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Abstract

Probabilistic branching bisimilarity allows us to compare process behavior with respect to their branching structure
and probabilistic features, while abstracting away from those computation steps that can be marked as irrelevant to
the analysis at hand. To the best of our knowledge, in the context of nondeterministic probabilistic processes, no proof
of probabilistic branching bisimilarity being an equivalence has been provided so far. Since, as happened in the fully
nondeterministic case, some researchers are using such a result by taking it for granted, we decided to dedicate this note to
a formal proof of it. More precisely, we extend and adapt the proof strategy used by Basten in the fully nondeterministic
case. Thus, we introduce the probabilistic analogue to the notion of semi-branching bisimilarity and to van Glabbeek
and Weijland’s Stuttering Lemma to prove that probabilistic branching bisimilarity is indeed an equivalence relation.

Keywords: Nondeterministic probabilistic processes, Probabilistic branching bisimilarity, Semi-branching bisimilarity,
Equivalence relations

1. Introduction

Branching bisimulation [19] is a behavioural equivalence
that generalizes bisimulation [31, 32] to abstract away from
(non observable, irrelevant, hidden) silent computation
steps of processes while preserving their branching struc-
ture. This key feature is mainly due to the stuttering na-
ture of branching bisimulation, which guarantees that the
potential of a process is preserved in the execution of a
sequence of silent steps [19, 20]. It is therefore not sur-
prising that branching bisimulation has become one of the
most studied behavioural equivalences (see among others
[5–8, 10, 11, 15–17, 21, 22, 39]).

Following the ever-increasing interest in probabilistic
systems, several notions of probabilistic branching bisimu-
lation have been proposed (see, e.g., [2, 4, 9, 29, 35, 37]).
The reason behind such a wealth of definitions is two-fold:

• There are several different probabilistic models, like
the alternating [24, 33], fully probabilistic [27], gen-
erative, and reactive models [18], labeled Markov
chains [23], and nondeterministic probabilistic la-
beled transition systems (PTSs) [34], each one with
distinctive features leading to different formalization
of branching bisimulation.

• There are several possible interpretations of the in-
terplay of nondeterminism, probability and weak se-
mantics. This prevents us from identifying a “unique,
correct” extension of branching bisimulation to the
probabilistic setting.
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All such notions suffer the same drawback, which is
actually shared with the fully nondeterministic branching
bisimulation: it is not true, in general, that the composi-
tion of two (probabilistic) branching bisimulations is in
turn a (probabilistic) branching bisimulation [5]. It is
therefore not trivial to prove that the relation obtained
as the union of all (probabilistic) branching bisimulations,
the so called (probabilistic) branching bisimilarity, is an
equivalence relation.

In the fully nondeterministic setting, in [5] Twan Bas-
ten proved such a result by exploiting the notion of semi-
branching bisimulation [19] and the stuttering property of
branching bisimulations.

In this note we extend his technique and provide a de-
tailed proof of probabilistic branching bisimilarity being
an equivalence relation over processes in the PTS model,
namely processes whose next computation step is chosen
nondeterministically and each transition takes a process to
a (discrete) probability distribution over processes. The
result is given for PTSs that are divergence-free, namely
PTSs where all sequences of silent steps are finite. Inter-
estingly, we provide an example showing that the inter-
play of nondeterminism and probability breaks the stut-
tering property of both branching bisimilarity and semi-
branching bisimilarity for those PTSs that admit diver-
gence. This suggests us that these behavioural properties
are interesting only in the divergence-free case, since stut-
tering is one of their main desired property. Divergence-
freedom is a property of PTSs induced by several process
algebras, like, e.g. the family timed process algebras origi-
nally introduced in [26], where in between two tick actions
modelling the discrete passage of time only a limited num-

Preprint submitted to Information Processing Letters



2 BACKGROUND 2

ber of silent actions is admitted, in order to prevent Zeno
behaviours. Roughly,

1. In the context of PTSs, we introduce the notion
of probabilistic semi-branching bisimulation. Tech-
nically, probabilistic semi-branching bisimulation re-
laxes probabilistic branching bisimulation by giving
to pairs of related processes more freedom in mim-
icking their initial silent moves.

2. We show that the relation composition of two proba-
bilistic semi-branching bisimulations is again a semi-
branching bisimulation (Proposition 3) even if we
lift them to relations over distributions (Lemma 5).
This allows us to conclude that probabilistic semi-
branching bisimilarity, namely the union of all semi-
branching bisimulations, is transitive. Since it is also
reflexive and symmetric, we infer that it is an equiv-
alence relation (Theorem 1). This result holds also
for PTSs with divergence.

3. We introduce the probabilistic equivalent to the stut-
tering Lemma from [20]. This states that, in the
divergence-free case, probabilistic semi-branching bisim-
ilarity satisfies the (probabilistic) stuttering prop-
erty (Proposition 5).

4. By observing that each probabilistic semi-branching
bisimulation with the stuttering property is also a
probabilistic branching bisimulation, we show (Corol-
lary 1) that probabilistic semi-branching bisimilar-
ity coincides with probabilistic branching bisimilar-
ity. Hence, we conclude that probabilistic branching
bisimilarity is an equivalence relation (Theorem 2).
Clearly, this holds in the divergence-free case.

5. We provide an example showing that both branching
bisimilarity and semi-branching bisimilarity are not
stuttering for PTSs admitting divergences.

Interestingly, [1] presents a proof of probabilistic branch-
ing bisimilarity being an equivalence on a different seman-
tic model, namely that of non-strictly alternating processes
[33]. In that model, there is a partition between nonde-
terministic processes and probabilistic ones, and processes
of each type only perform transitions of the same type.
Also due to the differences between the considered seman-
tic models, the proof technique of [1] is quite different from
ours in that they define each probabilistic branching bisim-
ulation directly as an equivalence relation and they prove
that the transitive closure of the union of all probabilis-
tic branching bisimulations, i.e., probabilistic branching
bisimilarity, which is an equivalence relation by construc-
tion, is again a probabilistic branching bisimulation. The
same proof technique is used in [3] to prove that proba-
bilistic branching bisimilarity is an equivalence over fully
probabilistic processes [27], namely processes with a de-
terministic transition to a distribution.

