖𝑚

𝛼−→ `≤𝑖𝑚 .
Thus, as 𝜎 (𝑡) = 𝑓 (𝜎 (𝑡 ′), 𝜎 (𝑡 ′′)) ↔ 𝛼.`≤𝑖1 +· · ·+𝛼.`≤𝑖𝑚 , according to which rules are available
for 𝑓 with respect to a , we can distinguish the following two cases:

• 𝐿
𝑓

𝛼 holds and there is a term 𝑝 ′
such that 𝜎 (𝑡 ′) 𝛼−→ 𝑝 ′

and 𝑝 ′∥𝜎 (𝑡 ′′) ↔ `≤𝑖𝑚 . As 𝜎 (𝑡 ′′) ↔/ 0
and `≤𝑖𝑚 is prime (Lemma 7.2(1)), this implies that 𝑝 ′ ↔ 0 and 𝜎 (𝑡 ′′) ↔ `≤𝑖𝑚 . Since

𝛼.`≤𝑖1 + · · · + 𝛼.`≤𝑖𝑚 𝛼−→ `≤𝑖1 , a similar reasoning allows us to conclude that 𝜎 (𝑡 ′′) ↔ `≤𝑖1

also holds. However, this is a contradiction because by the proviso of the lemma𝑚 > 1

and 1 ≤ 𝑖1 < . . . < 𝑖𝑚 , and therefore `≤𝑖1 and `≤𝑖𝑚 are not bisimilar.

• 𝑅
𝑓

𝛼 holds and there is a term 𝑝 ′′
such that 𝜎 (𝑡 ′′) 𝛼−→ 𝑝 ′′

and 𝜎 (𝑡 ′)∥𝑝 ′′ ↔ `≤𝑖𝑚 . This case is
analogous to the previous one and leads as well to a contradiction.

We may therefore conclude that 𝑡 must be a variable, which was to be shown. □

C.5 Proof of Lemma 7.15
Lemma 7.15. Let ` ∈ A and w ∈ {l, r, b}. Then 𝑥 ⊳

`
w
𝑡 if and only if 𝑡

𝑥w−−→` 𝑐 for a configuration
𝑐 ↔ 𝑥d∥𝑡 ′ for some CCS−

𝑓
term 𝑡 ′.

Proof. We prove the two implications separately.

(⇒) We proceed by induction over the structure of 𝑡 . The interesting case is the inductive step

corresponding to 𝑡 = 𝑓 (𝑡1, 𝑡2) which we expand below, by distinguishing three cases, according to

which rules for 𝑓 are available:

• 𝑥 ⊳
`

l
𝑓 (𝑡1, 𝑡2). This can only be due to 𝑥 ⊳

`

l
𝑡1. By the induction hypothesis for 𝑡1, this implies

that 𝑡1
𝑥

l−−→` 𝑐1 with 𝑐1 ↔ 𝑥d∥𝑡 ′1 for some 𝑡 ′
1
. By applying the auxiliary rule (𝑎6), we infer

𝑓 (𝑡1, 𝑡2)
𝑥

l−−→` 𝑐 with 𝑐 = 𝑐1∥𝑡2 and, since ↔ is a congruence with respect to ∥ and ∥ is

associative with respect to ↔ , we get 𝑐 ↔ (𝑥d∥𝑡 ′1)∥𝑡2 ↔ 𝑥d∥𝑡 ′ with 𝑡 ′ ↔ 𝑡 ′
1
∥𝑡2.

• 𝑥 ⊳
`
r
𝑓 (𝑡1, 𝑡2). This can only be due to 𝑥 ⊳

`
r
𝑡2. Thus, we can proceed as above, by applying the

auxiliary rule (𝑎7) in place of rule (𝑎6) and using the commutativity of ∥ modulo ↔ .

• 𝑥 ⊳
`

b
𝑓 (𝑡1, 𝑡2). This can be due to either 𝑥 ⊳

`

b
𝑡1 or 𝑥 ⊳

`

b
𝑡2. For both, we can proceed as above,

by applying the auxiliary rules (𝑎8) or, respectively, (𝑎9) in place of rules (𝑎6) and (𝑎7).

