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Abstract

Since the seminal paper by Bloom, Fokkink and van Glabbeek, the Divide and Congruence technique allows
for the derivation of compositional properties of nondeterministic processes from the SOS-based decomposi-
tion of their modal properties. In an earlier paper, we extended their technique to deal also with quantitative
aspects of process behavior: we proved the (pre)congruence property for strong (bi)simulations on processes
with nondeterminism and probability. In this paper we further extend our decomposition method to favor
compositional reasoning with respect to probabilistic weak semantics. In detail, we consider probabilistic
branching and rooted probabilistic branching bisimilarity, and we propose logical characterizations for them.
These are strongly based on the modal operator 〈ε〉 which combines quantitative information and weak
semantics by introducing a sort of probabilistic lookahead on process behavior. Our enhanced method will
exploit distribution specifications, an SOS-like framework defining the probabilistic behavior of processes, to
decompose this particular form of lookahead. We will show how we can apply the proposed decomposition
method to derive congruence formats for the considered equivalences from their logical characterizations.

Keywords: Modal decomposition, Nondeterministic probabilistic transition systems, SOS, Congruence
formats, Probabilistic branching bisimulation

1. Introduction

Structural Operational Semantics (SOS) [68] is the standard framework to define the operational seman-
tics of processes. Briefly, processes are represented as terms over a proper algebra, giving the abstract syntax
of the considered language, and their operational behavior is expressed by transition steps that are derived

from a transition system specification (TSS) [68], namely a set of inference rules of the form
premises

conclusion
whose intuitive meaning is that whenever the premises are satisfied, then the transition step constituting
the conclusion can be deduced. The set of transitions steps that can be deduced, or proved, from the TSS
constitutes the labeled transition system (LTS) generated by the TSS [46]. Usually, behavioral relations, such
as preorders or equivalences, are defined on the LTS in order to compare the behavior of processes, possibly
abstracting away from details that are irrelevant in a given context.

Equipping processes with a semantics, however, is not the only application of the SOS framework. One
of the main targets in the development of a meta-theory of process description languages is to support
compositional reasoning, which requires language operators to be compatible with the behavioral relation
R chosen for the application context. In algebraic terms, this compatibility is known as the congruence
property of R with respect to all language operators, which consists in verifying whether

f(t1, . . . , tn)R f(t′1, . . . , t
′
n) for any n-ary operator f whenever tiR t′i for all i = 1, . . . , n.
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The congruence property guarantees that the substitution of a component of a system with an R -equivalent
one does not affect the behavior of that system. The SOS framework plays a crucial role in supporting
compositional reasoning and verification: a rule (or specification) format (see the survey papers [1, 65]) is a
set of syntactical constraints over inference rules ensuring the desired semantic properties of the generated
LTS. Thus, one can prove useful results, as the congruence property, for a whole class of languages at the
same time. For instance, the De Simone format [70] ensures that trace equivalence is a congruence, the
GSOS format [11] works for bisimilarity and in [10] the ntyft/ntxt format [49] is reduced to the ready trace
format and its variants to guarantee that decorated trace preorders are precongruences.

1.1. Probabilistic process algebras

Quantitative phenomena occur whenever the behavior of a system is not deterministic and it is charac-
terized by a variety of uncertainties, which can be either empirical, and thus due to incomplete knowledge
on system design, or physical, due to random (physical) events and the interaction of the system with the
external environment. Probability is one of the most important measures of uncertainty and is employed,
e.g., in networks [38, 50], security [2, 51], embedded systems [30].

Probabilistic process algebras [21, 54], such as the probabilistic versions of CCS [7, 23, 54], CSP [7, 19, 27,
54] and ACP [3, 4], extend classical process algebras with suitable operators allowing us to express probability
distributions over sets of possible events or behaviors. The most general semantic model extending LTSs
to capture probabilistic behavior is that of nondeterministic probabilistic labeled transition systems (PTSs)
[69], where, essentially, transition steps take processes to distributions over processes.

The SOS framework has been applied also in the probabilistic setting. For instance, considering only
congruence formats proposed on TSSs generating PTSs, the PGSOS format [7] and the ntµfθ/ntµxθ format
[19] ensure the congruence property of probabilistic bisimilarity [59]. Then, in [61] a probabilistic version of
the RBB safe format from [31] for (rooted) branching bisimilarity is proposed.

1.2. The Divide & Congruence technique

Irrespective of probability being considered or not, one of the main questions that needs to be answered
is “How can we derive compositional results for a behavioral relation from a rule format?”

One possible answer, the one that will be pursued in this paper, is to exploit the logical characterization
of the considered equivalence relation, which consists in exhibiting a class of modal formulae L such that two
processes are equivalent if and only if they satisfy the same formulae in L, thus expressing that two processes
cannot be distinguished by the observations that we can make on their behavior [53]. Hence the congruence
property becomes equivalent to state that the set of formulae satisfied by any process f(t1, . . . , tn) can be
determined from the sets of formulae satisfied by the subprocesses t1, . . . , tn.

Concretely, in [60] a compositional proof system for the Hennessy-Milner logic (HML) [53] is provided.
In order to obtain system implementations that are correct with respect to their specifications, the authors
propose an implementation by contexts reasoning: instead of extracting an implementation for the complete
system from the specification, it is easier, and hence preferable, to implement first the behavior of subcom-
ponents. Thus, to obtain the correctness of the whole system we need to establish what properties each
subcomponent should satisfy in order to guarantee that the system in which they are combined (or more
generally their context) will satisfy some given property (by the specification). Since the specification of
a system can be expressed in terms of modal formulae, the above statement can be reduced to establish
whether given a formula φ and a context C there are formulae φ1 . . . φn such that

whenever ti |= φi for each i = 1, . . . , n then C[t1, . . . , tn] |= φ. (1)

The analogy with the congruence property is immediate. To obtain it, [60] exploits an SOS machinery to
specify contexts [58]: by means of action transducers they reformulate a given TSS into a TSS in De Simone
format from which the formulae φi required in (1) are derived by means of property transformers.

Inspired by this work, [10] introduces the modal decomposition method. The underlying idea is the
same: reducing the satisfaction problem of a formula for a process to verifying whether its subprocesses
satisfy certain formulae obtained from its decomposition. This is obtained by the notions of ruloids [11] (an
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enhanced version of the action transducers of [60]), namely derived inference rules deducing the behavior of
process terms directly from the behavior of the variables occurring in them, and of decomposition mappings
(the property transformers of [60]) associating to each pair term-formula (t, φ) the set of formulae that the
variables in t have to satisfy to guarantee that t satisfies φ. The contribution of [10] and the subsequent
works [32–37] is not only related to the definition of the decomposition methods but also to their application.
In fact, they show that by combining the logical characterization of a relation, the decomposition of such a
logic and a rule format for the relation it is possible to systematically derive a congruence format for that
relation directly from its modal characterization. Briefly, it is enough to guarantee that the construction
of ruloids from the considered TSS preserves the syntactical constraints of the format. At the same time
the modal decomposition has to preserve the logical characterization, that is formulae in the characterizing
class L have to be decomposed into formulae in L. Then, from the compositional result (1) related to the
modal decomposition, the congruence property follows.

For what concerns probabilistic processes, in [39] the model of reactive probabilistic LTSs [48] is con-
sidered and a method for decomposing formulae from a probabilistic version of HML [66] characterizing
probabilistic bisimilarity with respect to a probabilistic TSS in the format of [57] is proposed.

1.3. Our goal: the Probabilistic Divide & Congruence

In our earlier papers [13, 14] we extended the Divide and Congruence technique to nondeterministic and
probabilistic processes in the PTS model. We defined a decomposition method for formulae in the probabilis-
tic extension of HML from [24] and we derived congruence formats for probabilistic strong (bi)simulations.
To obtain the decomposition, we developed an SOS-like machinery, called distribution specification, by which
we modeled syntactically the behavior of probability distributions over process terms. This allowed us to
decompose the formulae capturing the quantitative behavior of processes.

Our aim is now to generate congruence formats for probabilistic weak semantics, which allows us to
abstract from unobservable (also called internal, or silent) computation steps by processes, which, as usual,
are represented in the transition system by transitions labeled with the special symbol τ . The target is
therefore to pave the way to the development of a Probabilistic Divide and Congruence technique allowing
us to deal with the interplay of nondeterminism, probability and weak semantics.

Considering the vast amount of technical definitions and results that we will need, we decided to present
only the congruence formats for probabilistic branching bisimulation and its rooted version, so that we can
support our results with examples and thorough explanations. Accordingly, we will consider only process
terms defined in the PGSOS specification format [17], instead of the more general ntµfθ/ntµxθ format
[19]. This will allow us to give an inductive definition of ruloids. Moreover, the PGSOS format allows for
specifying nearly all probabilistic process algebras operators, so that our results will still have a wide range
of applications, as shown in Section 8. We delay till Section 9 an in depth discussion about the potential
extension of our results to the more general ntµfθ/ntµxθ format.

1.4. Implementation of the goal

The derivation of the congruence property for probabilistic (rooted) branching bisimilarity is obtained in
three main steps: 1. First, we have to provide a logical characterization for the considered relations. 2. Then,
we have to develop a decomposition method for the characterizing class of formulae. 3. Finally, we have to
define the formats for the considered relations and verify that the constraints of both the formats and the
logical characterization are preserved in the decomposition procedure. In detail:

1. Logical characterization (Section 3).

We introduce a class of modal formulae L, obtained by extending HML with special formulae 〈τ〉ψ, 〈ε〉ψ
in which the modalities 〈τ〉 and 〈ε〉 express the execution of (sequences of) silent steps, while a formula
ψ is defined via the probabilistic choice operator

⊕
from [24] and expresses the probabilistic behavior

of a process. In particular, the interplay of probability and weak semantics is specially captured by
formulae of the form 〈ε〉ψ which express a form of probabilistic lookahead. Informally, a process satisfies
〈ε〉ψ if via the execution of an arbitrary number of silent steps it reaches a probability distribution
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π that satisfies ψ. Such distribution π is obtained by combining all the probabilistic choices that are
performed during the execution of the silent steps. Hence, to define π we need to keep memory of
the probabilistic choices that have been performed. For this reason, we shall say that a formula 〈ε〉ψ
gives us constraints on future behavior without loosing all the information on probabilistic step-by-step
behavior. Thus, similarly to what happens in the classic lookahead, to verify the desired probabilistic
behavior we need to check the entire sequence of weak steps and probabilistic choices leading to that
particular final distribution π.

As a first result, we prove that two fragments of L, denoted by Lb and Lrb, allow us to characterize,
respectively, branching bisimilarity and its rooted version (Theorem 1).

2. The decomposition method (Sections 5–6).

The decomposition of a formula ϕ ∈ L with respect to any term f(t1, . . . , tn) is defined as the set of
formulae that the subterms t1, . . . , tn must satisfy to guarantee that f(t1, . . . , tn) satisfies ϕ. Hence,
we first need to find a method to infer the behavior of open terms directly from that of the variables
occurring in them. This is obtained via the notion of ruloids. In particular, we define ruloids from
PGSOS rules to derive the behavior of process terms and we exploit the distribution specification
introduced in [13] to define distribution ruloids dealing with the behavior of open distribution terms,
namely the syntactic expressions we use to denote probability distributions. Then, by means of
PGSOS ruloids we obtain the decomposition of formulae expressing the reactive and nondeterministic
behavior of processes and by distribution ruloids we derive the decomposition of formulae expressing
the probabilistic behavior of processes.

The main novelty of our method with respect to those in [13, 37] is in the decomposition of formulae of
the form 〈ε〉ψ, as the probabilistic lookahead introduced by them is strictly related to the interplay of
probability and weak semantics. It has never been addressed in previous work on modal decomposition.
We will combine PGSOS ruloids and the distribution ruloids to decompose this form of lookahead.
Informally, we introduce formulae of the form ψ〈ε〉, in which the superscript ·〈ε〉 is a marker that allows
us to record, in the decomposition procedure, that ψ occurs in the scope of 〈ε〉. Then, we alternate the
decomposition of a τ -step in the ε-sequence, via a PGSOS ruloid, and the decomposition of a (proper)
formula ψ̃〈ε〉, via a distribution ruloid, until we consume the entire sequence of τ -steps and reach a
distribution term on which ψ can be directly decomposed.

Ours is the first proposal of a decomposition method capturing nondeterminism, probability and weak
behavior (Theorem 4). Our technique applies to other notions of behavioral equivalence.

3. The congruence formats (Sections 7–8).

We introduce the congruence formats on PGSOS specifications for probabilistic branching bisimilarity
and its rooted version, the probabilistic branching bisimulation format (PBB) and the probabilistic
rooted branching bisimulation format (PRBB), respectively. These, can be considered as the extensions
to the probabilistic setting of the corresponding formats in [37].

Then we prove the congruence result. Firstly, we prove that the syntactic constraints of the formats
are preserved in the construction of PGSOS ruloids (Theorem 5). Then, we prove that our logical char-
acterizations are preserved by the decomposition, namely formulae in Lb (resp. Lrb) are decomposed
into formulae that are still in Lb (resp. Lrb) (Theorems 6, 7). Finally, by combining these results with
the decomposition theorem (Theorem 4), we get that (rooted) branching bisimilarity is a congruence
for a PGSOS specification in our PBB (resp. PRBB) format (Theorems 8, 9).

Finally, we apply the PRBB and the PBB formats to the operators of PPA, a probabilistic process
algebra from [40] that includes most of probabilistic operators. We observe that the majority the
operators in PPA are included in our formats, thus showing that these formats are not too demanding.
Moreover, operators out of the formats do not enjoy the congruence property.
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1.5. Summary of results

Our contributions can then be summarized as follows:

1. We provide a logical characterization of probabilistic branching bisimilarity and its rooted version via
proper subclasses of the modal logic L, a probabilistic extension of HML tailored to express weak
semantics.

2. We define a modal decomposition method for formulae in L. To decompose formulae expressing
probabilistic behavior, our method will make use of distribution specifications, an SOS-like machinery
that we introduced in [13] to specify the behavior of open distribution terms. In particular, the
distribution specification allows us to decompose the probabilistic lookahead introduced by formulae
of the form 〈ε〉ψ. As this special form of lookahead depends only on the interplay of probability and
weak semantics, the decomposition of formulae of the form 〈ε〉ψ is a unique feature of our method. To
the best of our knowledge, ours is the first proposal of a modal decomposition for formulae expressing
nondeterministic, probabilistic and weak behavior of processes.

3. We define the PRBB and the PBB formats guaranteeing, respectively, that probabilistic rooted branch-
ing bisimilarity and probabilistic branching bisimilarity are congruences for nondeterministic proba-
bilistic processes.

4. We prove that ruloids derived from PGSOS rules preserve the syntactic constraints of the formats.

5. We prove that the decomposition method preserves the logical characterization, namely formulae
belonging to a particular class are decomposed into formulae belonging to the same class.

6. We obtain the congruence result as a direct consequence of previous results.

1.6. Outline of the paper

We start by recalling the necessary notions on the PTS model and the PGSOS framework in Section 2.
In Section 3 we introduce the modal logic L as well as the characterization results. In Section 4 we review the
distribution specification introduced in [13] and we define the ruloids in Section 5. We dedicate Section 6
to the definition of the decomposition method. Our main results, the probabilistic (rooted) branching
bisimulation format and the congruence results, are presented in Section 7, whereas Section 8 comes with
some examples of their application. In Section 9 we discuss the extension of our decomposition method to
specifications in the ntµfθ/ntµxθ format. Finally, we conclude the paper in Section 10 by discussing related
and future work.

2. Background

2.1. The PTS model

In the process algebra setting, processes are inductively defined as terms over a suitable signature, namely
a countable set Σ of operators. We let f range over Σ and n denote the rank of f ∈ Σ. Operators with
rank 0 are called constants. We assume a set of (state) variables Vs disjoint from Σ and ranged over by
x, y, . . . . The set T(Σ, V ) of terms over Σ and a subset of variables V ⊆ Vs is the least set such that:
(i) V ⊆ T(Σ, V ), and (ii) f(t1, . . . , tn) ∈ T(Σ, V ) whenever f ∈ Σ is of rank n and t1, . . . , tn ∈ T(Σ, V ). By
T(Σ) we denote the set of the closed terms T(Σ, ∅), also called processes. By T(Σ) we denote the set of all
open terms T(Σ,Vs). By var(t) we denote the set of the variables occurring in term t. We say that a term
t is univariate if each variable in var(t) occurs exactly once in it. Otherwise, t is called multivariate.