2. Background

In this section we introduce the notion of probabilistic
branching bisimulation on the PTS model.

2.1. The PTS model.

Given a countable set X, a discrete probability dis-
tribution over X is a mapping π : X → [0, 1] such that∑
x∈X π(x) = 1. The support of π is the set supp(π) =

{x ∈ X | π(x) > 0}. By ∆(X) we denote the set of
all finitely supported distributions over X, ranged over by
π, π′, . . . . Given an element x ∈ X, we let δ(x) denote
the Dirac’s distribution on x, defined by δ(x)(x) = 1 and
δ(x)(y) = 0 for all y 6= x. For a finite set of indexes
I, weights pi ∈ (0, 1] with

∑
i∈I pi = 1 and distributions

πi ∈ ∆(X) with i ∈ I, the distribution
∑
i∈I piπi is de-

fined by (
∑
i∈I piπi)(x) =

∑
i∈I pi · πi(x), for all x ∈ X.

PTSs [34] combine LTSs [28] and discrete time Markov
chains [23], to model, at the same time, reactive behavior,
nondeterminism and probability. In a PTS, the state space
is given by a set S of processes, ranged over by s, t, . . . . The
transition steps take processes to probability distributions
over processes in ∆(S) and are labeled by actions describ-
ing the observable activity of the process. We assume a set
of actions Aτ = A∪{τ}, where the silent action τ models
an internal computation step that cannot be observed by
the external environment. We let α, β, . . . range over Aτ
and a, b, . . . range over A.

Definition 1 (PTS, [34]). A nondeterministic probabilis-
tic labelled transition system (PTS) is a triple (S,Aτ ,−→),
where: 1. S is a countable set of processes, 2. Aτ = A∪{τ}
is a countable set of actions, and, 3. −→⊆ S×Aτ ×∆(S)
is a transition relation.

A transition (s, α, π) ∈−→ is usually denoted by s
α−→ π.

In a PTS, given an infinite set I, a divergence is a se-
quence of processes {si}i∈I and distributions {πi}i∈I with

si
τ−→ πi and si+1 ∈ supp(πi), for all i ∈ I. The proof that

probabilistic branching bisimulation is an equivalence is
given for divergence-free PTSs. We refer the interested
reader to Section 5 for further details on divergence.

2.2. Relation lifting

A probabilistic branching bisimulation is a relation over
S that relates two processes if they can mimic each others
observable transitions and evolve to distributions related,
in turn, by the same relation. To formalize this intuition,
we need to lift relations over processes to distributions.
This is obtained via the notion of matching, also known as
coupling or weight function, for distributions.

Definition 2 (Matching). Let X,Y be two countable sets
and consider two distributions πX ∈ ∆(X) and πY ∈
∆(Y ). A matching for πX and πY is a distribution over
the product space w ∈ ∆(X×Y ) having πX and πY as left
and right marginals, respectively, namely

∑
y∈Y w(x, y) =
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πX(x), for all x ∈ X, and
∑
x∈X w(x, y) = πY (y), for all

y ∈ Y . We denote by W(πX , πY ) the set of all matchings
for πX and πY .

Definition 3 (Relation lifting, [34]). The lifting of a rela-
tion R ⊆ X ×Y is the relation R` ⊆ ∆(X)×∆(Y ) with
πX R` πY if and only if there is a matching w ∈W(πX , πY )
such that xR y whenever w(x, y) > 0.

We recall here some definitions equivalent to Defini-
tion 3 which will be useful in our proofs.

Proposition 1 ([12, Def. 2.1 and Thm. 2.4]). Consider a
relation R ⊆ X × Y . Then R` ⊆ ∆(X) × ∆(Y ) is the
smallest relation satisfying

1. xR y implies δ(x)R` δ(y);

2. πiR` π′i implies (
∑
i∈I piπi)R` (

∑
i∈I piπ

′
i), for any

finite index set I with pi ∈ (0, 1] and
∑
i∈I pi = 1.

Proposition 2 ([13, Prop. 1]). Consider two sets X,Y .
Let πX ∈ ∆(X), πY ∈ ∆(Y ) and R ⊆ X × Y . Then
πX R` πY if and only if there are a finite set of indexes I
and of weights pi ∈ (0, 1] with

∑
i∈I pi = 1, such that

• πX =
∑
i∈I piδ(xi),

• πY =
∑
i∈I piδ(yi),

• xi R yi for all i ∈ I.

2.3. Weak transitions

In order to define weak transitions, which allow us to
abstract away from silents steps, we need to lift the notion
of a transition to a relation between probability distribu-
tions. This is called a hyper-transition in [29, 30] and stems
from [14, 30]. Here, we adapt it to the PTS model. The

idea is that a transition π
α−→ π′ between two distribu-

tions π, π′ ∈ ∆(S) is enabled if and only if all processes in
the support of π can perform an α-move and π′ is the con-
vex combination of the distributions reached through these
transitions, namely for all s ∈ supp(π) we have s

α−→ πs,
for some πs ∈ ∆(S), and π′ =

∑
s∈supp(π) π(s)πs. How-

ever, this way of lifting transitions is too strict to deal
with weak semantics like probabilistic branching bisimula-
tion. In fact, as in the nonprobabilistic setting, a process
can simulate a τ -move of another process by not perform-
ing any move, we need to allow (some of) the processes in
the support of distributions to do the same. In order to
formalise that some processes in a distribution have the
freedom to simulate a τ by idling, we consider the set of
labels Âτ = {α̂ | α ∈ Aτ}, with α̂ 6∈ Aτ , and use Aτ ∪ Âτ
to label lifted transitions. Then, π

τ−→` π
′ denotes that

all processes in the support of π make the silent transi-

tions, whereas π
τ̂−→` π

′ denotes that some processes in
the support of π make the silent transitions.

Definition 4 (Lifted transition). For a PTS (S,Aτ ,−→),
we define the relation −→` : (S∪∆(S))× (Aτ ∪ Âτ )×∆(S)
from −→ as follows:

• s α−→` π if and only if s
α−→ π;

• s α̂−→` π if and only if

{
either s

α−→ π

or α = τ and π = δ(s);

• for (α) ∈ {α, α̂}, π (α)−−→` π
′ if and only if:

– s
(α)−−→` πs for all s ∈ supp(π), and

– π′ =
∑
s∈supp(π) π(s)πs.