(⇐) We proceed by induction over the derivation of the open transition 𝑡
𝑥w−−→` 𝑐 . Again, the

interesting case is the inductive step corresponding to 𝑡 = 𝑓 (𝑡1, 𝑡2), which we expand below by

considering three cases, according to which rules are available for 𝑓 :

• 𝑓 (𝑡1, 𝑡2)
𝑥

l−−→` 𝑐 with 𝑐 ↔ 𝑥d∥𝑡 ′ for some 𝑡 ′. According to the auxiliary operational semantics,

it must be the case that 𝑡1
𝑥

l−−→` 𝑐1 for some 𝑐1 such that 𝑐 = 𝑐1∥𝑡2. Notice that since 𝑥d can

occur only in 𝑐1, from 𝑐 = 𝑐1∥𝑡2 and 𝑐 ↔ 𝑥d∥𝑡 ′, we infer 𝑐1 ↔ 𝑥d∥𝑡 ′′ for some 𝑡 ′′ such that

𝑡 ′′∥𝑡2 ↔ 𝑡 ′. Hence, we can apply the induction hypothesis to the transition from 𝑡1 and obtain

𝑥 ⊳
`

l
𝑡1. Since 𝑡 = 𝑓 (𝑡1, 𝑡2) we can immediately conclude that 𝑥 ⊳

`

l
𝑡 .

• The cases of 𝑓 (𝑡1, 𝑡2)
𝑥r−−→` 𝑐 and 𝑓 (𝑡1, 𝑡2)

𝑥
b−−→` 𝑐 follow by a similar reasoning.

□

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 51

C.6 Proof of Lemma 7.16
Lemma 7.16. Let 𝑡 be a CCS−

𝑓
term and 𝜎 be a closed substitution. If 𝑡 has no 0 summands or factors

and 𝑥 ⊳
`
w
𝑡 , for some w ∈ {l, r, b} and ` ∈ A with init(𝜎 (𝑥)) ⊆ {` | 𝑥 ⊳

`
w
𝑡}, then depth(𝜎 (𝑡)) ≥

depth(𝜎 (𝑥)).
Proof. The proof proceeds by structural induction over 𝑡 and a case analysis over w ∈ {l, r, b}.

The interesting case is the inductive step corresponding to 𝑡 = 𝑓 (𝑡1, 𝑡2) which we expand below for

the case of w = l. The other cases can be obtained by applying a similar reasoning.

Moreover, always for sake of simplicity, assume that there is only one action ` such that 𝑥 ⊳
`

l
𝑡 , so

that init(𝜎 (𝑥)) = {`}. Once again, the general case can be easily derived from this one. Notice that

init(𝜎 (𝑥)) = {`} implies the existence of a closed term 𝑞 such that 𝜎 (𝑥)
`
−→ 𝑞 and depth(𝜎 (𝑥)) =

depth(𝑞) + 1. We have that 𝑥 ⊳
`

l
𝑓 (𝑡1, 𝑡2) can be derived only by 𝑥 ⊳

`

l
𝑡1. Hence, structural induction

over 𝑡1 gives depth(𝜎 (𝑡1)) ≥ depth(𝜎 (𝑥)). Moreover, by Lemma 7.15 we obtain that 𝑡1
𝑥

l−−→` 𝑐1

for some 𝑐1 ↔ 𝑥d∥𝑡 ′ for some term 𝑡 ′. Furthermore, 𝜎 (𝑥)
`
−→ 𝑞 together with Lemma 7.9 gives

𝜎 (𝑡1)
`
−→ 𝜎 [𝑥d ↦→ 𝑞] (𝑐1). Then we can infer that 𝜎 (𝑡)

`
−→ 𝜎 [𝑥d ↦→ 𝑞] (𝑐1)∥𝜎 (𝑡2) ↔ 𝑞∥(𝜎 (𝑡 ′)∥𝜎 (𝑡2)).