A very general semantic model for probabilistic processes is that of nondeterministic probabilistic labeled
transition systems (PTSs) [69], which combine classic labeled transition systems [55] and discrete-time
Markov chains (MCs) [52], allowing us to model, at the same time, reactive behavior, nondeterminism and
probability. The state space is given by the set of the processes T(Σ). Each transition has a label describing
the underlying computation step and takes a process to a probability distribution over T(Σ), i.e. a mapping
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π : T(Σ)→ [0, 1] with
∑
t∈T(Σ) π(t) = 1. By ∆(T(Σ)) we denote the set of all probability distributions over

T(Σ). We assume a set of action labels A and a non observable, or silent, action τ 6∈ A. The set A∪ {τ} is
denoted with Aτ . We let a, b, . . . range over A and α, β, . . . over Aτ .

Definition 1 (PTS, [69]). A PTS is a triple (T(Σ),Aτ ,−→), where: (i) Σ is a signature, (ii) A is a countable
set of action labels with τ 6∈ A, and (iii) −→⊆ T(Σ)×Aτ ×∆(T(Σ)) is a transition relation.

As usual, a transition (t, α, π) ∈−→ is denoted t
α−→ π. Then, t

α−→6 denotes that t
α−→ π holds for no π.

We need some notation for distributions. For π ∈ ∆(T(Σ)), supp(π) = {t ∈ T(Σ) | π(t) > 0} is
the support of distribution π. For a process t ∈ T(Σ), δt is the Dirac distribution with δt(t) = 1 and
δt(s) = 0 for all processes s 6= t. For f ∈ Σ and πi ∈ ∆(T(Σ)), f(π1, . . . , πn) is the distribution with
f(π1, . . . , πn)(f(t1, . . . , tn)) =

∏n
i=1 πi(ti) and f(π1, . . . , πn)(t) = 0 for all t not in the form f(t1, . . . , tn).

The convex combination
∑
i∈I piπi of a family of distributions {πi}i∈I ⊆ ∆(T(Σ)) with pi ∈ (0, 1] and∑

i∈I pi = 1 is defined by (
∑
i∈I piπi)(t) =

∑
i∈I(piπi(t)) for all t ∈ T(Σ). We may write pπ1 + (1 − p)π2

for
∑
i∈{1,2} piπi with p = p1 and (1− p) = p2. Note that δf(t1,...,tn) = f(δt1 , . . . , δtn).

In a PTS, given an infinite set I, a divergence is a sequence of processes {ti}i∈I and distributions {πi}i∈I
with ti

τ−→ πi and ti+1 ∈ supp(πi), for all i ∈ I. To avoid the use of additional technical expedients in our
paper, we consider only divergence-free PTSs, namely those having no divergence.

2.2. Probabilistic branching bisimulation

A probabilistic branching bisimulation is an equivalence relation over T(Σ) that equates two terms if
they can mimic each others observable transitions and evolve to distributions related, in turn, by the same
equivalence. To formalize this intuition, we need to lift relations over terms to distributions. This is obtained
via the notion of matching, also known as coupling or weight function, for distributions.

Definition 2 (Matching). Let X,Y be two arbitrary sets and consider two distributions πX ∈ ∆(X) and
πY ∈ ∆(Y ). A matching for πX and πY is a distribution over the product space w ∈ ∆(X × Y ) having πX
and πY as left and right marginals, respectively:

(i)
∑
y∈Y w(x, y) = πX(x), for all x ∈ X (ii)

∑
x∈X w(x, y) = πY (y), for all y ∈ Y .

We denote by W(πX , πY ) the set of all matchings for πX and πY .

In the literature, we can find several equivalent definitions of lifting for relations over terms. We recall
here that in [69], other proposals will be recalled in the Appendix. In the upcoming proofs, we will use the
most suitable definition of relation lifting among the proposed ones.

Definition 3 (Relation lifting, [69]). The lifting of a relation R ⊆ T(Σ) × T(Σ) is the relation R† ⊆
∆(T(Σ))×∆(T(Σ)) with πR† π′ iff there is a matching w ∈W(π, π′) s.t. s′R t′ whenever w(s′, t′) > 0.

In order to define weak transitions, which allow us to abstract away from silents steps, we need to lift
the notion of a transition to a relation between probability distributions. This is called a hyper-transition
in [61, 63] and stems from [26].

Definition 4 (Lifted transition). Assume a PTS (T(Σ),Aτ ,−→). We define the relation
·̂−→ : (T(Σ) ∪

∆(T(Σ)))×Aτ ×∆(T(Σ)) from −→ as follows:

• for a ∈ A, t
â−→ π iff t

a−→ π;

• t τ̂−→ π iff either t
τ−→ π or π = δt;

• for α ∈ Aτ , π
α̂−→ π′ iff (i) t

α̂−→ πt for all t ∈ supp(π), and (ii) π′ =
∑
t∈supp(π) π(t)πt.
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As usual we write t
ε̂−→ π for the reflexive-transitive closure of the relation

τ̂−→. We remark that, since we

are considering divergence-free PTSs, a lifted transition t
τ̂−→ δt can never be inferred from any transition

t
τ−→ δt. Therefore, t

τ̂−→ δt is syntactic sugar to denote that no silent-move took place. As in [26], this

notation allows us to write π
τ̂−→ π′ when only some of the processes in the support of π have the τ -transition.

Our definition of branching bisimulation is equivalent to the scheduler-free version defined in [5, 61].

Definition 5 (Probabilistic branching bisimulation). For a PTS (T(Σ),Aτ ,−→), a symmetric relation B ⊆
T(Σ)×T(Σ) is a probabilistic branching bisimulation if whenever s B t and s

α−→ πs then

• either α = τ and πs B† δt;

• or t
ε̂−→ π

α̂−→ πt with δs B† π and πs B† πt.

Of course, in order to guarantee compositionality with respect to the nondeterminisitc choice operator,
which is offered by most process algebras, the rootedness condition is necessary.

Definition 6 (Probabilistic rooted branching bisimulation). Assume a PTS (T(Σ),Aτ ,−→) and a branching
bisimulation B on T(Σ). A symmetric relation R ⊆ T(Σ) × T(Σ) is a probabilistic rooted branching

bisimulation if, whenever sR t, then if s
α−→ πs then there is a transition t

α−→ πt such that πs B† πt.

The union of all (rooted) branching bisimulations is the greatest (rooted) branching bisimulation, denoted
≈b (resp. ≈rb), called (rooted) branching bisimilarity. In [8] it is proved that in the classical non-probabilistic
case, branching bisimilarity is an equivalence relation. A similar result is given in [5] for the alternating
model of probabilistic processes [67]. In order to infer that the result holds also in the case of the PTS
model we consider in the present paper, it is enough to rephrase the proof in [8].

2.3. PGSOS specification

PTSs are defined by means of SOS rules, which are syntax-driven inference rules allowing us to inductively
infer the behavior of terms with respect to their structure. Here we consider rules in the probabilistic GSOS
(PGSOS) format [17, 18], which allows for specifying most probabilistic process algebras [40, 44]. These

rules are based on expressions of the form t
α−→ Θ, with t a term and Θ a distribution term, which will

instantiate to transitions through substitutions.
Distribution terms are defined assuming a countable set of distribution variables Vd disjoint from Σ and

Vs. We use µ, ν, . . . to range over Vd and ζ, ζ ′ to range over Vs ∪Vd. The set of distribution terms over Σ
and the subsets of variables Vs ⊆ Vs and Vd ⊆ Vd, notation DT(Σ, Vs, Vd), is the least set satisfying:

• {δt | t ∈ T(Σ, Vs)} ⊆ DT(Σ, Vs, Vd),

• Vd ⊆ DT(Σ, Vs, Vd),

• f(Θ1, . . . ,Θn) ∈ DT(Σ, Vs, Vd) whenever f ∈ Σ and Θi ∈ DT(Σ, Vs, Vd),

•
∑
i∈I piΘi ∈ DT(Σ, Vs, Vd) whenever Θi ∈ DT(Σ, Vs, Vd) and pi ∈ (0, 1] with

∑
i∈I pi = 1 and I finite.

We write DT(Σ) for DT(Σ,Vs,Vd), i.e. the set of all open distribution terms, and DT(Σ) for DT(Σ, ∅, ∅), i.e.
the set of the closed distribution terms. We may write pΘ1 + (1 − p)Θ2 for

∑
i∈{1,2} piΘi with p = p1 and

(1 − p) = p2. Notice that closed distribution terms denote probability distributions over T(Σ). We denote
by var(Θ) the set of variables occurring in distribution term Θ.

A positive (resp. negative) literal is an expression of the form t
α−→ Θ (resp. t

α−→6 ) with t ∈ T(Σ), α ∈ Aτ
and Θ ∈ DT(Σ). The literals t

α−→ Θ and t
α−→6 , with the same term t in the left-hand side and the same

action label α, are said to deny each other. In the following, we let H denote an arbitrary set of literals.
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r1 =
x

α−→ µ y
α−→6

x+p y
α−→ µ

r2 =
x

α−→6 y
α−→ ν

x+p y
α−→ ν

r3 =
x

α−→ µ y
α−→ ν

x+p y
α−→ pµ+ (1− p)ν

r4 =
x

α−→ µ α /∈ B
x ‖B y

α−→ µ ‖B δy
r5 =

y
α−→ ν α /∈ B

x ‖B y
α−→ δx ‖B ν

r6 =
x

α−→ µ y
α−→ ν α ∈ B

x ‖B y
α−→ µ ‖B ν

Table 1: The probabilistic alternative choice +p and the CSP-like parallel composition ‖B operators.

Definition 7 (PGSOS rules, [17, 18]). A PGSOS rule r over a signature Σ has the form:

{xi
αi,m−−−→ µi,m | i ∈ I,m ∈Mi} {xi

αi,n−−−→6 | i ∈ I, n ∈ Ni}
f(x1, . . . , xn)

α−→ Θ

where f ∈ Σ is an operator of rank n, I ⊆ {1, . . . , n}, Mi and Ni are finite sets of indexes, αi,m, αi,n, α ∈ Aτ
are action labels, xi ∈ Vs are state variables, µi,m ∈ Vd are distribution variables and Θ ∈ DT(Σ) is a
distribution term. Furthermore: (i) all variables x1, . . . , xn are distinct, (ii) all distribution variables µi,m
with i ∈ I and m ∈Mi are distinct, (iii) var(Θ) ⊆ {µi,m | i ∈ I,m ∈Mi} ∪ {x1, . . . , xn}.

Constraints (i)–(iii) are inherited by the classic GSOS rules in [11] and are necessary to ensure that
strong probabilistic bisimulation [60] is a congruence [13, 17, 18].

Definition 8 (PGSOS-TSS). A PGSOS-transition system specification (PGSOS-TSS) is a tuple P =
(Σ,Aτ , R), with Σ a signature, Aτ a countable set of actions and R a set of PGSOS rules.

For a PGSOS rule r, the positive (resp. negative) literals above the line are called the positive (resp.

negative) premises, notation pprem(r) (resp. nprem(r)). The literal f(x1, . . . , xn)
α−→ Θ is called the con-

clusion, notation conc(r), the term f(x1, . . . , xn) is called the source of the rule, notation src(r), and the
distribution term Θ is called the target of the rule, notation trg(r).

Example 1. The operators of probabilistic alternative composition +p, with p ∈ (0, 1], and of the CSP-like
parallel composition with multi-party synchronization on actions in B ⊆ A, are specified in Table 1. The
probabilistic alternative composition t+p t

′ evolves to the probabilistic choice between a distribution reached
by t (with probability p) and a distribution reached by t′ (with probability 1− p) for actions which can be
performed by both processes. For actions that can be performed by either only t or only t′, the probabilistic
alternative composition t +p t

′ behaves just like the nondeterministic alternative composition t + t′. The
term t ‖B t′ describes multi-party synchronization where t and t′ synchronize on actions in B and evolve
independently for all other actions. Notice that since B ⊆ A it follows that τ 6∈ B. �

A PTS is derived from a TSS through the notions of substitution and proof.
Let V denote the set of all variables V = Vs ∪Vd. A substitution is a mapping σ : V → T(Σ) ∪ DT(Σ)

with σ(x) ∈ T(Σ), if x ∈ Vs, and σ(µ) ∈ DT(Σ), if µ ∈ Vd. It extends to terms, distribution terms,
literals and rules by element-wise application. A substitution is closed if it maps variables to closed terms.
Henceforth, a closed substitution maps an open term in T(Σ) to a process and an open distribution term in
DT(Σ) to a distribution over processes. A closed substitution instance of a literal is called a closed literal.

Definition 9 (Proof). A proof from a PGSOS-TSS P = (Σ,Aτ , R) of a closed literal ` is a well-founded,
upwardly branching tree, with nodes labeled by closed literals, such that the root is labeled ` and, if `′ is
the label of a node and K is the set of labels of the nodes directly above it, then:

• either `′ is positive and K
`′ is a closed substitution instance of a rule in R,

• or `′ is negative and for each closed substitution instance of a rule in R whose conclusion denies `′, a
literal in K denies one of its premises.
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A closed literal ` is provable from P , notation P ` `, if there is a proof from P of `.

We have that each PGSOS-TSS P is strictly stratifiable [46] which implies that P induces a unique model
corresponding to the PTS (T(Σ),Aτ ,−→) whose transition relation −→ contains exactly the closed positive
literals provable from P . Moreover, the existence of a stratification implies that P is also complete [46],

thus giving that for any term t ∈ T(Σ) and action label α ∈ Aτ either P ` t α−→ π for some π ∈ ∆(T(Σ))

or P ` t α−→6 . In particular, the notion of provability in Definition 9 (which is called supported in [46])
subsumes the negation as failure principle of [16] for the derivation of negative literals: for each closed term

t we have that P ` t α−→6 iff P 6` t α−→ π for any distribution π ∈ ∆(T(Σ)), namely the PTS induced by P
contains literals that do not deny each other [11].

Next, we introduce the notion of disjoint extension of a TSS which allows us to introduce new operators
without affecting the behavior of those already specified.

Definition 10 (Disjoint extension). A PGSOS-TSS P ′ = (Σ′,A, R′) is a disjoint extension of a PGSOS-TSS
P = (Σ,A, R) if Σ ⊆ Σ′, R ⊆ R′ and R′ introduces no new rule for any operator in Σ.

We recall now the notion of liquid and frozen arguments of an operator with respect to a given predicate.
We remark that in these preliminary definitions we will refer to a generic predicate Γ on operators. In
upcoming Sections 7 and 8 we will concretely instantiate Γ with special predicates ℵ and Λ from [37], where
Λ marks as liquid the running processes, namely the processes that have already started their execution, and
ℵ marks as liquid the ones that can start their execution immediately. For instance, in [37] both arguments
of the classic nondeterministic choice operator + are marked as Λ-frozen, since in a given process s + t
both s and t cannot have already performed any transition, and ℵ-liquid, since both s and t are able to
start running immediately. If we take the sequential operator ; , then the first argument is ℵ-liquid and
Λ-liquid, whereas the second one is ℵ-frozen, since in a given process s; t it is possible that s is running, in
the sense that it is the result of a transition, and that it can continue its execution, and we are sure that t
cannot move, since it has to wait for the termination of s.

Definition 11 (Liquid and frozen arguments of operators [10]). Let Γ be an unary predicate on {(f, i) | f ∈
Σ, 1 ≤ i ≤ n}. If Γ(f, i) then argument i of f is labeled as Γ-liquid, otherwise it is Γ-frozen. An occurrence
of a variable x in a term t is Γ-liquid if either t = x, or t = f(t1, . . . , tn) and the occurrence is Γ-liquid in ti
for a Γ-liquid argument i of f ; otherwise the occurrence of x is Γ-frozen.