Clearly, if α 6= τ then relations
α̂−→` and

α−→` coincide.
The reason for having both notations is that, sometimes, it

will be convenient to write
α̂−→` or

α−→` by letting α range
to the whole Aτ .

As usual we write
ε̂−→` for the reflexive-transitive clo-

sure of the relation
τ̂−→`. We remark that in the divergence-

free case a lifted transition of the form s
τ̂−→` δ(s) can never

be inferred from any transition s
τ−→ δ(s). Therefore, in

that case, s
τ̂−→` δ(s) is syntactic sugar to denote that no

silent-move took place.

2.4. Probabilistic branching bisimilarity

Our definition of probabilistic branching bisimulation
is equivalent to the scheduler-free version defined in [1, 29].

Definition 5 (Probabilistic branching bisimulation). A
binary relation B ⊆ S × S is a probabilistic branching
bisimulation if whenever s B t then:

1. whenever s
α−→ πs then

(a) either α = τ and πs B` δ(t);

(b) or t
ε̂−→` π

α−→` πt with δ(s) B` π and πs B` πt;

2. whenever t
α−→ πt then

(a) either α = τ and δ(s) B` πt;

(b) or s
ε̂−→` π

α−→` πs with π B` δ(t) and πs B` πt.

Then, we say that s and t are probabilistic branching bisim-
ilar, notation s ≈b t, if there exists a probabilistic branch-
ing bisimulation relating them.

Notice that an arbitrary union of probabilistic branch-
ing bisimulations is in turn a probabilistic branching bisim-
ulation. Therefore the union of all probabilistic branch-
ing bisimulations, namely ≈b, is the largest probabilistic
branching bisimulation, which will be called probabilistic
branching bisimilarity. We remark also that Definition 5
automatically guarantees that the inverse of a probabilistic
branching bisimulation is a probabilistic branching bisim-
ulation.
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2.5. Related work in brief

We remark that we do not require branching bisimu-
lations to be symmetric, although it is easy to prove that
our Definition 5 would be equivalent to its formulation in
terms of symmetric relations. We opted for the present for-
mulation because, as already pointed out in [5] for the fully
nondeterministic case, it is not true in general that the re-
lation composition of two symmetric relations is a symmet-
ric relation, thus implying that the closure of probabilistic
branching bisimulations under union would not be imme-
diate. Even further, differently from e.g., [1, 3, 35, 36],
we do not require a probabilistic branching bisimulation
B to be an equivalence relation (cf., e.g., [1, Definition
5]). As argued in [25], requiring each relation B to be an
equivalence is very restrictive, although unnecessary, as to
verify equivalence we would need to use witness relations
that are in turn equivalences. We stress also that our ap-
proach is state-based as opposite to the distribution-based
one of, e.g., [14]. Briefly, the main difference in the two ap-
proaches is that in the latter, each nondeterministic choice
of a process becomes a probabilistic choice. As a conse-
quence, it is always possible to reason on subdistributions
over processes, instead of distributions, generating thus a
coarser behavioral relation on them. Notice that, from this
point of view, the use of randomized schedulers, or com-
bined transitions, in [35] (and thus in all the subsequent
ones) is equivalent to the distribution based approach. It
is however our opinion that, as perfectly embodied by the
PTS model and the chosen state-based approach, nonde-
terminism and probability are two distinct concepts obey-
ing their own principles and laws and thus we need to
model both of them, as well as their interplay, without
substituting one with the other.

3. Probabilistic semi-branching bisimilarity

To prove that probabilistic branching bisimilarity is an
equivalence, we extend and improve the proof technique
used in [5], for the fully nondeterministic case, to deal with
the probabilistic behavior of processes. We start, in this
section, by relaxing the notion of probabilistic branching
bisimulation to that of probabilistic semi-branching bisim-
ulation, and we show that the largest probabilistic semi-
branching bisimulation is an equivalence relation (Theo-
rem 1). This result is proved also for processes admitting
divergence. Informally, the only difference between these
two behavioural relations is in the treatment of τ as initial
step: for a semi-branching bisimulation S and processes
s S t, if s performs a τ -transition s

τ−→ πs as in case 1
in Definition 5, then the first possible answer by t formal-
ized in case 1a and consisting in making no move provided
that δ(t) is related with πs, is relaxed by admitting that
there is an arbitrary sequence of silent transitions taking
t to a distribution π related with πs. On the contrary, the
second possible answer by t formalised in case 1b is left
unchanged. Technically, instead of rewriting the relaxed

version of case 1a and the original case 1b, in the follow-
ing formal definition we compact the two cases by simply
asking that t performs a (possibly empty) sequence of τ -

transitions t
ε̂−→` π with δ(s) S` π and, then, π performs a

lifted τ -move π
τ̂−→` πt with πs S` πt, thus allowing each

process in supp(π) to mimic or not the τ -move by s.

Definition 6 (Probabilistic semi-branching bisimulation).
A binary relation S ⊆ S×S is called a probabilistic semi-
branching bisimulation if whenever s S t then:

• whenever s
α−→ πs then t

ε̂−→` π
α̂−→` πt with δ(s) S` π

and πs S` πt;

• whenever t
α−→ πt then s

ε̂−→` π
α̂−→` πs with π S` δ(t)

and πs S` πt.

Two processes s, t are called probabilistic semi-branching
bisimilar, denoted by s ≈sb t, if there exists a probabilistic
semi-branching bisimulation relating them.

Notice that an arbitrary union of probabilistic semi-
branching bisimulations is in turn a probabilistic semi-
branching bisimulation. Therefore, the union of all proba-
bilistic semi-branching bisimulations, namely ≈sb, is the
largest probabilistic semi-branching bisimulation, which
will be called probabilistic semi-branching bisimilarity.

We also remark that, by Definition 4, in case α = τ

the lifted transition π
τ̂−→` πt in the first item of Defini-

tion 6 (and, analogously, the lifted transition π
τ̂−→` πs in

the second item) does not imply that a τ -step was actually
performed, that is the processes in the support of π are not
obliged to mimic the τ -move by s. This additional level of
freedom will allow us to obtain that the relation compo-
sition of two probabilistic semi-branching bisimulations is
in turn a probabilistic semi-branching bisimulation. This
result, formally stated in Proposition 3, ensures that prob-
abilistic semi-branching bisimilarity is transitive. Being
it reflexive and symmetric by definition, we will conclude
that it is an equivalence relation (Theorem 1).