Therefore

depth(𝜎 (𝑡)) ≥ 1 + depth(𝑞∥(𝜎 (𝑡 ′)∥𝜎 (𝑡2)))
= 1 + depth(𝑞) + depth(𝜎 (𝑡 ′)∥𝜎 (𝑡2))
≥ 1 + depth(𝑞) = depth(𝜎 (𝑥)) .

□

C.7 Proof of Proposition 7.18
Proposition 7.18. Let 𝛼 ∈ {𝑎, 𝑎}, 𝑥 be a variable and 𝑡,𝑢 be CCS−

𝑓
with 𝑡 ↔ 𝑢 and such that

neither 𝑡 nor 𝑢 has 0 summands or factors. If 𝑥 ⊳𝛼
w
𝑡 for some w ∈ {l, r, b}, then 𝑥 ⊳𝛼

w
𝑢. In particular, if

𝑥 ⊳𝛼
w
𝑡 because 𝑡 has a summand 𝑥 , then so does 𝑢.

Proof. Observe, first of all, that since 𝑡 and 𝑢 have no 0 summands or factors, by Remark 3 we

can assume that 𝑡 =
∑

𝑖∈𝐼 𝑡𝑖 and 𝑢 =
∑

𝑗 ∈𝐽 𝑢 𝑗 for some finite non-empty index sets 𝐼 , 𝐽 , where none

of the 𝑡𝑖 (𝑖 ∈ 𝐼) and 𝑢 𝑗 (𝑗 ∈ 𝐽) has + as its head operator, and none of the 𝑡𝑖 (𝑖 ∈ 𝐼) and 𝑢 𝑗 (𝑗 ∈ 𝐽) have

0 summands or factors. Therefore, 𝑥 ⊳𝛼
w
𝑡 implies that there is some index 𝑖 ∈ 𝐼 such that 𝑥 ⊳𝛼

w
𝑡𝑖 .

We then proceed by a case analysis on the rules available for 𝑓 . Actually we expand only the case

in which only 𝐿
𝑓

𝛼 holds, as the other two cases, in which respectively only 𝑅
𝑓

𝛼 holds, or 𝐿
𝑓

𝛼 ∧ 𝑅
𝑓

𝛼

holds, can be obtained analogously.

Since only 𝐿
𝑓

𝛼 holds, then it must be the case that 𝑥 ⊳𝛼
l
𝑡𝑖 . By Lemma 7.15 we get that 𝑡𝑖

𝑥
l−−→𝛼 𝑐 for

some configuration 𝑐 with 𝑐 ↔ 𝑥d∥𝑡 ′ for some 𝑡 ′. Let 𝑛 be greater than the sizes of 𝑡 and 𝑢, and

consider the substitution 𝜎 such that

𝜎 (𝑦) =
{
𝛼
∑𝑛

𝑖=1
𝛼𝛼 ≤𝑖

if 𝑦 = 𝑥

0 otherwise.

For simplicity of notation, let 𝑝𝑛 =
∑𝑛

𝑖=1
𝛼𝛼 ≤𝑖

. Clearly 𝜎 (𝑥) 𝛼−→ 𝑝𝑛 . By Lemma 7.9 we obtain that

𝜎 (𝑡𝑖)
𝛼−→ 𝑝 with 𝑝 = 𝜎 [𝑥d ↦→ 𝑝𝑛] (𝑐) and, thus, 𝑝 ↔ 𝑝𝑛 ∥𝜎 (𝑡 ′). As 𝑡 ↔ 𝑢 implies 𝜎 (𝑡) ↔ 𝜎 (𝑢), we

get that there is an index 𝑗 ∈ 𝐽 such that 𝜎 (𝑢 𝑗)
𝛼−→ 𝑞 for some 𝑞 ↔ 𝑝𝑛 ∥𝜎 (𝑡 ′). As only 𝐿𝑓

𝛼 holds, by

Lemma 7.10 we can distinguish two cases:

• There are a variable𝑦, a closed term 𝑞′ and a configuration 𝑐 ′ such that 𝜎 (𝑦) 𝛼−→ 𝑞′,𝑢 𝑗