A context is a term having one occurrence of the context symbol [ ] as a subterm. A Γ-liquid context is
a term where [ ] appears at a Γ-liquid position. A predicate Γ is universal if it holds for all arguments of all
operators in the considered signature.

In particular, in Sections 7 and 8, we will use the liquid / frozen differentiation of arguments of operators
with respect to the predicate Λ to distinguish those process arguments that must satisfy the rootedness
condition (namely the Λ-frozen ones) from those that can simply satisfy the weak branching condition
(namely the Λ-liquid ones). Moreover, we will mark as ℵ-frozen the arguments of an operator f that cannot
be tested in the premises of the rules defining f .

Example 2. We mark the arguments of the probabilistic alternative choice operator +p both Λ-frozen and
ℵ-liquid. In fact, considering the rules defining +p in Table1, they can both start their execution (ℵ-liquid)
but none of them can be a process that already started its execution (Λ-frozen). Conversely, we mark both
arguments of the multi-party synchronous parallel operator ‖B as (ℵ ∩ Λ)-liquid. �

Finally, we introduce patience rules, expressing that a term can mimic the τ -moves of its arguments.

Definition 12 (Patience rule). A PGSOS rule is a patience rule for argument i of f if it is of the form

xi
τ−→ µ

f(x1, . . . , xn)
τ−→ f(δx1 , . . . , δxi−1 , µ, δxi+1 , . . . , δxn

)
.

Given a predicate Γ, a patience rule for the i-th argument of f is called a Γ-patient rule if Γ(f, i). A
PTSS is said to be Γ-patient if it contains all the Γ-patience rules.
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Example 3. Consider the PGSOS rules r4, r5 defining ‖B in Table 1 and recall that we mark both arguments
of this operator as (ℵ∩Λ)-liquid (cf. Example 2). As by definition τ 6∈ B, by instantiating α = τ such rules
are (ℵ ∩ Λ)-patient rules for the arguments of ‖B . �

3. Logical characterization

In this section we introduce the class of modal formulae that will allow us to characterize probabilistic
(rooted) branching bisimilarity. We combine the logic used in [37] for the characterization of (rooted) branch-
ing bisimilarity in the non-probabilistic setting with the probabilistic choice operator of the probabilistic
extension of HML from [24].

Definition 13 (Modal logic L). The modal logic L = Ls ∪Ld is given by the classes of state formulae Ls

and distribution formulae Ld over Aτ defined by

Ls : ϕ ::= > | ¬ϕ |
∧
j∈J ϕj | 〈α〉ψ | 〈τ̂〉ψ | 〈ε〉ψ

Ld : ψ ::=
⊕

i∈I riϕi |
∧
j∈J ψj

where: (i) ϕ ranges over Ls, (ii) ψ ranges over Ld, (iii) α ∈ Aτ , (iv) I and J are at most countable sets of
indexes, and (v) ri ∈ (0, 1] for each i ∈ I and

∑
i∈I ri = 1.

We let φ range over L and we write φ1 ∧ φ2 in place of
∧
j∈{1,2} φj , r1ϕ1 ⊕ r2ϕ2 in place of

⊕
i∈I riϕi

with I = {1, 2}, and 〈·〉ϕ for 〈·〉
⊕

i∈I riϕi with I = {i}, ri = 1 and ϕi = ϕ. Notice that instead of using >
we could use

∧
∅. We decided to use > to improve readability.

Formulae are interpreted over a PTS. The meaning of Hennessy-Milner operators is as usual [24, 53].
The special modalities 〈τ̂〉ψ and 〈ε〉ψ allow us to capture the weak semantics. In detail, a process t

satisfies the formula 〈τ̂〉ψ iff either the distribution δt satisfies ψ or there is a transition t
τ−→ π such that

the distribution π satisfies ψ. This can be summarized by saying that there is a lifted transition t
τ̂−→ π with

π satisfying ψ. We stress that the difference between state formulae 〈τ〉ψ and 〈τ̂〉ψ is in that the former is
satisfied only if the process actually performs a τ -move, whereas the latter does not require such a step. In
particular, 〈τ〉ψ will be used to guarantee the rootedness condition on the silent step τ .

The formulae of the form 〈ε〉ψ will be used to capture the weak property of branching bisimulation:
processes may execute an arbitrary, and potentially different, number of τ steps before reaching equivalent
distributions. Moreover, the latter ones can be obtained as a convex combination of the distributions reached
via the sequence of τ steps and thus we consider lifted transitions. Hence, t satisfies 〈ε〉ψ if and only if there

is a (possibly empty) sequence of n lifted transitions t
τ̂−→ π1

τ̂−→ π2 . . .
τ̂−→ πn, for some n ∈ N, such that

πn satisfies the formula ψ. Notice that this can be restated as t
ε̂−→ π for a distribution π with π |= ψ, or,

equivalently, t
τ̂−→ π′ for a distribution π′ such that π′

ε̂−→ π for a distribution π with π |= ψ.
Finally, a probability distribution π satisfies the distribution formula ψ =

⊕
i∈I riϕi if π can be rewritten

as a convex combination of distributions πi, using the ri as weights of the combination, such that all the
processes in the support of πi satisfy the formula ϕi. This is formalized by requiring that there is a matching
w for π and ψ such that t |= ϕi whenever w(t, ϕi) > 0.

Definition 14 (Semantics of L). The satisfaction relation |=⊆ (T(Σ) × Ls) ∪ (∆(T(Σ)) × Ld) is defined
by structural induction on formulae by:

• t |= > always;

• t |= ¬ϕ iff t |= ϕ does not hold;

• t |=
∧
j∈J ϕj iff t |= ϕj for all j ∈ J ;

• t |= 〈α〉ψ iff there is a transition t
α−→ π for a distribution π ∈ ∆(T(Σ)) with π |= ψ;
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• t |= 〈τ̂〉ψ iff there is a lifted transition t
τ̂−→ π for a distribution π ∈ ∆(T(Σ)) with π |= ψ;

• t |= 〈ε〉ψ iff there is a lifted transition t
ε̂−→ π for a distribution π ∈ ∆(T(Σ)) with π |= ψ;

• π |=
⊕

i∈I riϕi iff there is a matching w ∈W(π,
⊕

i∈I riϕi) with t |= ϕi whenever w(t, ϕi) > 0;

• π |=
∧
j∈J ψj iff π |= ψj for all j ∈ J .

As usual we denote by Ls(t) the set of state formulae in Ls which are satisfied by t, namely Ls(t) = {ϕ ∈
Ls | t |= ϕ}. Moreover, we denote by Ld(π) the set of distribution formulae in Ld which are satisfied by π,
namely Ld(π) = {ψ ∈ Ld | π |= ψ}. Then, we write ϕ ≡ ϕ′ if ϕ and ϕ′ are equivalent, namely if it holds
that t |= ϕ iff t |= ϕ′ for all t ∈ T(Σ). Similarly, ψ ≡ ψ′ holds if π |= ψ iff π |= ψ′ for all π ∈ ∆(T(Σ)). We
let L≡ denote the quotient of the class of formulae L with respect to ≡.

Example 4. Consider process s and formulae ϕ1, ϕ2, ϕ3 in Figure 1. We have s |= ϕ1, s |= ϕ2, and s 6|= ϕ3.

Let us start with ϕ1. It is enough to notice that s
τ̂−→ 1/2δs1 + 1/2δs2

τ̂−→ 1/2δs3 + 1/2δs2 = π1, where
δs2 is not forced to perform any τ̂ -move together with δs1 . It is immediate to verify that s3 |= 〈a〉> and

s2 |= 〈b〉>, so that we can infer π1 |= 1/2〈a〉> ⊕ 1/2〈b〉>. Hence, s
ε̂−→ π1 allows us to infer that s |= ϕ1.

Consider the formula ϕ2. It requires s to perform a silent step (notice that the first τ does not have a hat)

and reach a distribution satisfying the formula ψ2 = 1/2〈τ̂〉〈a〉>⊕ 1/2〈τ̂〉〈b〉>. Clearly, s
τ−→ 1/2δs1 + 1/2δs2 =

π2. Now, s1
τ−→ δs3

â−→ δnil and therefore s1 |= 〈τ̂〉〈a〉>. Similarly, s2
b−→ δnil implies s2

τ̂−→ δs2
b̂−→ δnil (recall

that the lifted transition s2
τ̂−→ δs2 is only syntactic sugar) so that s2 |= 〈τ̂〉〈b〉>. As π2 assigns probability

1/2 to both s1 and s2, we can conclude that π2 |= ψ2 and thus s |= ϕ2.
Finally, we deal with ϕ3. Notice that such formula does impose to s to perform a τ -move (the first τ in

fact has a hat) but requires the processes in the eventually reached distribution to perform either a silent
step followed by an a, or a silent step followed by a b, both with probability 1/2. We can distinguish two
cases:

• s does not perform the silent step, and thus s
τ̂−→ δs. Hence δs should satisfy the distribution formula

ψ3 = 1/2〈τ〉〈a〉> ⊕ 1/2〈τ〉〈b〉> which, implicitly, means that s has to satisfy both ϕa3 = 〈τ〉〈a〉> and
ϕb3 = 〈τ〉〈b〉>. However, s satisfies neither of them as it only has probability 1/2 to perform b after the
τ , and thus s 6|= ϕb3, and it needs two τ -steps to reach a process that performs a and again with only
probability 1/2, and thus s 6|= ϕa3 . Hence δs 6|= ψ3.

• s performs the silent step, and thus s
τ−→ π2, with π2 the distribution π2 = 1/2δs1 + 1/2δs2 . Therefore,

we need to verify whether π2 |= ψ3. Clearly, s1 |= 〈τ〉〈a〉>. However, s2 6|= 〈τ〉〈b〉>, since it cannot
perform the required silent step. Hence π2 6|= ψ3.

From these two cases we infer s3 6|= ϕ3. �

Now we introduce two subclasses of L: the class Lb of branching formulae and the class Lrb of rooted
branching formulae, that characterize branching and rooted branching bisimilarity, respectively.

Definition 15 (Subclasses Lb and Lrb). The classes of branching formulae Lb = Ls
b ∪L

d
b and of rooted

branching formulae Lrb = Ls
rb ∪L

d
b over Aτ are defined by:

Ls
b : ϕ ::= > | ¬ϕ |

∧
j∈J ϕj | 〈ε〉1

(
ϕ ∧ 〈a〉ψ

)
| 〈ε〉1

(
ϕ ∧ 〈τ̂〉ψ

)
(with ψ ∈ Ld

b)

Ld
b : ψ ::=

⊕
i∈I riϕi |

∧
j∈J ψj (with ϕi ∈ Ls

b)

and

Ls
rb : ϕ ::= > | ¬ϕ |

∧
j∈J ϕj | 〈α〉ψ | ϕ̃ (with ϕ̃ ∈ Ls

b and ψ ∈ Ld
b)
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s

τ

1/2 1/2

s1 s2

τ b

1

s3

a

ϕ1 = 〈ε〉 (1/2〈a〉> ⊕ 1/2〈b〉>)

ϕ2 = 〈τ〉 (1/2〈τ̂〉〈a〉> ⊕ 1/2〈τ̂〉〈b〉>)

ϕ3 = 〈τ̂〉 (1/2〈τ〉〈a〉> ⊕ 1/2〈τ〉〈b〉>)

Figure 1: Process s satisfies ϕ1 and ϕ2 but not ϕ3. An arrow u
a−→ with no target models an a-step by u to the Dirac

distribution δnil, with nil the process that can execute no action.

Informally, in a formula of the form 〈ε〉1(ϕ∧ 〈a〉ψ) the formula ϕ plays the role of a guard for branching

bisimulation. Given processes s ≈b t, if s
a−→ π then all the processes (recall that the probability weight

is 1) in the support of the distribution π′ reached by t after the possibly empty sequence of τ̂ -moves have
to be branching bisimilar to δs. This is due to the notion of lifting of a relation, in Definition 3. Thus,
they all have to: (i) satisfy the same formulae satisfied by s, of which ϕ is a representative, and (ii) mimic
the execution of a by s reaching a distribution satisfying the same formulae satisfied by π, of which ψ is a
representative. The idea behind formulae 〈ε〉1(ϕ∧ 〈τ̂〉ψ) is similar, the only difference being that equivalent

processes have to mimic the execution of the lifted transition
τ̂−→. We notice that we can combine formulae

of this kind to obtain the same expressive power of the linear formula ϕU 〈a〉ψ, using the ‘until’ operator
U, whose non-probabilistic version was introduced in [20] to characterize branching bisimilarity.

Theorem 1 (Logical characterization). Let P = (T(Σ),A,−→) be a PTS and s, t ∈ T(Σ). Then:

1. s ≈b t if and only if Lb(s) = Lb(t).

2. s ≈rb t if and only if Lrb(s) = Lrb(t).

We delay the comparison with the logical characterization of (rooted) branching bisimilarity proposed
in [62] until Section 10.

4. Distribution specifications

The decomposition of state formulae, expressing properties over terms, will be given in Section 6 and
relies on a collection of rules extracted from the TSS, called ruloids [11]. Essentially, a ruloid is an SOS rule
with an arbitrary term not necessarily of the form f(x1, . . . , xn) as source and with variables occurring in
that term as source variables. Intuitively, ruloids relate the behavior of any term with the behavior of its
variables. Based on ruloids, any formula for a term can be decomposed into formulae for its variables.

In order to have a similar method for distribution formulae, expressing properties over distribution terms,
we need a notion of ruloid relating the behavior of any distribution term with the behavior of its variables, so
that any formula for a distribution term can be decomposed into formulae for its variables. By behavior of
a distribution term we intend the probability weights it assigns to terms. Notice that the behavior of closed
distribution terms may be defined by a simple function, defined inductively starting from Dirac distributions
and having as inductive steps those for convex combinations and for lifting of operators in Σ to distributions.
However, this would not allow us to express the relations between the behavior of open distribution terms
and the behavior of their variables. To this purpose, we need an SOS-like machinery. We developed such a
machinery in [14], and we dedicate this section to recall it.

The first target is to have a set of SOS inference rules allowing us to infer the expression Θ
q−→ t whenever

a closed distribution term Θ assigns probability weight q to a closed term t.
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A distribution literal is an expression of the form Θ
q−→ t, with Θ ∈ DT(Σ), q ∈ (0, 1] and t ∈ T(Σ). A

set of distribution literals {Θ qi−−→ ti | i ∈ I} is called a distribution over terms if
∑
i∈I qi = 1 and the terms

ti are all syntactically distinct. This expresses that Θ is the distribution over T(Σ) giving weight qi to ti.

Then, Σ-distribution rules are inference rules allowing us to infer distributions over terms {Θ qi−−→ ti |
i ∈ I} inductively with respect to the structure of Θ. Let δVs := {δx | x ∈ Vs} denote the set of all Dirac
distribution terms with a variable as term, and ϑ, ϑi, . . . denote distribution terms in DT(Σ) ranging over
Vd ∪ δVs . Then, for arbitrary sets S1, . . . , Sn, we denote by×n

i=1
Si the set of tuples k = [s1, . . . , sn] with

si ∈ Si. The i-th element of k is denoted k(i).

Definition 16 (Σ-distribution rule and Σ-distribution specification [13]). Assume a signature Σ. The set
RΣ of the Σ-distribution rules consists of the least set containing the following inference rules:

1.
{δx

1−→ x}
for any state variable x ∈ Vs;

2.

⋃
i=1,...,n

{
ϑi

qi,j−−−→ xi,j | j ∈ Ji,
∑
j∈Ji

qi,j = 1
}

{
f(ϑ1, . . . , ϑn)

qk−−→ f(x1,k(1), . . . , xn,k(n)) | qk =
∏

i=1,...,n

qi,k(i), k ∈ ×
i=1,...,n

Ji

}
where f ∈ Σ, the distribution terms ϑi ∈ Vd ∪ δVs are all distinct, and the state variables xi,j with
j ∈ Ji and i = 1, . . . , n are pairwise distinct;

3.