In order to show that the probabilistic semi-branching
bisimulations over the PTS model are closed under re-
lation composition, we need several preliminary results.
Essentially, we need to show that: (i) probabilistic semi-
branching bisimulations are preserved by relation lifting,
formally stated in Lemma 3, (ii) processes related by a
probabilistic semi-branching bisimulation are able to sim-
ulate arbitrary sequences of τ -transitions, formally stated
in Lemma 4, and (iii) relation lifting distributes over rela-
tion composition, formally stated in Lemma 5

3.1. Relation lifting preserves probabilistic semi-branching
bisimulations

In order to present Lemma 3, we need two preliminary
results. The first states that the lifted transitions per-
formed by a convex combination of distributions

∑
i∈I piπi

are in bijection with the lifted transitions performed by
those distributions πi.
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Lemma 1. Assume that π =
∑
i∈I piπi and (α) ∈ {α, α̂}.

Then,

π
(α)−−→` π

′ ⇐⇒

[
∀i ∈ I. πi

(α)−−→` π
′
i

π′ =
∑
i∈I piπ

′
i.

Proof. For each i ∈ I, πi has the form πi =
∑
j∈Ji qi,jδ(si,j)

for a suitable set of indexes Ji and processes si,j . There-
fore, π =

∑
i∈I pi

∑
j∈Ji qi,jδ(si,j), which can be rewritten

as π =
∑
i∈I,j∈Ji piqi,jδ(si,j). By Definition 4, we have

that π
(α)−−→` π

′ if and only if si,j
(α)−−→` πi,j for all i ∈ I

and j ∈ Ji, and π′ =
∑
i∈I,j∈Ji piqi,jπi,j . By Definition 4,

for each i ∈ I we have that si,j
(α)−−→` πi,j for all j ∈ Ji

is equivalent to having πi
(α)−−→`

∑
j∈Ji qi,jπi,j . Summariz-

ing, we have shown that π
(α)−−→` π

′ if and only if πi
(α)−−→`∑

j∈Ji qi,jπi,j for all i ∈ I. If we name the distribution∑
j∈Ji qi,jπi,j as π′i, then it remains to prove that π′ =∑
i∈I piπ

′
i, i.e.,

∑
i∈I,j∈Ji piqi,jπi,j =

∑
i∈I pi

∑
j∈Ji qi,jπi,j ,

which clearly holds.

By exploiting Lemma 1, we can show that any sequence

of lifted transitions
ε̂−→`

α̂−→` performed by a distribution π
is in bijection with the same sequence performed by the
processes in its support.

Lemma 2. Assume a distribution π ∈ ∆(S). We have

π
ε̂−→` π

′ α̂−→` π
′′ ⇐⇒


∀s ∈ supp(π). s

ε̂−→` π
′
s

α̂−→` π
′′
s

π′ =
∑
s∈supp(π) π(s)π′s,

π′′ =
∑
s∈supp(π) π(s)π′′s .

Proof. First we prove that

π
ε̂−→` π

′ ⇐⇒

[
s

ε̂−→` π
′
s for all s ∈ supp(π)

π′ =
∑
s∈supp(π) π(s)π′s.

(1)

In order to prove (1), we show the two implications sepa-
rately.

Case “=⇒”. We proceed by induction over the num-

ber n of τ̂ -transitions giving rise to π
ε̂−→` π

′.
Base case: n = 1. We have π′ = π, therefore π′ =∑
s∈supp(π) π(s)δ(s). For all s ∈ supp(π), by definition of

τ̂−→`, we have s
τ̂−→` δ(s), which implies s

ε̂−→` δ(s), thus

implying that the property s
ε̂−→` π

′
s for all s ∈ supp(π)

and π′ =
∑
s∈supp(π) π(s)π′s follows for π′s = δ(s).

Inductive step: n > 1. The sequence π
ε̂−→` π

′ is ob-

tained by sequences π
ε̂−→` π

′′′ and π′′′
τ̂−→` π

′, where

π
ε̂−→` π

′′′ consists in n τ̂ -transitions. By the inductive hy-

pothesis we have s
ε̂−→` π

′′′
s for all s ∈ supp(π) and π′′′ =∑

s∈supp(π) π(s)π′′′s . By Lemma 1, from π′′′
τ̂−→` π

′ we infer

π′′′s
τ̂−→` π

′
s for all s ∈ supp(π), with π′ =

∑
s∈supp(π) π(s)π′s.

It remains to prove that s
ε̂−→` π

′
s for all s ∈ supp(π). This

follows by s
ε̂−→` π

′′′
s and π′′′s

τ̂−→` π
′
s.

Case “⇐=”. Let ns be the number of τ̂ -transitions

giving rise to s
ε̂−→` π

′
s. We proceed by induction over

n = maxs∈supp(π) ns.

Base case: n = 1. For all s ∈ supp(π) we have s
τ̂−→`

π′s. By Definition 4 we infer π
τ̂−→` π

′ =
∑
s∈supp(π) π

′
s,

thus giving π
ε̂−→` π

′.
Inductive step: n > 1. For all s ∈ supp(π) we have that

the sequence s
ε̂−→` π

′
s is obtained by sequences s

ε̂−→` π
′′′
s

and π′′′s
τ̂−→` π

′
s, where each s

ε̂−→` π
′′′
s consists in at most n

τ̂ -transitions. By the inductive hypothesis, we derive that

π
ε̂−→` π

′′′ for π′′′ =
∑
s∈supp(π) π(s)π′′′s . By Lemma 1, we

have that π′′′s
τ̂−→` π

′
s implies π′′′ =

∑
s∈supp(π) π(s)π′′′s

τ̂−→`∑
s∈supp(π) π(s)π′s = π′, which, together with π

ε̂−→` π
′′′

gives π
ε̂−→` π

′.

Now we exploit (1) to prove the thesis. We prove the
two implications separately.