𝑦
l−−→𝛼 𝑐 ′

and 𝑞 = 𝜎 [𝑦d ↦→ 𝑞′] (𝑐 ′). Since 𝜎 maps all variables but 𝑥 to 0, we can directly infer that 𝑦 = 𝑥 ,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

52 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

𝑞′ = 𝑝𝑛 . Moreover, as 𝑝𝑛 is prime and there is a unique prime decomposition of processes,

we also infer that 𝑐 ′ ↔ 𝑥d∥𝑢 ′
for some 𝑢 ′

with 𝜎 (𝑢 ′) ↔ 𝜎 (𝑡 ′). Consequently, by Lemma 7.15

we can conclude that 𝑥 ⊳𝛼
l
𝑢 𝑗 and thus 𝑥 ⊳𝛼

l
𝑢 as required.

• There is a term 𝑢 ′
such that 𝑢 𝑗

𝛼−→ 𝑢 ′
and 𝜎 (𝑢 ′) ↔ 𝑝𝑛 ∥𝜎 (𝑡 ′). We proceed to show that this

case leads to a contradiction. We distinguish two cases:

– 𝜎 (𝑡 ′) ↔ 0. Thus 𝜎 (𝑢 ′) ↔ 𝑝𝑛 and we can rewrite 𝑢 ′ =
∑

ℎ∈𝐻 𝑣ℎ for some terms 𝑣ℎ that do

not have + as head operator. Moreover, since 𝑢 not having 0 summands nor factors implies

that neither 𝑢 𝑗 no 𝑢
′
have some, the same holds for all the 𝑣ℎ . Since 𝑛 is larger than the size

of 𝑢, and thus than that of 𝑢 ′
, by Lemma 7.12 𝜎 (𝑢 ′) ↔ 𝑝𝑛 implies that there is one index

ℎ ∈ 𝐻 such that 𝑣ℎ = 𝑦 for some variable 𝑦 and 𝜎 (𝑦) ↔ 𝛼𝛼 ≤𝑖1 + · · · +𝛼𝛼 ≤𝑖𝑚
for some𝑚 > 1

and 1 ≤ 𝑖1 < · · · < 𝑖𝑚 ≤ 𝑛. However, by the choice of 𝜎 , all variables but 𝑥 are mapped to

0, and moreover 𝜎 (𝑥) ↔/ 𝛼𝛼 ≤𝑖1 + · · · + 𝛼𝛼 ≤𝑖𝑚
thus contradicting 𝜎 (𝑢 ′) ↔ 𝑝𝑛 .

– 𝜎 (𝑡 ′) ↔/ 0. Consequently, 𝜎 (𝑡 ′) ↔ ∑
ℎ∈𝐻 `ℎ𝑞ℎ for some actions `ℎ ∈ A and closed terms

𝑞ℎ . We can therefore apply the expansion law for parallel composition obtaining

𝜎 (𝑢 ′) ↔ 𝑝𝑛 ∥𝜎 (𝑡 ′) ↔
𝑛∑
𝑖=1

𝛼 (𝛼 ≤𝑖 ∥𝜎 (𝑡 ′)) +
∑
ℎ∈𝐻

`ℎ (𝑝𝑛 ∥𝑞ℎ) +
∑

𝑖=1,...,𝑛
ℎ∈𝐻 s.t. `ℎ=𝛼

𝜏 (𝛼 ≤𝑖 ∥𝑞ℎ).

We notice that the first term in the expansion has size at least 𝑛 + 1 and therefore greater

than the size of 𝑢 and in particular of 𝑢 ′
. Moreover 𝛼 ≤𝑖 ∥𝜎 (𝑡 ′) ↔/ 𝛼 ≤ 𝑗 ∥𝜎 (𝑡 ′) whenever 𝑖 ≠ 𝑗 .