⋃
i∈I

{
ϑi

qi,j−−−→ xi,j | j ∈ Ji,
∑
j∈Ji

qi,j = 1
}

{∑
i∈I

piϑi
qx−−→ x | qx =

∑
i∈I,j∈Ji s.t. xi,j=x

pi · qi,j and x ∈ {xi,j | j ∈ Ji, i ∈ I}
}

where I is a countable set of indexes, the distribution terms ϑi ∈ Vd ∪ δVs are all distinct, and the
state variables xi,j with j ∈ Ji and i ∈ I are pairwise distinct.

Then, the Σ-distribution specification (Σ-DS ) is the pair DΣ = (Σ, RΣ).

For each Σ-distribution rule rD, all sets above the line are called premises, notation prem(rD), and the
set below the line is called conclusion, notation conc(rD). Clearly, all premises and the conclusion are
distributions over terms. This was formally showed in [14].

Example 5. An example of a Σ-distribution rule having as source the distribution term µ ‖B ν, with ‖B
the parallel composition operator explained in Example 1, is the following:

{µ 1/4−−−→ x1, µ
3/4−−−→ x2} {ν

1/3−−−→ y1, ν
2/3−−−→ y2}

{µ ‖B ν
1/12−−−→ x1 ‖B y1, µ ‖B ν

1/6−−−→ x1 ‖B y2, µ ‖B ν
1/4−−−→ x2 ‖B y1, µ ‖B ν

1/2−−−→ x2 ‖B y2}

�

The following notion of reduction with respect to a substitution allows us to extend the notion of
substitution to distributions over terms and to Σ-distribution rules.

Definition 17 (Reduction with respect to a substitution). Assume a substitution σ and a distribution over

terms L = {Θ qi−−→ ti | i ∈ I}. We say that σ reduces L to the set of distribution literals L′ = {σ(Θ)
qj−−→ tj |

j ∈ J}, or that L′ is the reduction with respect to σ of L, notation σ(L) = L′, if:

1. for each j ∈ J there is at least one i ∈ I with σ(ti) = tj ;

2. the terms {tj | j ∈ J} are pairwise distinct;

3. for each j ∈ J , it holds qj =
∑
{i∈I|σ(ti)=tj} qi.
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For a Σ-distribution rule rD, we call its reduction with respect to σ the reduced instance of rD wrt. σ.

Definition 18 (Proof from the Σ-DS). A proof from the Σ-DS DΣ of a closed distribution over terms L is
a well-founded, upwardly branching tree, whose nodes are labeled by closed distributions over terms, such
that the root is labeled L, and, if β is the label of a node and K is the set of labels of the nodes directly
above it, then K

β is a closed reduced instance of a Σ-distribution rule in RΣ.
A closed distribution over terms L is provable from DΣ, written DΣ ` L, if there is a proof from DΣ for L.

Since Σ-distribution rules have only positive premises, the set of the distributions over terms provable
from the Σ-DS is trivially unique. In [14] we proved that the set of the distributions over terms provable
from the Σ-DS give the correct behavior of all closed distribution terms.

Proposition 1 ([14]). Assume a signature Σ. Let π ∈ DT(Σ) be a closed distribution term and {tm}m∈M ⊆
T(Σ) a set of pairwise distinct closed terms. Then

DΣ ` {π
qm−−→ tm | m ∈M} ⇔ for all m ∈M it holds that π(tm) = qm and

∑
m∈M

qm = 1.

We conclude this section by introducing the novel notion of liquid and frozen arguments of a distribution
term with respect to a given predicate. This is obtained by lifting the labeling of arguments of operators to
arguments of distribution terms.

Definition 19 (Liquid and frozen arguments of distribution terms). Let Γ be a unary predicate on {(f, i) |
f ∈ Σ, 1 ≤ i ≤ n}, Θ a distribution term, x ∈ Vs a state variable and µ ∈ Vd a distribution variable.
An occurrence of x in Θ is Γ-liquid if: (i) either Θ = δt and x occurs Γ-liquid in t, or (ii) Θ = f(Θ1, . . . ,Θn)
and the occurrence of x is Γ-liquid in Θi for a Γ-liquid argument i of f , or (iii) Θ =

∑
i∈I piΘi and the

occurrence of x is Γ-liquid in some Θi. Otherwise, the occurrence of x in Θ is Γ-frozen.
Then, an occurrence of µ in Θ is Γ-liquid if: (i) either Θ = µ, or (ii) Θ = f(Θ1, . . . ,Θn) and the occurrence
of µ is Γ-liquid in Θi for a Γ-liquid argument i of f , or (iii) Θ =

∑
i∈I piΘi and the occurrence of µ is

Γ-liquid in some Θi. Otherwise, the occurrence of µ in Θ is Γ-frozen.

Example 6. By using the marking for the arguments of operator ‖B given in Example 2, we mark the
occurrences of µ and ν in the term µ ‖B ν used in Example 5 as (ℵ ∩ Λ)-liquid. �

A distribution context is a distribution term having one occurrence of the context symbol [ ] as a subterm.
A Γ-liquid distribution context is a distribution term where [ ] appears at a Γ-liquid position. The notion of
a Γ-liquid distribution context generalizes the notion of w-nested context from [61].

Remark 1. Consider any Σ-distribution rule {µ
qi−−→xi|i∈I}∪H

{Θ
qm−−→tm|m∈M}

and assume that µ occurs Γ-liquid in Θ. Then,

for each i ∈ I, there is at least one target tm such that xi occurs Γ-liquid in tm.

5. Ruloids and distribution ruloids

We dedicate this section to the presentation of ruloids [10, 11, 13] and distribution ruloids [13], which
will play a central role in the modal decomposition in Section 6. Informally, as anticipated in Section 4, (dis-
tribution) ruloids are derived (distribution) rules, with an arbitrary (distribution) term as source, allowing
us to infer the behavior of that (distribution) term directly from the behavior of the variables occurring in
it. Both classes of ruloids have been proved to sound and specifically witnessing according to [11]: a closed
literal ` (resp. a distribution over terms LD) is provable from a PGSOS-TSS (resp. the Σ-DS) iff ` (resp.
LD) is an instance of the conclusion of a ruloid (resp. distribution ruloid) (Theorems 2–3 below).

We remark that the definition of a ruloid is in general quite technical. However, our choice of considering
PGSOS specifications, in place of the more general ntµfθ/ntµxθ format of [18], allows us to give an explicit
inductive construction technique for them, thus simplifying their presentation. Besides, we also notice that,
as in the non-probabilistic setting, to derive ruloids from an ntµfθ/ntµxθ specification we would first have
to transform such a specification into an equivalent PGSOS-like one (cf. [10]).
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5.1. Ruloids

Ruloids are defined inductively from PGSOS rules. All PGSOS rules are ruloids. Then, from a rule r
and a substitution σ, a ruloid ρ with conclusion σ(conc(r)) is built as follows: 1) for each positive premise `
in σ(r), we take any ruloid having ` as conclusion and we put its premises among the premises of ρ; 2) for
each negative premise ` in σ(r) and for each ruloid ρ′ having a literal denying ` as conclusion, we select any
premise `1 of ρ′, we take any literal `2 denying `1, and we put `2 among the premises of ρ (we recall that
two literals deny each other if they have the same term in the left-hand side, have the same label, one of
them is positive and other is negative).

Definition 20 (Ruloids, [13]). Let P = (Σ,Aτ , R) be a PGSOS-TSS. The set of P -ruloids <P is the smallest
set such that:

• x
α−→ µ

x
α−→ µ

is a P -ruloid for all x ∈ Vs, α ∈ Aτ and µ ∈ Vd;

•

⋃
i∈I

( ⋃
m∈Mi

Hi,m ∪
⋃
n∈Ni

Hi,n

)
f(t1, . . . , tn)

α−→ Θ
is a P -ruloid if there is a PGSOS rule r ∈ R

{xi
αi,m−−−→ µi,m | i ∈ I,m ∈Mi} {xi

αi,n−−−→6 | i ∈ I, n ∈ Ni}
f(x1, . . . , xn)

α−→ Θ′

together with a substitution σ, with σ(xi) = ti for i = 1, . . . , n and σ(Θ′) = Θ, such that:

– For every positive premise xi
αi,m−−−→ µi,m of r:

∗ either σ(xi) is a variable and Hi,m = {σ(xi)
αi,m−−−→ σ(µi,m)},

∗ or there is a P -ruloid ρi,m =
Hi,m

σ(xi)
αi,m−−−→ σ(µi,m)

.

– Right-hand side variables rhs(ρi,m) are all pairwise disjoint.

– For every negative premise xi
αi,n−−−→6 of r:

∗ either σ(xi) is a variable and Hi,n = {σ(xi)
αi,n−−−→6 },

∗ or Hi,n = opp(pick(<P(αi,n))), where

i. <P(αi,n) ∈ P(P(Lit(P ))) is given by <P(αi,n) = {prem(ρ) | ρ ∈ <P , conc(ρ) = σ(xi)
αi,n−−−→

θ, θ ∈ DT(Σ)} of the sets of the premises of all P -ruloids with conclusion σ(xi)
αi,n−−−→ θ,

for some θ ∈ DT(Σ);

ii. pick: P(P(Lit(P ))) → P(Lit(P )) is any mapping such that for any sets of literals Lk
with k ∈ K, pick({Lk | k ∈ K}) = {lk | k ∈ K ∧ lk ∈ Lk};

iii. opp: P(Lit(P )) → P(Lit(P )) is any mapping satisfying opp(t′
α−→ θ) = t′

α−→6 , and

opp(t′
α−→6 ) = t′

α−→ θ for some fresh distribution term θ.

Example 7. Let P be any PGSOS-TSS containing the rules in Table 1. Assume the operator ‖B with
B = {a}. All the ruloids having as source the term x+p (y ‖{a} z) are in Table 2. We describe in detail the
construction of the P -ruloids ρ1 and ρ6. Graphically, assuming β 6= a, their construction can be detailed as
follows:

(ρ1)
x

β−→ µ

y
β−→6 z

β−→6

y ‖{a} z
β−→6

x+p (y ‖{a} z)
β−→ µ

(ρ6)
x

a−→ µ

y
a−→6

y ‖{a} z
a−→6

x+p (y ‖{a} z)
a−→ µ
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ρ1 =
x

β−→ µ y
β−→6 z

β−→6 β 6= a

x+p (y ‖{a} z)
β−→ µ

ρ2 =
x

β−→6 y
β−→ ν β 6= a

x+p (y ‖{a} z)
β−→ ν ‖{a} δz

ρ3 =
x

β−→6 z
β−→ υ β 6= a

x+p (y ‖{a} z)
β−→ δy ‖{a} υ

ρ4 =
x

β−→ µ y
β−→ ν β 6= a

x+p (y ‖{a} z)
β−→ pµ+ (1− p)(ν ‖{a} δz)

ρ5 =
x

β−→ µ z
β−→ υ β 6= a

x+p (y ‖{a} z)
β−→ pµ+ (1− p)(δy ‖{a} υ)

ρ6 =
x

a−→ µ y
a−→6

x+p (y ‖{a} z)
a−→ µ

ρ7 =
x

a−→ µ z
a−→6

x+p (y ‖{a} z)
a−→ µ

ρ8 =
x

a−→6 y
a−→ ν z

a−→ υ

x+p (y ‖{a} z)
a−→ ν ‖{a} υ

ρ9 =
x

a−→ µ y
a−→ ν z

a−→ υ

x+p (y ‖{a} z)
a−→ pµ+ (1− p)(ν ‖{a} υ)

Table 2: The P -ruloids for the term x+p (y ‖{a} z).

Both ruloids are inferred starting from the rule r1 in Table 1, with the source variable x in r1 instantiated
as x and the source variable y instantiated as y ‖{a} z. Then, the action α in r1 is instantiated with any

β 6= a in ρ1, whereas α = a in ρ6. Both the premise x
β−→ µ in the first case, and the premise x

a−→ µ in

the second case, have a variable as left-hand side, thus implying that the premise x
β−→ µ appears in ρ1 and

the premise x
a−→ µ appears in ρ6. Conversely, the left-hand sides of the negative premises y ‖{a} z

β−→6
and y ‖{a} z

a−→6 are more structured terms and cannot directly appear in the ruloids. By Definition 20 we

need to consider all the PGSOS rules having as conclusion instance y ‖{a} z
β−→ Θ, in the first case, and

y ‖{a} z
a−→ Θ, in the second case, for some Θ in DT(Σ), namely any proper instance of rules r4 − r6 in

Table 1. Hence, we need to distinguish two cases:

• α = β 6= a. In this case, both rules r4 and r5 could be used in the derivation of literal y ‖{a} z
β−→ Θ.

Hence we need to choose, and deny, one premise instance for each of those rules. Since r4 and r5

have a single premise each, we deny both of them, thus getting y
β−→6 and z

β−→6 . Moreover, since the

left-hand sides of both y
β−→6 and z

β−→6 are variables, these negative literals are premises in ρ1.

• α = a. In this case, the literal y ‖{a} z
a−→ Θ can be derived only through the synchronization of

terms y and z over action a, namely we need to apply rule r6. Thus, we choose one of the premises for
such rule, for instance the one having y as left-hand side, and we deny it. In our example, from this
construction we obtain the single negative premise y

a−→6 whose left-hand side is a variable and can be
a premise of the ruloid ρ6. Notice that by taking z

a−→6 instead of y
a−→6 we get ρ7 in Table 2.

�

In [14] we showed that ruloids are sound and specifically witnessing.

Theorem 2 ([14]). Assume a PGSOS-TSS P and a closed substitution σ. Then P ` σ(t)
a−→ Θ′ for

any term t ∈ T(Σ) and closed distribution term Θ′ ∈ DT(Σ) iff there are a P -ruloid H

t
a−→Θ

and a closed

substitution σ′ with P ` σ′(H), σ′(t) = σ(t) and σ′(Θ) = Θ′.

Remark 2. By looking at Definition 20, we note that treatment of negative premises allows us to get also
ruloids of the form H

t
a−→6 that are usually called non-standard rules [10, 37]. Then, it is easy to see that,

according to the negation as failure principle, by means of non-standard rules we obtain the analogous of
Theorem 2 for closed instances of negative literals: P ` σ(t)

a−→6 for t ∈ T(Σ) and σ closed substitution iff
there are a non-standard rule H

t
a−→6 and a closed substitution σ′ with P ` σ′(H) and σ′(t) = σ(t).

The notion of patience for rules can be extended to ruloids. Given a predicate Γ and a P -ruloid ρ with

conclusion labeled τ , we say that ρ is Γ-patient iff it is of the form ρ = x
τ−→µ

C[x]
τ−→C[µ]

, for a Γ-liquid context

C[ ]. Otherwise, ρ is Γ-impatient. Notice that all Γ-patient PGSOS rules are Γ-patient ruloids.
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5.2. Σ-distribution ruloids

Σ-distribution ruloids are a generalization of Σ-distribution rules and capture the behavior of arbitrary
open distribution terms. More precisely, they allow us to infer the behavior of a (possibly open) distribution
term as a probability distribution over terms from the distribution over terms that characterize the behavior
of the variables occurring in it. For instance, distribution ruloids allow us to infer the behavior of a distribu-
tion term of the form 2

3µ+ 1
3 (ν ‖B υ) from the behavior of the variables µ, ν and υ. Notice that distribution

rules are not enough to meet this purpose, since in the source of distribution rules only one operator over
distributions is admitted, and therefore there is no Σ-distribution rule with source 2

3µ+ 1
3 (ν ‖B υ). Similarly

to P -ruloids, a Σ-distribution ruloid is defined by an inductive composition of Σ-distribution rules and the
left-hand sides of its premises are the variables occurring in the source, which is an arbitrary open distribu-
tion term. As the Σ-DS is positive, the definition of Σ-distribution ruloids is technically simpler than that
of P -ruloids.