Case “=⇒” Assume that π
ε̂−→` π

′ α̂−→` π
′′. By (1),

π
ε̂−→` π

′ implies s
ε̂−→` π

′
s for all s ∈ supp(π) and π′ =∑

s∈supp(π) π(s)π′s. By Lemma 1, π′
α̂−→` π

′′ implies π′s
α̂−→`

π′′s with π′′ =
∑
s∈supp(π) π(s)π′′s . Summarising, s

ε̂−→`

π′s and π′s
α̂−→` π′′s , π′ =

∑
s∈supp(π) π(s)π′s and π′′ =∑

s∈supp(π) π(s)π′′s , as required.

Case ‘⇐=” Assume that s
ε̂−→` π

′
s

α̂−→` π
′′
s for all s ∈

supp(π), π′ =
∑
s∈supp(π) π(s)π′s, π

′′ =
∑
s∈supp(π) π(s)π′′s .

The first two properties imply that π
ε̂−→` π′, by (1).

Then, by Lemma 1, π′s
α̂−→` π′′s implies that we have

π′ =
∑
s∈supp(π) π(s)π′s

α̂−→`

∑
s∈supp(π) π(s)π′′s . Summa-

rizing, π
ε̂−→` π

′ and π′
α̂−→`

∑
s∈supp(π) π(s)π′′s = π′′, as

required.

Lemma 2 allows us to show that semi-branching bisim-
ulations are preserved by the relation lifting. Before we
adapt the notion of semi-branching bisimulation to distri-
butions.

Definition 7. A binary relation S ⊆ ∆(S) ×∆(S) is a
semi-branching bisimulation if whenever π1 S π2 then

• whenever π1
α−→` π

′
1 then π2

ε̂−→` π
′′
2

α̂−→` π
′
2 with

π1 S π′′2 and π′1 S π′2

• whenever π2
α−→` π

′
2 then π1

ε̂−→` π
′′
1

α̂−→` π
′
1 with

π′′1 S π2 and π′1 S π′2.

Clearly, also semi-branching bisimulations over distri-
butions are closed under union and the union of all semi-
branching bisimulations is the greatest one.
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Lemma 3. If a binary relation S ⊆ S × S is a semi-
branching bisimulation, then so is S` ⊆ ∆(S)×∆(S).

Proof. We need to show that whenever π1 S` π2 then

π1
α−→` π

′
1 implies

[
π2

ε̂−→` π
′′
2

α̂−→` π
′
2 with

π1 S` π′′2 ∧ π′1 S` π′2
(2)

π2
α−→` π

′
2 implies

[
π1

ε̂−→` π
′′
1

α̂−→` π
′
1 with

π′′1 S` π2 ∧ π′1 S` π′2.
(3)

We expand only the proof of Equation (2), since the other
one can be obtained by applying a symmetric argument.
First of all, we recall that by Definition 3, π1 S` π2 im-
plies the existence of a matching w ∈W(π1, π2) such that
whenever w(s, t) > 0 then s S t. By Proposition 2 this
is equivalent to state that there are a finite set of indexes
I and weights pi ∈ (0, 1] such that π1 =

∑
i∈I piδ(si),

π2 =
∑
i∈I piδ(ti) and si S ti for all i ∈ I. Assume that

π1
α−→` π

′
1. By Definition 4 (last case) this implies that

for all i ∈ I, si
α−→` πi and π′1 =

∑
i∈I piπi. From si S ti,

we infer ti
ε̂−→` π

′′
i

α̂−→` π
′
i with δ(si) S` π′′i and πi S` π′i.

As this holds for all i ∈ I, since π2 =
∑
i∈I piδ(ti), by

Lemma 2 we get π2
ε̂−→` π

′′
2

α̂−→` π
′
2 with π′′2 =

∑
i∈I piπ

′′
i

and π2 =
∑
i∈I piπ

′
i. To conclude, it remains to show that

π1 S` π′′2 and π′1 S` π′2. Both relations follow by Propo-
sition 1. In fact, for the former it is enough to notice
that π1 =

∑
i∈I piδ(si), π

′′
2 =

∑
i∈I piπ

′′
i and δ(si) S` π′′i

for all i ∈ I. For the latter, we have π′1 =
∑
i∈I piπi,

π′2 =
∑
i∈I piπ

′
i and πi S` π′i for all i ∈ I.

3.2. Simulation of sequences of silent transitions

The next lemma exploits Lemma 3 and generalizes
the transfer condition of semi-branching bisimilarity to se-
quences of silent transitions. In its proof, we use s −→n π

as a shorthand for s
τ̂−→` π1

τ̂−→` . . .
τ̂−→` πn = π.

Lemma 4. Assume that s S t for some probabilistic semi-
branching bisimulation S . Then:

1. Whenever s
ε̂−→` πs, then t

ε̂−→` πt with πs S` πt.

2. Whenever t
ε̂−→` πt, then s

ε̂−→` πs with πs S` πt.

Proof. We expand only the proof of the first item. The
proof for the second item can be obtained by a symmetric
argument. We proceed by induction over the length n ∈ N
of the sequence of transitions s

ε̂−→` πs.

Base case: n = 1. In this case s
ε̂−→` πs derives from

s
τ̂−→` πs. Being S a semi-branching bisimulation, we

have that t
ε̂−→` π

τ̂−→` πt, thus giving t
ε̂−→` πt, with

δ(s) S` π and πs S` πt.
Inductive step: n > 1. Assume that s −→n πs. Clearly,

this is equivalent to s −→n−1 π′s
τ̂−→` πs. By the inductive

hypothesis, there is π′t such that t
ε̂−→` π

′
t and π′s S` π′t

(notice that the length of the sequence of transitions taken
by t does not depend on n). Since, by Lemma 3, S` is a

semi-branching bisimulation, from π′s
τ̂−→` πs we infer that

π′t
ε̂−→` π

′′
t

τ̂−→` πt for some π′s S` π′′t and πs S` πt. Thus,
we can concatenate the two sequences of lifted transitions

and obtain t
ε̂−→` πt with πs S` πt.

3.3. Relation lifting distributes over relation composition

Next we show that relation lifting distributes over re-
lation composition.

Lemma 5. Let R1, R2 be two relations over processes.
Then R`1 ◦ R`2 = (R1 ◦ R2)`.