Therefore, by Lemma 7.11 there is a variable𝑦 ∈ var (𝑢 ′) such that𝜎 (𝑦) ↔𝛼𝑞𝑖1+· · ·+𝛼𝑞𝑖𝑚+𝑟
for some𝑚 > 1 and 1 ≤ 𝑖1 < · · · < 𝑖𝑚 , closed term 𝑟 and proper closed terms 𝑞𝑖1 , . . . , 𝑞𝑖𝑚
according to Lemma 7.11 (their exact form is irrelevant to our purposes). However, 𝜎 (𝑦) = 0
whenever𝑦 ≠ 𝑥 and𝜎 (𝑥) ↔/𝛼𝑞𝑖1+· · ·+𝛼𝑞𝑖𝑚+𝑟 , for any closed term 𝑟 (since init(𝜎 (𝑥)) = {𝛼})
thus contradicting 𝜎 (𝑢 ′) ↔ 𝑝𝑛 ∥𝜎 (𝑡 ′).

We have therefore obtained that whenever 𝑥 ⊳𝛼
l
𝑡 then also 𝑥 ⊳𝛼

l
𝑢.

Assume now that 𝑡 has a summand 𝑥 . We aim to show that 𝑢 has a summand 𝑥 as well. Since

𝑥 ⊳𝛼
l
𝑥 gives 𝑥 ⊳𝛼

l
𝑡 , by the first part of the Proposition we get 𝑥 ⊳𝛼

l
𝑢 and thus there is an index

𝑗 ∈ 𝐽 such that 𝑥 ⊳𝛼
l
𝑢 𝑗 . We now treat the cases of an operator 𝑓 that distributes over + in its first

argument and of an operator 𝑓 that does not distribute in either argument separately.

Case of an operator 𝑓 that distributes over + in its first argument. Consider the

substitution 𝜎0 mapping each variable to 0. Pick an integer𝑚 larger than the depth of 𝜎0 (𝑡) and of

𝜎0 (𝑢). Let 𝜎 be the substitution mapping 𝑥 to the term 𝑎𝑚+1
and agreeing with 𝜎0 on all the other

variables.

As 𝑡 ≈ 𝑢 is sound modulo bisimilarity, we have that 𝜎 (𝑡) ↔ 𝜎 (𝑢).Moreover, the term 𝜎 (𝑡) affords
the transition 𝜎 (𝑡) 𝑎−→ 𝑎𝑚 , for 𝑡𝑖 = 𝑥 and 𝜎 (𝑥) = 𝑎𝑚+1

𝑎−→ 𝑎𝑚 . Hence, for some closed term 𝑝 ,

𝜎 (𝑢) =
∑
𝑗 ∈𝐽

𝜎 (𝑢 𝑗)
𝑎−→ 𝑝 ↔ 𝑎𝑚 .

This means that there is a 𝑗 ∈ 𝐽 such that 𝜎 (𝑢 𝑗)
𝑎−→ 𝑝 . We claim that this 𝑢 𝑗 can only be the variable

𝑥 . To see that this claim holds, observe, first of all, that 𝑥 ∈ var (𝑢 𝑗). In fact, if 𝑥 did not occur in 𝑢 𝑗 ,

then we would reach a contradiction thus:

𝑚 = depth(𝑝) < depth(𝜎 (𝑢 𝑗)) = depth(𝜎0 (𝑢 𝑗)) ≤ depth(𝜎0 (𝑢)) < 𝑚 .

Using this observation and Lemma 7.16, it is not hard to show that, for each of the other possible

forms 𝑢 𝑗 may have, 𝜎 (𝑢 𝑗) does not afford an 𝑎-labelled transition leading to a term of depth𝑚. We

may therefore conclude that 𝑢 𝑗 = 𝑥 , which was to be shown.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition? 53

Case of an operator 𝑓 that does not distribute over + in either argument. Notice that

in the case at hand, there must be at least one action ` ∈ A such that 𝑅
𝑓

` holds. Assume such an

action `. Again, let 𝑛 be greater than the sizes of 𝑡 and 𝑢, and consider the substitution

𝜎1 (𝑦) =
{
𝛼𝛼 ≤𝑛

if 𝑦 = 𝑥

𝛼 + ` otherwise.