Definition 21 (Distribution ruloids, [13]). Let DΣ = (Σ, RΣ) be the Σ-DS. The set of Σ-distribution ruloids
<Σ is the smallest set such that:

• {δx
1−→ x}

{δx
1−→ x}

is a Σ-distribution ruloid in <Σ for any state variable x ∈ Vs;

•
{µ qi−−→ xi |

∑
i∈I

qi = 1}

{µ qi−−→ xi | i ∈ I}
is a Σ-distribution ruloid in <Σ for any distribution variable µ ∈ Vd;

•

⋃
i=1,...,n

Hi{
f(Θ1, . . . ,Θn)

Qm−−−→ f(t1,m, . . . , tn,m) | m ∈M
} is a Σ-distribution ruloid in <Σ if there are a sub-

stitution σ with σ(ϑi) = Θi and a Σ-distribution rule rD ∈ RΣ as in Definition 16.2 such that:

– σ(rD) =

⋃
i=1,...,n

{Θi
qi,h−−−→ ti,h | h ∈ Hi,

∑
h∈Hi

qi,h = 1}{
f(Θ1, . . . ,Θn)

qκ−−→ f(t1,κ(1), . . . , tn,κ(n)) | qκ =
∏

i=1,...,n

qi,κ(i), κ ∈ ×
i=1,...,n

Hi

}
– there is a bijection f :×n

i=1
Hi →M with ti,κ(i) = ti,f(κ) and qκ = Qf(κ);

– for every Θi, for i = 1, . . . , n

∗ either Θi ∈ Vd ∪ δVs and Hi = {Θi
qi,h−−−→ ti,h | h ∈ Hi,

∑
h∈Hi qi,h = 1},

∗ or there is a Σ-distribution ruloid ρDi = Hi

{Θi
qi,h−−−→ ti,h | h ∈ Hi}

;

– right-hand sides of premises are pairwise distinct.

•

⋃
i∈I

Hi{∑
i∈I

piΘi
Qm−−−→ tm | m ∈M

} is a Σ-distribution ruloid in <Σ if there are a substitution σ with σ(ϑi) =

Θi for i ∈ I and a Σ-distribution rule rD ∈ RΣ as in Definition 16.3 such that:

– σ(rD) =

⋃
i∈I
{Θi

qi,h−−−→ ti,h | h ∈ Hi,
∑
h∈Hi

qi,h = 1}{∑
i∈I

piΘi
qu−−→ u | qu =

∑
i∈I,h∈Hi s.t. ti,h=u

pi · qi,h, u ∈ {ti,h | h ∈ Hi, i ∈ I}
}

– there is a bijection f : {ti,h | h ∈ Hi, i ∈ I} →M with u = tf(u), and qu = Qf(u);
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– for every Θi, for i ∈ I

∗ either Θi ∈ Vd ∪ δVs and Hi = {Θi
qi,h−−−→ ti,h | h ∈ Hi,

∑
h∈Hi qi,h = 1},

∗ or there is a Σ-distribution ruloid ρDi = Hi

{Θi
qi,h−−−→ ti,h | h ∈ Hi}

;

– right-hand sides of premises are pairwise distinct.

Example 8. Consider the distribution term 2
3µ + 1

3 (ν ‖B δz) (which is an instance of the target of the
P -ruloid ρ4 in Table 2, for p = 2/3). Then, we can build the following Σ-distribution ruloid ρD:

{µ 1/4−−−→ x1 µ
3/4−−−→ x2}

{ν 1/2−−−→ y1, ν
1/2−−−→ y2} {δz

1−→ z}

{ν ‖B δz
1/2−−−→ y1 ‖B z ν ‖B δz

1/2−−−→ y2 ‖B z}{
2

3
µ+

1

3
(ν ‖B δz)

1
6−→ x1,

2

3
µ+

1

3
(ν ‖B δz)

1
2−→ x2,

2

3
µ+

1

3
(ν ‖B δz)

1
6−→ y1 ‖B z,

2

3
µ+

1

3
(ν ‖B δz)

1
6−→ y2 ‖B z

} .
�

In [14] we showed that also distribution ruloids are sound and specifically witnessing.

Theorem 3 ([14]). Consider the Σ-DS DΣ and a closed substitution σ. Then DΣ ` {σ(Θ)
qm−−→ tm | m ∈M}

for a distribution term Θ ∈ DT(Σ) and closed terms tm ∈ T(Σ) pairwise distinct iff there are a Σ-distribution
ruloid H

{Θ
qm−−→um|m∈M}

and a closed substitution σ′ with DΣ ` σ′(H), σ′(Θ) = σ(Θ) and σ′(um) = tm for

all m ∈M .

The following two technical lemmas will support some of our proofs. They state that the conclusion of a
Σ-distribution ruloid is a distribution over terms and that all variables appearing in a Σ-distribution ruloid
already appear in its premises, respectively.

Lemma 1. The conclusion of a Σ-distribution ruloid is a distribution over terms.

Lemma 2. Any Σ-distribution ruloid H

{Θ
qm−−→tm|m∈M}

is such that

1. for all distribution variabels µ ∈ Vd, µ ∈ var(Θ) iff µ is the left-hand side of a premise in H;

2. for all state variables x ∈ Vs, x ∈ var(Θ) iff δx is the left-hand side of a premise in H;

3.
⋃
m∈M var(tm) = rhs(H).

6. Decomposition of modal formulae

In this section we present our method for decomposing formulae in L, which exploits the two classes of
ruloids introduced in Section 5. The idea behind the decomposition of a state (resp. distribution) formula φ
with respect to a term t (resp. distribution term Θ) is to establish the constraints that the closed instances
of the variables occurring in t (resp. Θ) must satisfy in order to ensure that the closed instance of t (resp. Θ)
satisfies φ. Therefore, the decomposition method is firmly based on ruloids (resp. Σ-distribution ruloids),
since they relate the behavior of t (resp. Θ) with that of its variables.

The decomposition of state formulae consists in assigning to each term t ∈ T(Σ) and formula ϕ ∈ Ls a
set of functions ξ : Vs → Ls, called decomposition mappings, assigning to each state variable x in t a proper
formula ξ(x) in Ls such that for any closed substitution σ it holds that σ(t) |= ϕ if and only if for some for
some of the decomposition mappings ξ for φ and t it holds that σ(x) |= ξ(x) for each x ∈ var(t) (Theorem 4).
Each mapping ξ will be defined on a P -ruloid having t as source, P being the considered PGSOS-TSS, and
on a predicate Γ on arguments of operators. The motivation for using Γ is that, besides having a correct
decomposition, we also aim to infer a congruence result, which requires that decomposition preserves the
modal class of formulae, namely formulae in Lb (resp. Lrb) are decomposed into formulae in Lb (resp. Lrb).
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a τ
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a b
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Figure 2: Process s satisfies the formula 〈ε〉(2/3〈a〉> ⊕ 1/3〈b〉>).

To this purpose, we will instantiate Γ as Γ = ℵ ∩ Λ, for the predicates ℵ and Λ discussed in Section 2.3.
This particular instance will allow us to distinguish the arguments for which we must test the rootedness
condition, namely the (ℵ∩Λ)-frozen ones, from those for which the branching property by itself is sufficient,
namely the (ℵ ∩ Λ)-liquid ones.

Similarly, the decomposition of distribution formulae consists in assigning to each distribution term
Θ ∈ DT(Σ) and distribution formula ψ ∈ Ld a set of decomposition mappings η : V→ Ld ∪Ls such that for
any closed substitution σ we get that σ(Θ) |= ψ if and only if for some of the decomposition mappings η for
Θ and ψ it holds that σ(ζ) |= η(ζ) for each ζ ∈ var(Θ) (Theorem 4). Each mapping η will be defined on a
Σ-distribution ruloid having Θ as source.

6.1. Decomposing 〈ε〉ψ
Our decomposition method is inspired by those in [37], dealing with weak semantics in the classic

nondeterministic case, and [14], dealing with strong semantics in the probabilistic case. The main technical
challenge caused by the interplay of weak semantics with probability is in dealing with formulae 〈ε〉ψ.

In the non-probabilistic setting of [37], the 〈ε〉-modality occurred in formulae of the form 〈ε〉φ, with φ a
state formula, and expressed a sequence of τ steps leading to a process satisfying φ. Hence, the decomposition
of 〈ε〉φ was obtained from both Γ-patient and Γ-impatient P -ruloids allowing one to infer that sequence of
τ -steps originating from the process satisfying 〈ε〉φ. Our case is technically different since φ is a distribution
formula that should be satisfied by a distribution whose support contains processes that may be reached by
sequences of τ -steps of possibly different length originating from the state satisfying 〈ε〉φ. More concretely,

these sequences of silent steps give rise to a lifted transition s
ε̂−→ πn of the form s

τ̂−→ π1
τ̂−→ π2

τ̂−→ . . .
τ̂−→ πn,

where each πi “memorizes” the probabilistic weights of the distributions reached so far through the execution
of part of the sequence of τ̂ -steps.

Consider, for instance, process s ∈ T(Σ) in Figure 2 for which we have P ` s
τ−→ π1 with π1 =

1/2δs1 + 1/2δs2 , P ` s1
a−→ δnil, P ` s2

τ−→ π2 with π2 = 1/3δs3 + 2/3δs4 , P ` s3
a−→ δnil and P ` s4

b−→ δnil.

We have that s |= 〈ε〉ψ, for ψ = 2/3〈a〉> ⊕ 1/3〈b〉>. This is given by the lifted transition s
ε̂−→ π′ with

π′ = 1/2δs1 +1/6δs3 +1/3δs4 for which π′ |= ψ clearly holds. We can observe that process s1 must “wait” for s2

to finish the execution of the sequence of τ -steps, thus reaching s3 and s4, and, then, s1, s3 and s4 contribute
to the satisfaction of the distribution formula ψ accordingly to the probabilistic weights “inherited” from π1

and π2, that is 1/2 for s1, 1/2 · 1/3 for s3 and 1/2 · 2/3 for s4.
In a broader sense, a formula 〈ε〉ψ expresses a form of probabilistic lookahead on the behavior of processes,

which is formally represented by sequences of lifted transitions of the form π
τ̂−→ π′: we allow processes in

the support of a distribution to perform some τ̂ steps in such a way that the global distribution that will
be obtained, as described in Definition 4, will satisfy ψ.

The decomposition of formulae 〈ε〉ψ must follow the same principle. To this aim, we recall that, as we
discussed in Section 3, the semantics of 〈ε〉ψ could be expressed by splitting the sequence of τ̂ steps into a
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first τ̂ transition t
τ̂−→ π performed by the process t, and a sequence of lifted transitions π

ε̂−→ π′ with π′ |= ψ.
Hence, we abuse of notation and introduce the distribution formulae ψ〈ε〉, with ·〈ε〉 a marker allowing us to
record, during the decomposition, that the distribution formula ψ occurred in the scope of 〈ε〉. Hence, ψ〈ε〉

could be either of the form (
⊕

i∈I riϕi)
〈ε〉 or (

∧
j∈J

⊕
ij∈Ij rijϕij )

〈ε〉, and we will use this kind of formulae
to express that a closed distribution term performs a sequence of τ̂ lifted transitions by which it reaches a
distribution satisfying the formula ψ. Actually, we could rewrite the semantics of 〈ε〉ψ in Definition 14 as:

• t |= 〈ε〉ψ iff t
τ̂−→ π and π |= ψ〈ε〉, for some π ∈ ∆(T(Σ));

• π |= ψ〈ε〉 iff π
ε̂−→ π′ and π′ |= ψ, for some π′ ∈ ∆(T(Σ)).

The decomposition of 〈ε〉ψ with respect to term t will be obtained via a P -ruloid allowing us to derive a

silent step t
τ̂−→ Θ and the decomposition of the formula ψ〈ε〉 with respect to Θ. The latter will be obtained

via a Σ-distribution ruloid allowing us to derive the probabilistic behavior {Θ qm−−→ um | m ∈M} of Θ and,
for each m ∈ M , the decomposition of a formula 〈ε〉ψm with respect to term um. Here, 〈ε〉 allows for the
derivation of the (possible) next τ -step in the sequence and ψm captures the probabilistic behavior that the
distribution reached by um via the entire sequence of silent steps has to show in order to guarantee that the
probabilistic behavior of the distribution reached by the initial term t via the entire sequence of silent steps
is as in ψ. The construction of the formulae ψm will exploit the matching from Definition 2 to keep memory
of the probabilistic behavior of Θ. The alternation in the decomposition of formulae of the form 〈ε〉ψ̃ and
ψ̃〈ε〉 so obtained will allow us to properly decompose the probabilistic lookahead introduced by 〈ε〉ψ.

We remark that formulae ψ〈ε〉 occur only in the decomposition of formulae of the form 〈ε〉ψ and play
no role in the decomposition of other state or distribution formulae. We also stress that we do not allow a
formula ψ〈ε〉 to be constructed over a nesting of conjunctions of distribution formulae. Such restriction has
the only purpose to simplify the presentation of the decomposition method, and moreover it does not limit
the expressive power of the logic, in that it is always possible to unfold the nested conjunctions in order to
obtain a single conjunction on distribution formulae defined via the probabilistic choice operator.

6.2. The decomposition method

Given any term t ∈ T(Σ) and variables x ∈ var(t) and µ ∈ Vd, we denote by t[µ/x] the distribution term
obtained by substituting x with µ and y with δy for all state variables y ∈ var(t) \ {x} in the term t.

Then, we consider the notion matching for a distribution over terms and a distribution formula.

Definition 22. Assume a distribution term Θ ∈ DT(Σ), a distribution over terms {Θ qm−−→ tm | m ∈ M}
and a formula ψ =

⊕
i∈I riϕi ∈ Ld. Then a matching for Θ and ψ is a distribution over the product space

w ∈ ∆(T(Σ)× Ls) having Θ and ψ as left and right marginals, that is

•
∑
i∈I w(tm, ϕi) = qm, for all m ∈M , and

•
∑
m∈M w(tm, ϕi) = ri, for all i ∈ I.

We denote by W(Θ, ψ) the set of all matchings for Θ and ψ.

To favor readability, we will provide a formal discussion of the decomposition method after its technical
definition (Definition 23 below).

Definition 23 (Decomposition of formulae in L). Let P = (Σ,A, R) be a Γ-patient PGSOS-TSS and let
DΣ be the Σ-DS. We define the mappings

• ·−1 : T(Σ)→ (Ls → P(Vs → Ls)), and

• ·−1 : DT(Σ)→ (Ld → P(V→ L))

as follows. For each term t ∈ T(Σ) and state formula ϕ ∈ Ls, t−1(ϕ) ∈ P(Vs → Ls) is the set of decomposition
mappings ξ : Vs → Ls such that for any univariate term t we have:
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1. ξ ∈ t−1(>) iff ξ(x) = > for all state variables x ∈ Vs.

2. ξ ∈ t−1(¬ϕ) iff there is a function f : t−1(ϕ)→ var(t) such that

ξ(x) =


∧

ξ′∈f−1(x)

¬ξ′(x) if x ∈ var(t)

> otherwise.

3. ξ ∈ t−1(
∧
j∈J ϕj) iff there is a decomposition mappings ξj ∈ t−1(ϕj) for each j ∈ J such that

ξ(x) =
∧
j∈J

ξj(x), for all x ∈ Vs.

4. ξ ∈ t−1(〈α〉ψ) iff there are a P -ruloid H

t
α−→Θ

and a decomposition mapping η ∈ Θ−1(ψ) such that

ξ(x) =


∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x) if x ∈ var(t)

> otherwise.

5. ξ ∈ t−1(〈τ̂〉ψ) iff one of the following three cases holds:

(a) there is a decomposition mapping η ∈ (δt)
−1(ψ) such that

ξ(x) =


> if x 6∈ var(t)

〈τ̂〉η(x) if x occurs Γ-liquid in t

η(x) otherwise.

(b) there are a variable y occurring Γ-liquid in t, a Γ-patient ruloid y
τ−→µ

t
τ−→t[µ/y]

and a decomposition

mapping η ∈ (t[µ/y])−1(ψ) such that

ξ(x) =


> if x 6∈ var(t)

〈τ̂〉η(µ) if x = y

η(x) otherwise;

(c) there are a Γ-impatient P -ruloid H

t
τ−→Θ

and a decomposition mapping η ∈ Θ−1(ψ) with

ξ(x) =


∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x) if x ∈ var(t)

> otherwise.