Proof. We prove first the inclusion R`1◦ R`2 ⊆ (R1◦ R2)`.
Assume π1(R`1 ◦ R`2)π3. Thus, there is a distribution

π2 such that π1R`1 π2 and π2R`2 π3. Let w12 ∈W(π1, π2)
and w23 ∈W(π2, π3) be the matchings obtained from such
relations according to Definition 3. We define

w13(s, u) =
∑

t∈supp(π2)

w12(s, t) ·w23(t, u)

π2(t)
.

It is immediate to verify that w13 is a well defined match-
ing for π1 and π3. Moreover, w13(s, u) > 0 if and only if
w12(s, t) > 0 and w23(t, u) > 0 for some process t. By
the choices of w12,w23, this implies sR1t and tR2u, thus
giving s (R1 ◦ R2)u whenever w13(s, u) > 0. Therefore,
we can conclude that π1 (R1 ◦ R2)` π3.

Next, we prove the inclusion R`1 ◦ R`2 ⊇ (R1 ◦ R2)`.
Assume π1(R1◦ R2)`π3. Then, by Definition 3, there is

a matching w13 ∈W(π1, π3) such that whenever w13(s, u) >
0 then s (R1 ◦ R2)u. This implies that for such pairs s, u
there is (at least) one process t such that s R1 t and t R2 u.
For each pair s, u we choose one of such processes t, which
we will denote by ts,u. We need to exhibit a distribution
π2 such that π1 R`1 π2 and π2 R`2 π3. Clearly, to this end,
the support of π2 should be constituted by the processes
ts,u. Hence, we define

π2(t) =

{
w13(s, u) if t = ts,u

0 otherwise.

Since w13 ∈W(π1, π3), we get

π1 =
∑

s∈supp(π1),u∈supp(π3)

w13(s, u) · δ(s)

π2 =
∑

s∈supp(π1), u∈supp(π3)

w13(s, u) · δ(ts,u)

π3 =
∑

s∈supp(π1), u∈supp(π3)

w13(s, u) · δ(u).

Let I be the set I = {(s, u) | w13(s, u) > 0}. For each i ∈
I, we let si = s whenever i = (s, u) for some u. Similarly
we let ui = u whenever i = (s, u) for some s. Moreover,
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we let ti = ts,u whenever i = (s, u). Finally, we define
pi = w13(s, u) whenever i = (s, u). Then we get

π1 =
∑
i∈I

piδ(si) π2 =
∑
i∈I

piδ(ti) π3 =
∑
i∈I

piδ(ui)

with si R1 ti and ti R2 ui for all i ∈ I. By Proposition 2
we can conclude that π1R`1 π2 and π2R`2 π3.

3.4. Probabilistic semi-branching bisimilarity is an equiv-
alence relation

By exploiting Lemma 3, Lemma 4 and Lemma 5, we
can now prove that the relation composition of two proba-
bilistic semi-branching bisimulations is again a probabilis-
tic semi-branching bisimulation.

Proposition 3. Assume two probabilistic semi-branching
bisimulations S1, S2 ⊆ S × S. Then, their relation com-
position S1 ◦ S2 is a probabilistic semi-branching bisimu-
lation.

Proof. Assume s (S1 ◦ S2)u. Thus, there is some process
t for which we have s S 1 t and t S 2 u. We prove that
whenever s

α−→` πs, there are distributions π′u and πu such

that u
ε̂−→` π

′
u

α̂−→` πu, δ(s) ( S 1 ◦ S 2)` π′u and πs ( S 1 ◦
S2)` πu. The symmetric case can be proved by analogous
arguments. Since s S1 t, then there are distributions π′t, πt

such that t
ε̂−→` π

′
t
α̂−→` πt, δ(s) S`1 π′t and πs S`1 πt. Then,

as t S 2u, by Lemma 4 t
ε̂−→` π

′
t implies u

ε̂−→` π
′′
u with

π′t S `2 π′′u. By Lemma 3, since S2 is a semi-branching
bisimulation then also S`2 is a semi-branching bisimulation.

Therefore, from π′t S `2 π′′u and π′t
α̂−→` πt we get π′′u

ε̂−→`

π′u
α̂−→` πu with π′t S `2 π′u and πt S`2 πu. We have therefore

obtained that u
ε̂−→` π

′
u

α̂−→` πu with δ(s) (S `
1 ◦ S `2)π′u

and πs ( S `1 ◦ S `2)πu. Finally, by applying Lemma 5 we
can conclude that δ(s) (S1 ◦ S2)` π′u and πs (S1 ◦ S2)` πu,
thus obtaining the thesis.

We finally have all the ingredients necessary to state
that semi-branching bisimilarity is an equivalence relation.

Theorem 1. Probabilistic semi-branching bisimilarity is
an equivalence relation over PTSs.

Proof. Reflexivity and symmetry follow from Definition 6.
Transitivity follows from Proposition 3.

4. Probabilistic branching bisimilarity is an equiv-
alence on divergence-free PTSs

We dedicate the rest of the paper to lift Theorem 1 to
probabilistic branching bisimilarity. The result is proved
for divergence-free PTSs. Once again, we let [5] guide us.

Firstly, we need to relate probabilistic semi-branching
bisimilarity and probabilistic branching bisimilarity. In
the fully nondeterministic case it was argued in [5, 19, 20]

that each semi-branching bisimulation satisfying the stut-
tering property is also a branching bisimulation. There-
fore, we need to introduce the equivalent to the stuttering
lemma of [19, 20] for the probabilistic case.

Definition 8 (Probabilistic stuttering property). A bi-
nary relation R ⊆ S × S has the probabilistic stuttering
property if and only if for all distributions π1, . . . , πn ∈
∆(S) it holds that:

• whenever sR t, t τ̂−→` π1
τ̂−→` . . .

τ̂−→` πn and
δ(s)R` πn, then δ(s)R` πi for all i = 1, . . . , n− 1;

• whenever sR t, s τ̂−→` π1
τ̂−→` . . .

τ̂−→` πn and
πnR` δ(t), then πiR` δ(t) for all i = 1, . . . , n− 1.