Thus 𝜎1 (𝑥)
𝛼−→ 𝛼 ≤𝑛

and consequently 𝜎1 (𝑡)
𝛼−→ 𝛼 ≤𝑛

. Since 𝜎1 (𝑡) ↔ 𝜎1 (𝑢) it must hold that

𝜎1 (𝑢)
𝛼−→ 𝑞 for some 𝑞 ↔ 𝛼 ≤𝑛

. As 𝑛 is greater than the size of 𝑢, one can infer that 𝑢 can have a

summand given by at most ⌊𝑛−2

2
⌋ nested occurrences of 𝑓 (which is a binary operator of size at least

3). Since, moreover, all variables but 𝑥 are mapped into a term of depth 1, we can infer that the only

term that can be responsible for the 𝛼-move to 𝑞 is a summand 𝑢 𝑗 such that 𝑥 ⊳𝛼
l
𝑢 𝑗 . To show 𝑢 𝑗 = 𝑥

we show that the only other possible case, namely𝑢 𝑗 = 𝑓 (𝑢 ′, 𝑢 ′′) with 𝑥 ⊳𝛼
l
𝑢 ′

leads to a contradiction.

Recall that by the proviso of the Proposition 𝑢 has no 0 factors, which implies that 𝑢 ′, 𝑢 ′′ ↔/ 0. Since
moreover, 𝑥 ⊳𝛼

l
𝑢 ′
, by Lemma 7.15 and Lemma 7.10 we get 𝑢 ′ 𝑥

l−−→𝛼 𝑐 and thus 𝑢 𝑗

𝑥
l−−→𝛼 𝑐 ∥𝑢 ′′

for some

configuration 𝑐 ↔ 𝑥d∥𝑢 ′′′
for some term 𝑢 ′′′

, so that 𝜎1 (𝑢 𝑗)
𝛼−→ 𝜎1 [𝑥d ↦→ 𝛼 ≤𝑛] (𝑐)∥𝜎1 (𝑢 ′′) = 𝑞.

However, 𝑢 ′′ ↔/ 0 implies that either there is a term 𝑣 such that 𝑢 ′′ a−→ 𝑣 , for some action a , or in

𝑢 ′′
at least one variable occurs unguarded. Hence, by the choice of 𝜎1, as both 𝐿

𝑓

𝛼 and 𝑅
𝑓

` hold, we

can infer that depth(𝜎1 (𝑢 ′′)) ≥ 1 which gives

𝑛 = depth(𝛼 ≤𝑛) = depth(𝑞)
= depth(𝜎1 [𝑥d ↦→ 𝛼 ≤𝑛] (𝑐)∥𝜎1 (𝑢 ′′))
= depth(𝜎1 [𝑥d ↦→ 𝛼 ≤𝑛] (𝑐)) + depth(𝜎1 (𝑢 ′′))
≥ depth(𝛼 ≤𝑛) + depth(𝜎1 (𝑢 ′′)) ≥ 𝑛 + 1

thus contradicting 𝑞 ↔ 𝛼 ≤𝑛
. □

D SOME AXIOMS OVER CCS−
𝑓

In Table 4, we report some of the axioms that are sound modulo bisimilarity over the various

auxiliary operators 𝑓 (identified by the sets of rules that are available for it) that are covered in this

paper.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

54 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Some common axioms Some axioms for 𝐿
𝑓

A 𝑅
𝑓

∅ Some axioms for 𝐿
𝑓

∅ 𝑅
𝑓

A
A1 𝑥 + 𝑥 ≈ 𝑥 F1 𝑓 (0, 𝑥) ≈ 0 F3 𝑓 (𝑥, 0) ≈ 0
A2 𝑥 + 𝑦 ≈ 𝑦 + 𝑥 F2 𝑓 (𝑥, 0) ≈ 𝑥 F4 𝑓 (0, 𝑥) ≈ 𝑥