6. ξ ∈ t−1(〈ε〉ψ) iff one of the following three cases holds:

(a) there is a decomposition mapping η ∈ (δt)
−1(ψ) such that

ξ(x) =


> if x 6∈ var(t)

〈ε〉η(x) if x occurs Γ-liquid in t

η(x) otherwise.
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(b) there are a variable y occurring Γ-liquid in t, a Γ-patient ruloid y
τ−→µ

t
τ−→t[µ/y]

and a decomposition

mapping η ∈ (t[µ/y])−1(ψ〈ε〉) such that

ξ(x) =


> if x 6∈ var(t)

〈ε〉η(µ) if x = y

η(x) otherwise.

(c) there are a Γ-impatient P -ruloid H

t
τ−→Θ

and a decomposition mapping η ∈ Θ−1(ψ〈ε〉) with

ξ(x) =



> if x 6∈ var(t)

〈ε〉1

 ∧
x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x)

 if x occurs Γ-liquid in t

∧
x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x) otherwise.

7. ξ ∈ (σ(t))−1(ϕ) for a non injective substitution σ : var(t)→ Vs iff there is a ξ′ ∈ t−1(ϕ) such that

ξ(x) =


∧

y∈σ−1(x)

ξ′(y) if x ∈ var(t)

> otherwise.

Then, for each distribution term Θ ∈ DT(Σ) and distribution formula ψ ∈ Ld, Θ−1(ψ) ∈ P(V → L) is
the set of decomposition mappings η : V→ L such that for any univariate distribution term Θ we have:

8. η ∈ Θ−1(
⊕

i∈I riϕi) iff there are a Σ-distribution ruloid H

{Θ
qm−−→um|m∈M}

and a matching w ∈

W({Θ qm−−→ um | m ∈ M},
⊕

i∈I riϕi) such that for all m ∈ M and i ∈ I there is a decomposi-

tion mapping ξm,i defined by

{
ξm,i ∈ u−1

m (ϕi) if w(um, ϕi) > 0

ξm,i ∈ u−1
m (>) otherwise

and such that:

(a) for any distribution variable µ ∈ Vd:

η(µ) =


⊕

{µ
qj−−→xj}∈H

qj
∧

i∈I,m∈M
ξm,i(xj) if µ ∈ var(Θ)

1> otherwise.

(b) for any state variable x ∈ Vs:

η(x) =


∧

i∈I,m∈M
ξm,i(x) if x ∈ var(Θ)

> otherwise.

9. η ∈ Θ−1(
∧
j∈J ψj) iff there exist decomposition mappings ηj ∈ Θ−1(ψj) for all j ∈ J such that

η(ζ) =
∧
j∈J

ηj(ζ), for all variables ζ ∈ V.
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10. η ∈ Θ−1((
⊕

i∈I riϕi)
〈ε〉) iff one of the following two cases holds:

(a) there is a decomposition mapping η′ ∈ Θ−1(
⊕

i∈I riϕi) with η(ζ) = η′(ζ) for all ζ ∈ var(Θ);

(b) there are a Σ-distribution ruloid H

{Θ
qm−−→um|m∈M}

and a matching w ∈ W({Θ qm−−→ um | m ∈

M},
⊕

i∈I riϕi) such that for all m ∈ M there is a decomposition mapping ξm ∈ u−1
m (〈ε〉ψm),

where ψm is the formula

ψm =
⊕
i∈Im

w(um, ϕi)

qm
ϕi, with Im = {i ∈ I | w(um, ϕi) > 0},

for which we have

i. for any distribution variable µ ∈ Vd, η(µ) =


⊕

{µ
qj−−→xj}∈H

qj
∧
m∈M

ξm(xj) if µ ∈ var(Θ)

1> otherwise.

ii. for any state variable x ∈ Vs, η(x) =


∧
m∈M

ξm(x) if x ∈ var(Θ)

> otherwise.

11. η ∈ Θ−1((
∧
j∈J ψj)

〈ε〉), for ψj =
⊕

ij∈Ij rijϕij for all j ∈ J , iff one of the following two cases holds:

(a) there is a decomposition mapping η′ ∈ Θ−1(
∧
j∈J ψj) with η(ζ) = η′(ζ) for all ζ ∈ var(Θ);

(b) there are a Σ-distribution ruloid H

{Θ
qm−−→um|m∈M}

and, for each m ∈M , a decomposition mapping

ξm ∈ u−1
m (〈ε〉

∧
j∈J

ψm,j), with ψm,j defined from {Θ qm−−→ um | m ∈ M} and ψj as in previous

item 10b, i.e., we consider a matching wj ∈W({Θ qm−−→ um | m ∈M}, ψj) and define

ψm,j =
⊕

ij∈Im,j

wj(um, ϕij )

qm
ϕi, with Im,j = {ij ∈ Ij | w(um, ϕij ) > 0},

for which we have

i. for any distribution variable µ ∈ Vd, η(µ) =


⊕

{µ
qh−−→xh}∈H

qh
∧
m∈M

ξm(xh) if µ ∈ var(Θ)

1> otherwise.

ii. for any state variable x ∈ Vs, η(x) =


∧
m∈M

ξm(x) if x ∈ var(Θ)

> otherwise.

12. η ∈ (σ(Θ))−1(ψ) for a non injective substitution σ : var(Θ)→ V iff there is a decomposition mapping
η′ ∈ Θ−1(ψ) such that

η(ζ) =


∧

ζ′∈σ−1(ζ)

η′(ζ ′) if ζ ∈ var(Θ)

> otherwise.

We refer the reader to [37] for an explanation of the decomposition of the standard Hennessy-Milner
operators and to [13] for an explanation of the decomposition of distribution formulae of the form

⊕
i∈I riϕi.

Here we detail our decomposition method for formulae of the form 〈τ̂〉ψ (item 5 of Definition 23), 〈ε〉ψ (item 6
of Definition 23) and ψ〈ε〉 (items 10 and 11 of Definition 23).
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We start with 〈τ̂〉ψ. Given any term t ∈ T(Σ) and closed substitution σ, we aim to identify in
ξ ∈ t−1(〈τ̂〉ψ) which properties σ(x) has to satisfy in order to guarantee σ(t) |= 〈τ̂〉ψ, for all x ∈ var(t).

According to Definition 14 we can distinguish two cases for σ(t) |= 〈τ̂〉ψ: either δσ(t) |= ψ, or P ` σ(t)
τ−→ π

for a distribution π ∈ ∆(T(Σ)) with π |= ψ. The former case, in which σ(t) does not execute any τ step,
motivates item 5a in Definition 23. In the latter case, by Theorem 2 the τ -transition by σ(t) is inferred by
a ruloid ρ = H

t
τ−→Θ

. Item 5b applies if ρ is Γ-patient whereas item 5c applies if ρ is Γ-impatient. In detail:

Definition 23.5a: To have δσ(t) |= ψ we need that σ(ζ) |= η(ζ) for all variables ζ ∈ var(δt), for a suitable
decomposition mapping η ∈ (δt)

−1(ψ). Since var(δt) = var(t), this is equivalent to have σ(x) |= η(x) for all
state variables x ∈ var(t). However, for x occurring Γ-liquid in t, we define the decomposed formula ξ(x) as
the less demanding ξ(x) = 〈τ̂〉η(x). This is to guarantee that the decomposed formula does not discriminate
processes by their ability of performing a τ step.

Definition 23.5b: Since ρ is a Γ-patient ruloid, there is a variable y that occurs Γ-liquid in t, H is of the

form H = y
τ−→ µ and Θ is of the form Θ = t[µ/y], namely ρ = y

τ−→µ

t
τ−→t[µ/y]

. By tuning Theorem 2 on this

particular case, the closed substitution σ′ satisfying σ′(t) = σ(t) must be such that: (i) P ` σ′(y)
τ−→ σ′(µ)

and (ii) σ′(t[µ/y]) |= ψ. Hence, given η ∈ (t[µ/y])−1(ψ), the first condition is satisfied if σ′(y) |= 〈τ〉η(µ)
and the second if σ′(x) |= η(x) for all x ∈ var(t) with x 6= y. The reason why we have ξ(y) = 〈τ̂〉η(µ) instead
of the more demanding property ξ(y) = 〈τ〉η(µ) is that this allows us to obtain formulae in Lb whenever we
decompose formulae in Lb (Theorem 6 below). In particular, since 〈τ̂〉η(µ) does not impose the execution
of the silent step, we are guaranteed that the decomposed formula does not discriminate processes by their
ability of performing a τ step.

Definition 23.5c By tuning Theorem 2 to this particular case we get a substitution σ′ with σ′(t) = σ(t), that
must satisfy: (i) P ` σ′(H), and (ii) σ′(Θ) |= ψ. Hence, given η ∈ Θ−1(ψ), the validity of condition (i) fol-

lows if, for each x occurring in t, σ′(x) is such that σ′(x) |= 〈b〉η(µ) for each x
b−→ µ ∈ H, and σ′(x) |= ¬〈c〉>

for each x
c−→6 ∈ H. The validity of condition (ii) then follows if σ′(x) |= η(x) for the variables x occurring

in Θ. Notice that, since we are considering a Γ-impatient ruloid, the decomposed formula is obtained from
the premises of the ruloid without relaxing any constraint on the execution of the silent steps. This is
to guarantee the preservation of the rootedness condition, so that to obtain formulae in Lrb whenever we
decompose formulae in Lrb (Theorem 7 below).

Now consider 〈ε〉ψ. Accordingly to Definition 14 we can distinguish two cases for σ(t) |= 〈ε〉ψ: either

δσ(t) |= ψ, or P ` σ(t)
ε̂−→ π for a distribution π ∈ ∆(T(Σ)) with π |= ψ. The former case, in which

σ(t) does not execute any τ step, motivates item 6a in Definition 23. In the latter case, σ(t) executes an
arbitrary number of lifted transitions with label τ̂ before reaching a distribution that satisfies ψ. However,
since we are considering lifted transitions, such a distribution may be obtained as a convex combination of
the distributions that have been reached through the execution of each τ̂ -step. Hence this case motivates
items 6b and 6c, and the introduction of formulae of the form ψ〈ε〉. In particular, item 6b applies when the
first τ -transition by σ(t) is inferred by a Γ-patient P -ruloid and item 6c applies when the first τ -transition
by σ(t) is inferred by a Γ-impatient P -ruloid. Formulae of the form ψ〈ε〉, and their decomposition that we
will detail below, allow us to proceed in the decomposition of the sequence of τ̂ steps by also keeping track
of the probabilistic behavior of the process. In detail:

Definition 23.6a: this case is analogous to that of Definition 23.5a.

Definition 23.6b: this case is analogous to that of Definition 23.5b. The main difference is in that we
must ensure that after having derived the first τ -step, we can continue the decomposition of the remain-
ing silent steps in the 〈ε〉 sequence. Therefore, we exploit the formula ψ〈ε〉 and we look for the mapping
η ∈ (t[µ/y])−1(ψ〈ε〉), such that σ′(y) |= 〈ε〉η(µ) and σ′(x) |= η(x) for all x 6= y with x ∈ var(t).
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Definition 23.6c: this case is analogous to that of Definition 23.5c to which the same observations made in
the case of Definition 23.6b apply. Hence, we consider a mapping η ∈ Θ−1(ψ〈ε〉) to build the decomposition.
Moreover, we notice that if x occurs Γ-liquid in t then we have to admit that certain silent moves of σ′(x)
have to be executed in order to enable the steps required in H. Hence, we define ξ(x) as the formula 〈ε〉ψ̄
where ψ̄ is the distribution formula that assigns probability 1 to the state formula obtained for Γ-frozen
variables x. Notice that the weight 1 guarantees that all the processes in the support of the distribution
reached via the sequence of silent steps must satisfy the state formula obtained from the premises of H. This
is fundamental to guarantee that such premises are enabled and that no modification in the probabilistic
behavior of the subprocess occurs in the initial sequence of silent steps.

We proceed now to discuss the decomposition of distribution formulae of the form (
⊕

i∈I riϕi)
〈ε〉. We

remark, once again, that such formulae occur only in the decomposition of state formulae of the form
〈ε〉
⊕

i∈I riϕi and their decomposition is tailored to capture the probabilistic lookahead introduced by such
state formulae. This is the reason why here we cannot apply the same decomposition method proposed for
distribution formulae of the form

⊕
i∈I riϕi.

Given any distribution term Θ ∈ DT(Σ) and a closed substitution σ, our purpose is to identify in
η ∈ Θ−1((

⊕
i∈I riϕi)

〈ε〉) which properties each σ(ζ), with ζ ∈ var(Θ), has to satisfy in order to guarantee

that σ(Θ) |= (
⊕

i∈I riϕi)
〈ε〉. Informally, we should find the requirements guaranteeing that either σ(Θ)

satisfies
⊕

i∈I riϕi, or it will satisfy it after the execution of an arbitrary number of τ̂ -steps performed by all
the processes in its support. The former case motivates item 10a of Definition 23, whereas the latter case
leads to item 10b of Definition 23. The interesting case is the second one. Here, a decomposition mapping

η ∈ Θ−1((
⊕

i∈I riϕi)
〈ε〉) is built on the derivation of a lifted transition σ(Θ)

τ̂−→ π, where π satisfies, in

turn, (
⊕

i∈I riϕi)
〈ε〉. Decomposing (

⊕
i∈I riϕi)

〈ε〉 in terms of the decomposition of (
⊕

i∈I riϕi)
〈ε〉 itself is

correct since we assume that the PTS is divergence-free. To obtain that P ` σ(Θ)
τ̂−→ π, for the desired π,

we must have suitable processes tm, distributions πm and probability weights qm such that:

1. DΣ ` {σ(Θ)
qm−−→ tm |

∑
m∈M qm = 1 and tm ∈ T(Σ)};

2. P ` tm
τ̂−→ πm for all m ∈M ;

3. π =
∑
m∈M qmπm |= (

⊕
i∈I riϕi)

〈ε〉.

Firstly, we notice that by Theorem 3 (distribution ruloids are sound and specifically witnessing) and the
construction of lifted transitions, items 1 and 2 are equivalent to say that there are a Σ-distribution ruloid
ρD = H

{Θ
qm−−→um|m∈M}

and a closed substitution σ′ with

4. σ′(Θ) = σ(Θ);

5. DΣ ` σ′(H), and

6. P ` σ′(um)
τ̂−→ πm, with σ′(um) = tm for all m ∈M .

Then we have to understand which formula should be satisfied by each πm in order to obtain the validity of

item 3. We rely on some matching w ∈ W({Θ qm−−→ um | m ∈ M},
⊕

i∈I riϕi) to establish which processes
of those in the support of the distribution π′ reached by σ′(Θ) via the sequence of τ̂ -steps, knowing that
for each m ∈ M the first step takes σ′(um) to πm, will have to satisfy the formula ϕi. Informally, for each

i ∈ I, w(um,ϕ)
qm

expresses the probability that σ′(um) has to reach, via the sequence of silent steps, (a subset

of) such processes. The formula 〈ε〉ψm, with ψm assigning weight w(um,ϕi)
qm

to ϕi, is therefore the formula

that must be satisfied by σ′(um). Notice that the division by qm, namely the probability weight assigned to
σ′(um) by σ′(Θ), derives from the conditioning on the first τ̂ -step performed by σ′(Θ) and it guarantees both
that ψm is a well-defined distribution formula, and that π′ satisfies

∑
i∈I riϕi. Then, for each m ∈ M , we
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consider a decomposition mapping ξm ∈ u−1
m (〈ε〉ψm) that will allow us to assign to each variable x occurring

in um a proper formula ξm(x) such that whenever σ′(x) |= ξm(x) for all x ∈ var(um), then σ′(um) |= 〈ε〉ψm,

namely P ` σ′(um)
τ̂−→ πm and πm |= ψ

〈ε〉
m .