Clearly, any probabilistic semi-branching bisimulation
R with the probabilistic stuttering property, is a proba-
bilistic branching bisimulation. Informally, given processes
sR t, the definition of probabilistic semi-branching bisim-
ulation admits that a transition s

τ−→ πs is mimicked by

a transition t
ε̂−→` πt with δ(s)R` πt and πsR` πt, which

is not enough, in general, to conclude that R is a prob-

abilistic branching bisimulation. Assume that t
ε̂−→` πt

is derived from t
ε̂−→` π

′
t and π′t

τ̂−→` πt. The stuttering
property of R together with sR t and δ(s)R` πt imply

δ(s)R` π′t. Summarising, we have t
ε̂−→` π

′
t

τ̂−→` πt with
δ(s)R` π′t and πsR` πt, which is a correct way to mimic

s
τ−→ πs according to the definition of probabilistic branch-

ing bisimulation.
Hence, the next step consists in showing that proba-

bilistic semi-branching bisimilarity satisfies the probabilis-
tic stuttering property, thus allowing us to infer that it
coincides with probabilistic branching bisimilarity. This
result requires that PTSs are divergence-free.

To this purpose, we consider the equivalent formulation
to the stuttering lemma proposed in [10] (as Lemma 2.3.2).

Definition 9 (Probabilistic stuttering property). An equiv-
alence relation R ⊆ S × S has the probabilistic stuttering

property if and only if s
τ̂−→` π1

τ̂−→` . . .
τ̂−→` πn for some

n ∈ N and π1, . . . , πn ∈ ∆(S), then δ(s)R` πn implies
δ(s)R` πi for all i = 1, . . . , n− 1.

We prove that for equivalence relations, Definition 8
and Definition 9 are equivalent.

Proposition 4. For an equivalence relation R, Defini-
tion 8 and Definition 9 are equivalent.

Proof. Assume first that R satisfies Definition 8. We

have to prove that R satisfies Definition 9, namely s
τ̂−→`

π1
τ̂−→` . . .

τ̂−→` πn and δ(s)R` πn imply δ(s)R` πi for
all i = 1, . . . , n − 1. Since R is an equivalence, we have

sR s. Therefore, by Definition 8, from sR s, s τ̂−→` π1
τ̂−→`

. . .
τ̂−→` πn and δ(s)R` πn we infer δ(s)R` πi for all i =

1, . . . , n− 1, as required.
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Assume now that R satisfies Definition 9. We have to
prove that R satisfies Definition 8, namely sR t, t τ̂−→`

π1
τ̂−→` . . .

τ̂−→` πn and δ(s)R` πn imply δ(s)R` πi for all
i = 1, . . . , n − 1. Since R is an equivalence relation, if
sR t and δ(s)R` πn we get δ(t)R` πn. Since R satisfies

Definition 9, from t
τ̂−→` π1

τ̂−→` . . .
τ̂−→` πn and δ(t)R` πn

we get δ(t)R` πi for all i = 1, . . . , n − 1. Since R is an
equivalence and sR t we get δ(s)R` πi for all i = 1, . . . , n−
1, as required.

Since semi-branching bisimilarity is an equivalence re-
lation (Theorem 1), to show that it satisfies the stuttering
property it is enough to show that it satisfies the con-
straints in Definition 9.

Proposition 5. On divergence-free PTSs, semi-branching
bisimilarity satisfies the stuttering property.

Proof. Assume that s
τ̂−→` π1

τ̂−→` . . .
τ̂−→` πn, for some

n ∈ N and π1, . . . , πn ∈ ∆(S) with δ(s) ≈`sb πn. Each πi
is of the form πi =

∑
j∈Ji pjδ(sj) for some finite set of

indexes Ji and weights pj ∈ (0, 1] with
∑
j∈Ji pj = 1. We

aim at proving that δ(s) ≈`sb πi for all i ∈ {1, . . . , n − 1}.
Due to Definition 3, this is equivalent to show that s ≈sb sj
for all j ∈ Ji, i ∈ {1, . . . , n−1}. According to Definition 4,
for each i ∈ {1, . . . , n − 1} and j ∈ Ji, we can distinguish
two cases:

1. sj ∈ supp(πn). In this case, s ≈sb sj directly follows
from δ(s) ≈`sb πn, which, by Definition 3, implies
s ≈sb s

′ for all s′ ∈ supp(πn).

2. sj 6∈ supp(πn), which means that sj performs at least

one τ -move in the sequence πi
ε̂−→` πn. Let us prove

that s ≈sb sj by verifying the two constraints of
Definition 6.

Assume first that s
α−→ πs. Since δ(s) ≈`sb πn and by

Lemma 3 ≈`sb is a semi-branching bisimulation, we

infer that πn
ε̂−→` π

′′ α̂−→` π
′ with δ(s) ≈`sb π′′ and

πs ≈`sb π′. Since πi
ε̂−→` πn, we infer πi

ε̂−→` π
′′ α̂−→`

π′. By Definition 4, πi
ε̂−→` π

′′ implies that, for each

j ∈ Ji, sj
ε̂−→` π

′′
j and π′′ =

∑
j∈Ji pjπ

′′
j . Then

δ(s) ≈`sb π′′ gives
∑
j∈Ji pjδ(s) ≈

`
sb

∑
j∈Ji pjπ

′′
j , namely

δ(s) ≈`sb π′′j for all j ∈ Ji. Therefore, δ(s)
α−→` πs

implies π′′j
ε̂−→` π

′
j

α̂−→` πj with δ(s) ≈`sb π′j and

πs ≈`sb πj . We have therefore obtained that when-

ever s
α−→ πs then sj

ε̂−→` π
′
j

α̂−→` πj with δ(s) ≈`sb π′j
and πs ≈`sb πj .

Assume now that sj
α−→ πj . Suppose by contradic-

tion that there is no pair of distributions π′s, πs with

s
ε̂−→` π′s

α̂−→` πs, π
′
s ≈`sb δ(sj) and πs ≈`sb πj ,

namely that s 6≈sb sj . We show that this gives a
contradiction with s being divergence-free. In fact,
s 6≈sb sj gives δ(s) 6≈`sb πi, as by Definition 3 we

would have δ(s) ≈`sb πi if and only if s ≈sb sj for
all j ∈ Ji. This implies that at least one τ -move

is performed in the sequence s
ε̂−→` πi. In partic-

ular, s
τ−→ π′ for some π′ with δ(s) 6≈`sb π′. Sim-

ilarly, πi
ε̂−→` πn and δ(s) ≈`sb πn imply that at

least one τ -move is performed in this sequence, so

that πi
ε̂−→` π

′′ ε̂−→` πn for some π′′ with πi 6≈`sb π′′.
Therefore, the sequence s

ε̂−→` πn contains at least
two τ -moves that, as δ(s) ≈`sb πn, must be mimicked
by πn and by its δ(s)-equivalent derivatives, namely
s can perform an infinite sequence of τ -moves, and
it is therefore not divergence-free, thus giving the
desired contradiction.