A3 (𝑥 + 𝑦) + 𝑧 ≈ 𝑥 + (𝑦 + 𝑧)
A4 𝑥 + 0 ≈ 𝑥

F0 𝑓 (0, 0) ≈ 0

Some axioms for 𝐿
𝑓

A 𝑅
𝑓

𝛼 Some axioms for 𝐿
𝑓

A 𝑅
𝑓

𝛼 Some axioms for 𝐿
𝑓

A 𝑅
𝑓

𝜏

F5 𝑓 (0, 𝛼 .𝑥 +𝑤) ≈ 𝑓 (0,𝑤) F7 𝑓 (0, 𝛼 .𝑥 +𝑤) ≈ 𝑓 (0,𝑤) F2, F5, F7

F6 𝑓 (0, 𝜏 .𝑥 +𝑤) ≈ 𝑓 (0,𝑤) and F2, F6

and F2

Some axioms for 𝐿
𝑓

𝛼 𝑅
𝑓

A Some axioms for 𝐿
𝑓

𝛼 𝑅
𝑓

A Some axioms for 𝐿
𝑓

𝜏 𝑅
𝑓

A
F8 𝑓 (𝛼.𝑥 +𝑤, 0) ≈ 𝑓 (𝑤, 0) F10 𝑓 (𝛼.𝑥 +𝑤, 0) ≈ 𝑓 (𝑤, 0) F4, F8, F10

F9 𝑓 (𝜏 .𝑥 +𝑤, 0) ≈ 𝑓 (𝑤, 0) and F4, F9

and F4

Some axioms for 𝐿
𝑓

A 𝑅
𝑓

𝛼,𝛼 Some axioms for 𝐿
𝑓

A 𝑅
𝑓

𝛼,𝜏 Some axioms for 𝐿
𝑓

A 𝑅
𝑓

𝛼,𝜏

F2, F6 F2, F5 F2, F7

Some axioms for 𝐿
𝑓

𝛼,𝛼 𝑅
𝑓

A Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

A Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

A
F4, F9 F4, F8 F4,F10

Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼,𝛼

F11 𝑓 (𝛼.𝑥 +𝑤, 𝜏 .𝑦) ≈ 𝑓 (𝑤, 𝜏 .𝑦) F6, F7, F8, F11, F12, F15 F6, F8, F11, F12, F15

F12 𝑓 (𝛼.𝑥, 𝜏 .𝑦 +𝑤) ≈ 𝑓 (𝛼.𝑥,𝑤)
F13 𝑓 (𝛼.𝑥 +𝑤, 𝛼.𝑦) ≈ 𝑓 (𝑤, 𝛼.𝑦) Some axioms for 𝐿

𝑓

𝛼,𝜏 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼

F14 𝑓 (𝛼.𝑥, 𝛼 .𝑦 +𝑤) ≈ 𝑓 (𝛼.𝑥,𝑤) F7, F8, F13, F14, F16 F7, F8

F15 𝑓 (𝛼.𝑥, 𝜏 .𝑦) ≈ 0
F16 𝑓 (𝛼.𝑥, 𝛼 .𝑦) ≈ 0
and F6, F7, F8

Some axioms for 𝐿
𝑓

𝛼 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝛼 𝑅
𝑓

𝛼,𝜏

F17 𝑓 (𝛼.𝑥 +𝑤, 𝛼.𝑦) ≈ 𝑓 (𝑤, 𝛼.𝑦) F5, F9, F10, F19, F20, F22 F9, F19, F20, F22

F18 𝑓 (𝛼.𝑥, 𝛼 .𝑦 +𝑤) ≈ 𝑓 (𝛼.𝑥,𝑤)
F19 𝑓 (𝜏 .𝑥 +𝑤, 𝛼.𝑦) ≈ 𝑓 (𝑤, 𝛼.𝑦) Some axioms for 𝐿