Once the distribution formulae ψm are built, consider any µ ∈ var(Θ). Then there is a distribution

over terms {µ qj−−→ xj | j ∈ J} ∈ H such that DΣ ` {σ′(µ)
qj−−→ σ′(xj) | j ∈ J}. Since the weights qm of

σ′(Θ) are univocally determined by the distributions over terms in H, and thus also by those of σ′(µ), we
define the decomposed formula η(µ) as the distribution formula that has as weights exactly the qj of the
distribution over terms for µ in H. Then, to ensure the validity of item 6, we assign to each variable xj the
conjunction of the formulae obtained from the decomposition mappings ξm when applied to xj . Similarly,
for each variable x ∈ var(Θ), we define η(x) as the state formula obtained from the conjunction over m ∈M
of the decomposed formulae ξm(x). Intuitively, the conjunction over m ∈ M is needed since the same
variable y may occur in more than one term um, and moreover, from the construction of the mappings ξm
described above, we can be sure that σ′(y) |=

∧
m∈M ξm(y), for all variables y occurring as right-hand sides

of distributions over terms in H or in var(Θ), gives that P ` σ′(um)
τ̂−→ πm and πm |= ψ

〈ε〉
m for all m ∈M .

By the construction of the formulae ψm, this implies the validity of item 3.

The decomposition of formulae (
∧
j∈J ψj)

〈ε〉, which allow us to obtain a proper decomposition for formu-

lae of the form 〈ε〉
∧
j∈J ψj , follows the same ideas of that of (

⊕
i∈I riϕi)

〈ε〉. Informally, we decompose all
the formulae ψj at the same time with respect to a single distribution term. This is to avoid to consider dis-
tinct probability distributions possibly reached via the execution of distinct silent steps by the same process.
Hence, from each formula ψj in the conjunction and the distribution term Θ, we construct the formulae
ψm,j as described above, and we consider the decomposition mappings ξm ∈ u−1

m (〈ε〉
∧
j∈J ψm,j) will allow

us to assign to each variable x occurring in um a proper formula ξm(x) such that whenever σ′(x) |= ξm(x)

for all x ∈ var(um), then σ′(um) |= 〈ε〉
∧
j∈J ψm,j , namely P ` σ′(um)

τ̂−→ πm and πm |= (
∧
j∈J ψm,j)

〈ε〉.

As in the previous case, the construction of the formulae ψm,j guarantees that σ(Θ) |= (
∧
j∈J ψj)

〈ε〉, thus
giving us a well-defined decomposition.

Example 9. We show now how we can decompose the state formula ϕ = 〈ε〉ψ, with ψ the distribution
formula ψ = 1/4〈a〉> ⊕ 1/4〈τ〉> ⊕ 1/2¬〈b〉>, with respect to the term t = x +2/3 (y ‖{a} z). For sake of
simplicity, we propose the construction of a single decomposition mapping ξ ∈ t−1(ϕ). In particular, we
consider Γ = ℵ ∩ Λ and we will choose arbitrarily the ruloids that have to be used in the construction, in
order to enlighten the peculiarities of our decomposition method. Moreover, in the formulae we will omit
all occurrences of conjuncts of the form ∧>.

We recall that in Example 2 we discussed that both arguments of probabilistic alternative composition
should be marked as ℵ-liquid and Λ-frozen. Hence, any derivation of a silent move for the term t will be
obtained via a (ℵ∩Λ)-impatient ruloid. For instance, we consider the P -ruloid ρ4 in Table 2, that for β = τ
and p = 2/3 constitutes a ℵ ∩Λ-impatient ruloid for t, and we derive a decomposition mapping by following
Definition 23.6c. Let Θ = 2/3µ + 1/3(ν ‖{a} δz) denote the target of such an instance of ρ4. Then, for

η ∈ Θ−1(ψ〈ε〉), from the premises of ρ4 we get

ξ(x) = 〈τ〉η(µ) ∧ η(x) ξ(y) = 〈τ〉η(ν) ∧ η(y) ξ(z) = η(z).

We build the decomposition mapping η ∈ Θ−1(ψ〈ε〉) by applying Definition 23.10b with the Σ-distribution
ruloid ρD in Example 8 and the matching w ∈W(conc(ρD), ψ) for the distribution over terms conc(ρD) and
the distribution formula ψ defined by

w(x1, 〈a〉>) = 1/12 w(x1,¬〈b〉>) = 1/12 w(x2, 〈τ〉>) = 1/8 w(x2,¬〈b〉>) = 3/8

w(y1 ‖{a} z, 〈a〉>) = 1/6 w(y2 ‖{a} z, 〈τ〉>) = 1/8 w(y2 ‖{a} z,¬〈b〉>) = 1/24
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and giving value 0 in all other cases. Following Definition 23.10b, we can now construct, for each term t′ in
the support of Θ, the proper formula ψt′ allowing us to proceed in the decomposition of ψ〈ε〉:

ψx1
=

1/12

1/6
〈a〉> ⊕

1/12

1/6
¬〈b〉> =

1

2
〈a〉> ⊕ 1

2
¬〈b〉>

ψx2 =
1/8
1/2
〈τ〉> ⊕

3/8
1/2
¬〈b〉> =

1

4
〈τ〉> ⊕ 3

4
¬〈b〉>

ψy1‖{a}z =
1/6
1/6
〈a〉> = 1〈a〉>

ψy2‖{a}z =
1/8
1/6
〈τ〉> ⊕

1/24

1/6
¬〈b〉> =

3

4
〈τ〉> ⊕ 1

4
¬〈b〉>.

Accordingly to Definition 23.10b, to obtain the decomposition mapping η we need to consider, for each term
t′, a decomposition mapping ξt′ ∈ (t′)−1(〈ε〉ψt′) so that

η(µ) =
1

4
ξx1

(x1)⊕ 3

4
ξx2

(x2) η(ν) =
1

2
ξy1‖{a}z(y1)⊕ 1

2
ξy2‖{a}z(y2) η(z) = ξy1‖{a}z(z) ∧ ξy2‖{a}z(z).

To simplify reasoning, we assume that both ξx1
and ξx2

are derived by applying Definition 23.6a, namely that,
for i = 1, 2, there is a mapping ηxi ∈ (δxi)

−1(ψxi) such that ξxi(xi) = ηxi(xi). Hence, by Definition 23.8b
and thus by combining the Σ-distribution ruloids having a Dirac delta as source and the P -ruloids having
a variable as source, we can directly infer that

ξx1
(x1) = 〈a〉> ∧ ¬〈b〉> ξx2

(x2) = 〈τ〉> ∧ ¬〈b〉>

where, in particular, we get the conjuncts ¬〈b〉> by applying Definition 23.2 to the P -ruloids xi
b−→µi

xi
b−→µi

.

Let us focus now on the construction of the mapping ξy1‖{a}z ∈ (y1 ‖{a} z)−1(〈ε〉1〈a〉>). We remark that
since the distribution formula assigns weight 1 to the state formula 〈a〉> then, no matter how may τ̂ -steps
can be derived for y1 ‖{a} z and how clunky can the probability distributions reached via those steps be, all

the processes in the support of the distribution π s.t. y1 ‖{a} z
ε̂−→ π will have to satisfy the formula 〈a〉>.

Hence, for sake of simplicity (ant to keep this example with an acceptable length) we construct ξy1‖{a}z by
applying Definition 23.6a. This, considering that Definition 23.8b, is equivalent to say that we build the
decomposition mapping ξ′y1‖{a}z ∈ (y1 ‖{a} z)−1(〈a〉>) and ξy1‖{a}z(w) = ξ′y1‖{a}z(w) for all w ∈ Vs. Since

‖{a} forces the synchronization on action a, to decompose 〈a〉> we use the P -ruloid corresponding to the
PGSOS-rule r6 in Table 1 from which we infer

ξy1‖{a}z(y1) = ξy1‖{a}z(z) = 〈a〉>.

Finally, we consider the mapping ξy2‖{a}z ∈ (y2 ‖{a} z)−1(〈ε〉ψy2‖{a}z). As shown in Example 2, both
arguments of ‖{a} are marked as ℵ ∩Λ-liquid. Thus, for α = τ , rules r4 and r5 in Table 1 are ℵ ∩Λ-patient
ruloids for the considered term. So, we construct ξy2‖{a}z by applying Definition 23.6b with the proper

instance of rule r4 as ℵ ∩ Λ-patient ruloid. Let y2
τ−→ν′

y2‖{a}z
τ−→ν′‖{a}δz

be such an instance. Hence, we need now

to look for a decomposition mapping η′ ∈ (ν′ ‖{a} δz)−1(ψ
〈ε〉
y2‖{a}z) s.t.

ξy2‖{a}z(y2) = 〈ε〉η′(ν′) ξy2‖{a}z(z) = η′(z).

Assume that η′ is built by applying Definition 23.10a and thus we need to decompose the distribution
formula ψy2‖{a}z wrt. the term ν′ ‖{a} δz. Following Definition 23.8, we consider the Σ-distribution ruloid

ρD1 = {ν′
1/3−−−→y3, ν′

2/3−−−→y4} {δz
1−→z}

{ν′‖{a}δz
1/3−−−→y3‖{a}z, ν′‖{a}δz

2/3−−−→y4‖{a}z}
and the matching w1 ∈W(conc(ρD1 ), ψy2‖{a}z) defined by

w1(y3 ‖{a} z, 〈τ〉>) = 1/12 w(y3 ‖{a} z,¬〈b〉>) = 1/4 w(y4 ‖{a} z, 〈τ〉>) = 2/3



6 DECOMPOSITION OF MODAL FORMULAE 28

and assumes value 0 in all other cases. To conclude we need to construct the decomposition mappings
ξ1 ∈ (y3 ‖{a} z)−1(〈τ〉>), ξ2 ∈ (y3 ‖{a} z)−1(¬〈b〉>) and ξ3 ∈ (y4 ‖{a} z)−1(〈τ〉>) s.t.

η′(ν′) =
1

3
(ξi(y3) ∧ ξ2(y3))⊕ ξ3(y4) η′(z) = ξ1(z) ∧ ξ2(z) ∧ ξ3(z).

We can assume that ξ1 and ξ3 are obtained from Definition 23.4 applied to proper instances of, respectively,
rule r4 and rule r5 in Table 1, so that

ξ1(y3) = 〈τ〉> ξ1(z) = > ξ3(y4) = > ξ3(z) = 〈τ〉>.

Conversely, to obtain the mapping ξ2, we need to exploit Definition 23.2. Thus, first of all we need to
construct the set of decomposition mappings (y3 ‖{a} z)−1(〈b〉>). Since there is no synchronization on action
b, we get (y3 ‖{a} z)−1(〈b〉>) = {χ1, χ2} with χ1(y3) = 〈b〉>, χ1(z) = > and χ2(y3) = >, χ2(z) = 〈b〉>.
Then we consider the function f : (y3 ‖{a} z)−1(〈b〉>) → {y3, z} defined by f(χ1) = y3 and f(χ2) = z. By
applying Definition 23.2 with such function f we infer

ξ2(y3) = ¬χ1(y3) = ¬〈b〉> ξ2(z) = ¬χ2(z) = ¬〈b〉>.

Finally, if we trace back the construction of all the decomposition mappings, we obtain

ξ(x) = 〈τ〉
[

1

4
(〈a〉> ∧ ¬〈b〉>)⊕ 3

4
(〈τ〉> ∧ ¬〈b〉>)

]
ξ(y) = 〈τ〉

[
1

2
〈a〉> ⊕ 1

2
〈ε〉
(1

3
(〈τ〉> ∧ ¬〈b〉>)⊕ 2

3
>
)]

ξ(z) = 〈a〉> ∧ 〈τ〉> ∧ ¬〈b〉>.

�

6.3. The decomposition theorem

We can show now that our decomposition method is correct. Anyhow, the proof of the decomposition
theorem (Theorem 4) will make use of some auxiliary results that we present here.

Firstly, we have that the decomposition mappings correctly assign state formulae to state variables and
distribution formulae to distribution variables.

Lemma 3. Assume the terms t ∈ T(Σ) and Θ ∈ DT(Σ) and the formulae ϕ ∈ Ls and ψ ∈ Ld.

1. For all state variables x ∈ Vs we have that ξ(x) ∈ Ls for each ξ ∈ t−1(ϕ).

2. For all distribution variables µ ∈ Vd we have that η(µ) ∈ Ld for each η ∈ Θ−1(ψ).

3. For all state variables x ∈ Vs we have that η(x) ∈ Ls for each η ∈ Θ−1(ψ).

Then, we notice that the decomposition mappings are not sensible to α-conversion.

Lemma 4. Consider terms t ∈ T(Σ) and Θ ∈ DT(Σ) and formulae ϕ ∈ Ls and ψ ∈ Ld. Moreover, let
σ : V→ V be any bijective renaming of variables.

1. Let ξ ∈ t−1(ϕ). Then ξ(x) ≡ > for all x 6∈ var(t).

2. Let ξ ∈ σ(t)−1(ϕ). Then there is a ξ′ ∈ t−1(ϕ) with ξ′(x) ≡ ξ(σ(x)) for all x ∈ Vs.

3. Let η ∈ σ(Θ)−1(ψ). Then there is an η′ ∈ Θ−1(ψ) with η′(ζ) ≡ η(σ(ζ)) for all ζ ∈ V.

Next, we show that the formulae ψm and ψm,j used, respectively, in Definition 23.10 and Definition 23.11
are well-defined with respect to the satisfaction of distribution formulae.
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Proposition 2. Let Θ ∈ DT(Σ) and σ be a closed substitution with σ(Θ) =
∑
m∈M qmδtm for tm ∈ T(Σ)

pairwise distinct. Then

1. σ(Θ) |= (
⊕

i∈I riϕi)
〈ε〉 iff there is a matching w̃ ∈ W(σ(Θ),

⊕
i∈I riϕi) such that for each m ∈ M it

holds that tm |= 〈ε〉ψm with ψm =
⊕

i∈Im
w̃(tm,ϕi)

qm
ϕi and Im = {i ∈ I | w̃(tm, ϕi) > 0}.

2. σ(Θ) |= (
∧
j∈J ψj)

〈ε〉 iff for each m ∈ M it holds that tm |= 〈ε〉
∧
j∈J ψm,j with ψm,j defined from Θ

and ψj as in Definition 23.10.

Proof. We expand only the prof of the first item. The proof for the second item follows by similar arguments.
We prove the two implications separately.

(⇒) Assume that σ(Θ) |= (
⊕

i∈I riϕi)
〈ε〉. Then, we can distinguish two cases.

1. σ(Θ) |=
⊕

i∈I riϕi. By Definition 14, this implies that there is a matching w ∈ W(σ(Θ),
⊕

i∈I riϕi)
such that whenever w(tm, ϕi) > 0 then tm |= ϕi. It is then immediate to verify that the thesis follows
for ψm constructed using the matching w as w̃.

2. P ` σ(Θ)
ε̂−→ π and π |=

⊕
i∈I riϕi, which implies the existence of a matching w ∈ W(π,

⊕
i∈I riϕi)

such that whenever w(t, ϕi) > 0 then t |= ϕi. By Definition 4, σ(Θ)
ε̂−→ π implies that, for each

m ∈ M , P ` tm
ε̂−→ πm and π =

∑
m∈M qmπm. To simplify the reasoning, we assume that the

supports of the distributions πm are all distinct. If this is not the case, then we can reason on the
support of π as the multi-set obtained by the union of the supports of the πm. Define

w̃(tm, ϕi) =
∑

t∈supp(πm)

w(t, ϕi).

The proof that w̃ is a well-defined matching for σ(Θ) and
⊕

i∈I riϕi is straightforward. Hence, to

conclude the proof, we need to show that for each m ∈ M we have πm |= ψm =
⊕

i∈Im
w̃(tm,ϕi)

qm
ϕi.

Define, for each m ∈M

wm(t, ϕi) =


w(t, ϕi)

qm
if t ∈ supp(πm)

0 otherwise.

Then we have ∑
t∈T(Σ)

wm(t, ϕi) =
∑

t∈supp(πm)

wm(t, ϕi) =

∑
t∈supp(πm) w(t, ϕi)

qm
=

w̃(tm, ϕi)

qm∑
i∈Im

wm(t, ϕi) =
∑
i∈I

wm(t, ϕi) =

∑
i∈I w(t, ϕi)

qm
=
qm · πm(t)

qm
= πm(t)

and thus wm is a well-defined matching for πm and ψm. Moreover, notice that wm(t, ϕi) > 0 iff
w(t, ϕi) > 0 and therefore we gather t |= ϕi whenever wm(t, ϕi) > 0. We can therefore conclude that
the matching w̃ is such that tm |= 〈ε〉ψm for each m ∈M .