We can give an example showing that the divergence-
free assumption is needed in order to have Proposition 5.

s
a

•
τ

1/2 1/2

s1 s2
τ b

•
c

•
τ

1 1

Figure 1

Let nil be the
process that can-
not perform any
move and con-
sider process s in
Figure 1, where
• represents the
distribution δ(nil).
Clearly s has di-
vergence, since by

performing a τ -step it reaches the distribution π =
1/2δ(s1)+1/2δ(s2) that can in turn perform a τ -lifted tran-

sition and reach δ(s) (as si
τ−→ δ(s) for i = 1, 2). One can

now notice that semi branching bisimilarity does not sat-
isfy the stuttering property in Definition 9: for n = 2, we

have s
τ̂−→` π

τ̂−→` δ(s) and clearly δ(s) S` δ(s). However,
δ(s) is not related to π by S` as s is semi branching bisim-

ilar to neither s1 nor s2. In fact, s1
b−→ δ(nil), but there is

no distribution reachable from s via a sequence of τ -lifted
transitions such that all the processes in its support can
perform a b-move, and thus there are no π′, π′′ such that

s
ε̂−→` π

′ b−→` π
′′. Similarly for the c-move by s2.

By Proposition 5 we can directly infer that on divergence-
free PTSs two processes are probabilistic branching bisim-
ilar if and only if they are probabilistic semi-branching
bisimilar.

Corollary 1. On divergence-free PTSs, probabilistic branch-
ing bisimilarity coincides with probabilistic semi-branching
bisimilarity.

Proof. Firstly, we recall that ≈b and ≈sb are defined, re-
spectively, as the largest branching bisimulation and the
largest semi-branching bisimulation. By Proposition 5 we
get that ≈sb satisfies the stuttering property and it is
therefore a branching bisimulation, giving ≈sb⊆≈b. Con-
versely, by Definition 6 it immediately follows that ≈b is a
semi-branching bisimulation. Hence≈b⊆≈sb holds. From
the two inclusions, we derive ≈b =≈sb as required.
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As an immediate consequence, we obtain that prob-
abilistic branching bisimilarity is an equivalence relation
over nondeterministic probabilistic processes.

Theorem 2. Probabilistic branching bisimilarity is an equiv-
alence relation over divergence-free PTSs.

Proof. The result is a direct consequence of Theorem 1
and Corollary 1.

5. Remarks on divergence

We have proved that probabilistic branching bisimilar-
ity is an equivalence over PTSs that are divergence-free.

Technically, since a probabilistic semi-branching bisim-
iulation satisfying the stuttering property is also a proba-
bilistic branching bisimulation, in order to prove our result
we have shown that probabilistic semi-branching bisimi-
larity is an equivalence (also when divergence is admit-
ted, Theorem 1) and that on divergence-free PTSs semi-
branching bisimilarity is stuttering (Proposition 5).

Then, we have provided an example of a PTS with
divergence where semi-branching bisimilarity is not stut-
tering. The arguments we used are valid also for branching
bisimilarity. Hence, the example shows that when diver-
gence is admitted then neither probabilistic semi branch-
ing bisimilarity nor probabilistic branching bisimilarity are
guaranteed to be stuttering. This is an interesting insight
since in the non probabilistic case, both these equivalences
are stuttering even if divergence is admitted. The example
clearly shows the reason of this discrepancy between the
probabilistic and the non-probabilistic case: in the former
case we may have a loop like δ(s)

τ−→ π
τ−→ δ(s) where the

processes in the support of π, like s1 and s2, have differ-
ent observable behaviour, thus implying that δ(s) and π
cannot be related by any behavioral relation. This kind of
situation cannot be replicated in the latter case.

The discrepancy between the probabilistic and the non-
probabilistic case arises only on PTSs with divergence. In-
deed, in the proof of Proposition 5 (second part of item 2)
we have formally proved that a process on which prob-
abilistic (semi)branching bisimilarity is not stuttering al-
ways has divergence. However, the converse implication
does not hold in general, since there are cases of processes
with divergence on which the relations are stuttering. In-
tuitively, if the divergence is only due to the presence of
self-loops (the process has probability 1 to go back to itself
with a single τ -move) then clearly the stuttering property
is satisfied. Moreover, notice that since the probability
of the loop is 1 we are also guaranteed that the infinite
sequence of silent-moves would not modify the probabil-
ities of observable events to be eventually observed (we
refer the interested reader to [36] for further details). We
conjecture that, modulo branching bisimilarity, this is the
only case in which the stuttering property and divergence
can coexist. However, a proof of this fact is beyond the
scope of this paper.

Nonetheless, we would like to point out that in [35]
no distinction between processes with or without diver-
gence was made, but the definition of branching bisimilar-
ity came with an additional constraint (which can be also
found in, e.g, [36, 38]). More precisely, using our notation,
in the definition of branching bisimulation the sequence

of lifted transitions t
ε̂−→` π

α−→` πt with which process t
mimics the transition s

α−→ πs, has to satisfy the branching
condition: either α = τ and πt = δ(t), or for all distribu-

tions π′ reached in the lifted sequence t
ε̂−→` π it holds

that δ(t) B` π′. In other words, branching bisimilarity is
established only on sequences of silent steps inducing the
stuttering property of the relation.

Finally, we remark that to prove that semi-branching
bisimilarity is an equivalence, we have never used the as-
sumption that processes are divergence-free. In many oc-
casions, the relation defined as branching bisimilarity is ac-
tually the semi-branching bisimilarity. But to be formally
correct, we have distinguished the two relations and used
the stuttering lemma to relate them. As argued above, the
stuttering property is sensible to divergence.
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