𝑓

𝛼,𝜏 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼

F20 𝑓 (𝜏 .𝑥, 𝛼 .𝑦 +𝑤) ≈ 𝑓 (𝜏 .𝑥,𝑤) F5, F10, F17, F18, F21 F5, F10

F21 𝑓 (𝛼.𝑥, 𝛼 .𝑦) ≈ 0
F22 𝑓 (𝜏 .𝑥, 𝛼 .𝑦) ≈ 0
and F5, F9, F10

Some axioms for 𝐿
𝑓

𝛼 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼 𝑅
𝑓

𝛼,𝜏 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝜏 𝑅
𝑓

𝛼,𝛼

F23 𝑓 (𝜏 .𝑥 +𝑤, 𝛼.𝑦) ≈ 𝑓 (𝑤, 𝛼.𝑦) F7, F8, F9, F23, F24, F25 F26 𝑓 (𝛼.𝑥 +𝑤, 𝜏 .𝑦) ≈ 𝑓 (𝑤, 𝜏 .𝑦)
F24 𝑓 (𝜏 .𝑥, 𝛼 .𝑦 +𝑤) ≈ 𝑓 (𝜏 .𝑥,𝑤) F27 𝑓 (𝛼.𝑥, 𝜏 .𝑦 +𝑤) ≈ 𝑓 (𝛼.𝑥,𝑤)
F25 𝑓 (𝜏 .𝑥, 𝛼 .𝑦) ≈ 0 F28 𝑓 (𝛼.𝑥, 𝜏 .𝑦) ≈ 0
and F7, F8, F9, F13, F14, F16 and F6, F8, F10, F11, F12, F15

Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼 𝑆𝛼,𝛼 Some axioms for 𝐿
𝑓

𝛼,𝛼 𝑅
𝑓

𝜏

F5, F6, F10, F17, F18, F5, F6, F10, F26, F27, F28 F5, F7, F9, F19, F20,

F21, F26, F27, F28 F22, F23, F24, F25

Some axioms for 𝐿
𝑓

𝛼,𝛼 𝑅
𝑓

𝛼,𝜏 Some axioms for 𝐿
𝑓

𝛼,𝜏 𝑅
𝑓

𝛼,𝛼

F7, F9, F23, F24, F25 F6, F10, F26, F27, F28

Table 4. Some sets of axioms, according to which rules are available for 𝑓 . For 𝐴 ⊆ A and 𝑋 ∈ {𝐿, 𝑅}, we use
𝑋
𝑓

𝐴
as a shorthand for

∧
`∈𝐴 𝑋

𝑓
` .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2022.

	Abstract
	1 Introduction
	2 Background
	3 The simplifying assumptions
	3.1 The de Simone format
	3.2 Axiomatising with f

	4 The operational semantics of f
	5 The main theorem and its proof strategy
	6 The equational theory of CCS0.6f
	6.1 Simplifying equational proofs
	6.2 Bisimilarity with 0

	7 Preliminary results
	7.1 Unique prime decomposition
	7.2 Decomposing the semantics of terms

	8 Negative result: the case L0.6fa,L0.6f,L0.6f
	8.1 Case specific properties of f(,pn)
	8.2 Proving Theorem 8.1

	9 Negative result: the case L0.6f R0.6f
	9.1 Case specific properties of f(,qn)
	9.2 Proving Theorem 9.1

	10 Negative result: the case L0.6f, R0.6f
	10.1 Case 1: Possibility of synchronisation
	10.2 Case 2: No synchronisation

	11 Negative result: the case L0.6f
	11.1 Case specific properties of f(,qn)
	11.2 Proving Theorem 11.1

	12 Conclusions
	Acknowledgments
	References
	A Electronic Appendix: Proofs of results in Section 5
	A.1 Proof of Lemma 5.4
	A.2 Proof of Lemma 5.5

	B Electronic Appendix: Proofs of results in Section 6
	B.1 Proof of Proposition 6.2
	B.2 Proof of Lemma 6.4
	B.3 Proof of Lemma 6.9

	C Electronic Appendix: Proofs of results in Section 7
	C.1 Proof of Lemma 7.2
	C.2 Proof of Lemma 7.10
	C.3 Proof of Lemma 7.11
	C.4 Proof of Lemma 7.12
	C.5 Proof of Lemma 7.15
	C.6 Proof of Lemma 7.16
	C.7 Proof of Proposition 7.18

	D Some axioms over CCS0.6f-