(⇐) Assume now that there is a matching w̃ ∈ W(σ(Θ),
⊕

i∈I riϕi) such that tm |= 〈ε〉ψm for each

m ∈ M . By Definition 14, for each m ∈ M we have that P ` tm
ε̂−→ πm with πm |= ψm. Hence, by

Definition 4 we can infer that P ` σ(Θ)
ε̂−→ π for π =

∑
m∈M qmπm. To conclude the proof, we need to show

that π |=
⊕

i∈I riϕi. For each m ∈ M , from πm |= ψm we get that there is a matching wm ∈ W(πm, ψm)
such that t |= ϕi whenever wm(t, ϕi) > 0. Define

w̄(t, ϕi) =
∑
m∈M

qm ·wm(t, ϕi).
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Then we have

∑
t∈T(Σ)

w̄(t, ϕi) =
∑

t∈T(Σ)

(∑
m∈M

qm ·wm(t, ϕi)

)
=
∑
m∈M

qm ·

 ∑
t∈supp(πm)

wm(t, ϕi)

 =
∑
m∈M

qm · ri = ri

∑
i∈I

w̄(t, ϕi) =
∑
i∈I

(qm ·wm(t, ϕi)) =
∑
m∈M

qm ·

(∑
i∈I

wm(t, ϕi)

)
=
∑
m∈M

qm · πm(t) = π(t).

Hence, w̄ is a well-defined matching for π and
⊕

i∈I riϕi. Then, note that w̄(t, ϕi) > 0 iff wm(t, ϕi) > 0 for
at least one m ∈M . Hence we infer that t |= ϕi whenever w̄(t, ϕi) > 0 and conclude π |=

⊕
i∈I riϕi.

We can now present the decomposition theorem.

Theorem 4 (Decomposition theorem). Let P = (Σ,A, R) be a Γ-patient PGSOS-TSS and let DΣ be the
Σ-DS. For any term t ∈ T(Σ), closed substitution σ and state formula ϕ ∈ Ls we have

σ(t) |= ϕ⇔ ∃ ξ ∈ t−1(ϕ) such that for all state variables x ∈ var(t) it holds σ(x) |= ξ(x) (2)

and for any distribution term Θ ∈ DT(Σ), closed substitution σ and distribution formula ψ ∈ Ld we have

σ(Θ) |= ψ ⇔ ∃ η ∈ Θ−1(ψ) such that for all variables ζ ∈ var(Θ) it holds σ(ζ) |= η(ζ). (3)

Proof. We start with univariate terms, by proceeding by structural induction over formula φ ∈ L to prove
both statements at the same time. Showing the two statements at the same time is necessary since state
formula are constructed on distribution formulae, and, analogously, distribution formulae are constructed
on state formulae. For each inductive case we prove both implications. Then, we will conclude with showing
how the result for univariate terms can be extended to multivariate terms.

Proof of the base case φ = >

Then by Definition 23.1 we have that ξ ∈ t−1(>) iff ξ(x) = > for all x ∈ Vs. Then Equation (2) directly
follows from Definition 14.

Proof of the inductive step φ = ¬ϕ

We have

σ(t) |= ¬ϕ
⇔ σ(t) 6|= ϕ

⇔ ∀ ξ ∈ t−1(ϕ) ∃x ∈ var(t) sσ(x) 6|= ξ(x)

⇔ ∃ f : t−1(ϕ)→ var(t) s.t. ∀ ξ′ ∈ t−1(ϕ) it holds σ(f(ξ′)) 6|= ξ′(f(ξ′))

⇔ ∃ f : t−1(ϕ)→ var(t) s.t. ∀x ∈ var(t) it holds σ(x) |=
∧

ξ′∈f−1(x)

¬ξ′(x)

⇔ ∃ ξ ∈ t−1(¬ϕ) s.t. ∀x ∈ var(t) it holds σ(x) |= ξ(x)

where the second relation follows by the inductive hypothesis and the last relation follows by construction
of t−1(¬ϕ) (Definition 23.2). Hence, Equation (2) holds also in this case.

Proof of the inductive step φ =
∧

j∈J ϕj

We have

σ(t) |=
∧
j∈J

ϕj
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⇔ σ(t) |= ϕj , for all j ∈ J
⇔ ∃ ξj ∈ t−1(ϕj) s.t. ∀x ∈ var(t) it holds σ(x) |= ξj(x), for all j ∈ J

⇔ ∃ ξj ∈ t−1(ϕj) for all j ∈ J s.t. ∀x ∈ var(t) it holds σ(x) |=
∧
j∈J

ξj(x)

⇔ ∃ ξ ∈ t−1(
∧
j∈J

ϕj) s.t. ∀x ∈ var(t) it holds σ(x) |= ξ(x)

where the second relation follows by the inductive hypothesis and the last relation follows by construction
of t−1(

∧
j∈J ϕj) (Definition 23.3). Hence, Equation (2) holds also in this case.

Proof of the inductive step φ =
⊕

i∈I riϕi

Since φ ∈ Ld, we need to show Equation (3). To this aim, we prove the two implications separately.
(⇒) Assume first that σ(Θ) |=

⊕
i∈I riϕi and that σ(Θ) =

∑
m∈M qmδtm with tm ∈ T(Σ) pairwise

distinct. By Definition 14, there is a matching w̃ ∈W(σ(Θ),
⊕

i∈I riϕi) with tm |= ϕi whenever w̃(tm, ϕi) >

0. Moreover, by Proposition 1, we get D ` {σ(Θ)
qm−−→ tm | m ∈M} which, by Theorem 3, implies that there

are a Σ-distribution ruloid ρD = H

{Θ
qm−−→um|m∈M}

and a closed substitution σ′ with DΣ ` σ′(H), σ′(Θ) =

σ(Θ) and σ′(um) = tm for each m ∈M . Define w ∈W(conc(ρD),
⊕

i∈I riϕi) as w(um, ϕi) = w̃(σ′(um), ϕi)
for all m ∈M, i ∈ I. Then we can infer:

1. from σ′(Θ) = σ(Θ) we obtain that σ′(ζ) = σ(ζ) for all variables ζ ∈ var(Θ);

2. whenever w(um, ϕi) > 0 it holds that σ′(um) |= ϕi. By the inductive hypothesis we derive that there
is a decomposition mapping ξm,i ∈ u−1

m (ϕi) s.t. σ′(x) |= ξm,i(x) for all x ∈ var(um);

3. from DΣ ` σ′(H) we obtain that for all premises {ζ qj−−→ xj | j ∈ J} ∈ H we have DΣ ` {σ′(ζ)
qh−−→ t′h |

h ∈ H}, where {σ′(ζ)
qh−−→ t′h | h ∈ H} is σ′({ζ qj−−→ xj | j ∈ J}), for a suitable set of indexes H and

proper terms t′h. By Proposition 1, DΣ ` {σ′(ζ)
qh−−→ t′h | h ∈ H} iff σ′(ζ)(t′h) = qh and

∑
h∈H qh = 1.

Hence, as the t′h are pairwise distinct, we have that

σ′(ζ) =
∑
h∈H

qhδt′h =
∑
h∈H

( ∑
j∈J,σ′(xj)=t′h

qj
)
δt′h =

∑
h∈H

( ∑
j∈J,σ′(xj)=t′h

qjδσ′(xj)
)

=
∑
j∈J

qjδσ′(xj)

Let η ∈ Θ−1(
⊕

i∈I riϕi) be the decomposition mapping defined as in Definition 23.8 by means of the

Σ-distribution ruloid H

{Θ
qm−−→um|m∈M}

and the decomposition mappings ξm,i as in item (2) above for each

m ∈ M and i ∈ I s.t. w(um, ϕi) > 0, and ξm,i defined by ξm,i(x) = > for all x ∈ Vs for those m, i
s.t. w(um, ϕi) = 0. We aim to show that for this η it holds that σ′(ζ) |= η(ζ) for each ζ ∈ var(Θ). By
construction,

η(ζ) =



⊕
{ζ

qj−−→xj |j∈J}∈H

qj
∧
m∈M
i∈I

ξm,i(xj) if ζ ∈ Vd

∧
m∈M
i∈I

ξm,i(x) if ζ = x ∈ Vs.

For each y ∈ {xj | j ∈ J} ∪ {x} and for each m ∈M and i ∈ I, we distinguish three cases:

4. y ∈ var(um) and w(um, ϕi) > 0. Then, by item (2) above, we have σ′(y) |= ξm,i(y).

5. y ∈ var(um) and w(um, ϕi) = 0. Then by construction ξm,i(y) = >, thus giving that σ′(y) |= ξm,i(y)
holds trivially also in this case.
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6. y 6∈ var(um). Then, whichever is the value of w(um, ϕi), we have ξm,i(y) = > (see Definition 23) and
consequently σ′(y) |= ξm,i(y) holds trivially also in this case.

Since these considerations apply to each m ∈ M and i ∈ I we can conclude that if ζ ∈ Vd then for all

{ζ qj−−→ xj | j ∈ J} ∈ H it holds that for each xj with j ∈ J we have σ′(xj) |=
∧
m∈M,i∈I ξm,i(xj).

Furthermore, by item (3) above, if {ζ qj−−→ xj | j ∈ J} ∈ H then DΣ ` σ′(H) gives σ′(ζ) =
∑
j∈J qjδσ′(xj),

from which we can conclude that

σ′(ζ) |=
⊕
j∈J

qj
∧

i∈I,m∈M
ξm,i(xj), namely σ′(ζ) |= η(ζ).

Similarly, if ζ = x ∈ Vs then

σ′(x) |=
∧

m∈M,i∈I
ξm,i(x), namely σ′(x) |= η(x).

Thus, we can conclude that for each ζ ∈ var(Θ) it holds that σ′(ζ) |= η(ζ). Since moreover σ(ζ) = σ′(ζ)
(item (1) above), we can conclude that σ(ζ) |= η(ζ) as required.

(⇐) Assume now that there is a decomposition mapping η ∈ Θ−1(
⊕

i∈I riϕi) s.t. σ(ζ) |= η(ζ) for all
ζ ∈ var(Θ). Following Definition 23.8, the existence of such a decomposition mapping η entails the existence
of a Σ-distribution ruloid ρD = H

{Θ
qm−−→tm|m∈M}

with
∑
m∈M qm = 1 (Lemma 1) and of a matching w for

conc(ρD) and
⊕

i∈I riϕi from which we can build the following decomposition mappings:{
ξm,i ∈ t−1

m (ϕi) if w(tm, ϕi) > 0

ξm,i ∈ t−1
m (>) otherwise.

In particular, we have that for each µ ∈ var(Θ)

η(µ) =
⊕

{µ
qj−−→xj |

∑
j∈J qj=1}∈H

qj
∧

i∈I,m∈M
ξm,i(xj)

and for each x ∈ var(Θ)

η(x) =
∧

i∈I,m∈M
ξm,i(x).

We define a closed substitution σ′ s.t. σ′(ζ) = σ(ζ) for each ζ ∈ var(Θ) and σ′(x) = σ(x) for each x ∈ rhs(H).
Then, the following properties hold:

(a) From σ′(ζ) = σ(ζ) and σ(ζ) |= η(ζ) we derive σ′(ζ) |= η(ζ). In particular we obtain that σ′(x) |=∧
i∈I,m∈M ξm,i(x) for each x ∈ var(Θ).

(b) As σ′(µ) |= η(µ) for each µ ∈ var(Θ), and, by Definition 23.8a, the weights of the distribution formula

η(µ) coincide with the weights of the distribution literals in {µ qj−−→ xj |
∑
j∈J qj = 1} ∈ H, we gather

σ′(xj) |=
∧
i∈I,m∈M ξm,i(xj), for each j ∈ J .

(c) From σ(ζ) = σ′(ζ) for each ζ ∈ var(Θ) we infer that σ′(Θ) = σ(Θ). Moreover, by Lemma 2.3 we have
that rhs(H) =

⋃
m∈M var(tm), so that σ′(x) = σ(x) for each x ∈ rhs(H) implies σ′(tm) = σ(tm) for each

m ∈M .

From items (a), (b) above and by structural induction we gather σ′(tm) |= ϕi for each m ∈ M, i ∈ I
with w(tm, ϕi) > 0. Moreover, from σ′(ζ) |= η(ζ) for each ζ ∈ var(Θ), item (a) above, we obtain that

DΣ ` σ′(H), namely DΣ proves the reduced instance w.r.t, σ′ of each set of distribution premises {ζ qj−−→
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xj |
∑
j∈J qj = 1} ∈ H. This fact taken together with item (c) above and Theorem 3 gives that DΣ proves

the reduced instance of {Θ qm−−→ tm | m ∈ M} wrt. σ, that is DΣ ` {σ(Θ)
qh−−→ t′h | h ∈ H} for a suitable

set of indexes H and a proper set of closed terms t′h s.t. for each h ∈ H there is at least one m ∈ M
s.t. t′h = σ′(tm) and moreover qh =

∑
{m∈M |σ′(tm)=t′h}

qm (Definition 17). In addition, by Proposition 1 it

follows that qh = σ(Θ)(t′h) for each h ∈ H and
∑
h∈H qh = 1. Since moreover qh ∈ (0, 1] for each h ∈ H,

this is equivalent to say that σ(Θ) =
∑
h∈H qhδt′h .

To conclude, we exhibit a matching in W(σ(Θ),
⊕

i∈I riϕi) s.t. t′h |= ϕi whenever w̃(t′h, ϕi) > 0. Define

w̃(th, ϕi) =
∑
{m∈M |σ′(tm)=th}w(tm, ϕi). As w ∈W(conc(ρD),

⊕
i∈I riϕi), we have∑

h∈H

w̃(t′h, ϕi) =
∑
m∈M

w(tm, ϕi) = ri

∑
i∈I

w̃(t′h, ϕi) =
∑

{m∈M |σ′(tm)=t′h}

(∑
i∈I

w(tm, ϕi)

)
=

∑
{m∈M |σ′(tm)=t′h}

qm = qh.

Hence w̃ is a well-defined matching for σ(Θ) and
⊕

i∈I riϕi. Moreover, notice that w̃(th, ϕi) > 0 iff
w(tm, ϕi) > 0 for at least one index m ∈ M with σ′(tm) = th. Since w(tm, ϕi) > 0 implies σ′(tm) |= ϕi,
we can infer that th |= ϕi whenever w̃(th, ϕi) > 0. Therefore, we can conclude that σ(Θ) |=

⊕
i∈I riϕi as

requested.
Hence, Equation (3) follows from the two implications.

Proof of the inductive step φ =
∧

j∈J ψj

Since φ ∈ Ld, we need to show Equation (3). We have

σ(Θ) |=
∧
j∈J

ψj

⇔ σ(Θ) |= ψj , for all j ∈ J
⇔ ∃ ηj ∈ Θ−1(ψj) s.t. ∀ ζ ∈ var(Θ) it holds σ(ζ) |= ηj(ζ), for all j ∈ J

⇔ ∃ ηj ∈ Θ−1(ψj) for all j ∈ J s.t. ∀ ζ ∈ var(Θ) it holds σ(ζ) |=
∧
j∈J

ηj(ζ)

⇔ ∃ η ∈ Θ−1(
∧
j∈J

ψj) s.t. ∀ ζ ∈ var(Θ) it holds σ(ζ) |= η(ζ)

where the second relation follows by the inductive hypothesis and the last relation follows by construction
of Θ−1(

∧
j∈J ψj) (Definition 23.9). Hence, Equation (3) holds also in this case.

Proof of the inductive step φ =
(⊕

i∈I riϕi

)〈ε〉
We prove the two implications separately.
(⇒) Assume first that σ(Θ) |=

⊕
i∈I riϕi and that σ(Θ) =

∑
m∈M qmδtm with tm ∈ T(Σ) pairwise

distinct. By Proposition 1, we get D ` {σ(Θ)
qm−−→ tm | m ∈ M} which, by Theorem 3, implies that

there are a Σ-distribution ruloid ρD = H

{Θ
qm−−→um|m∈M}

and a closed substitution σ′ with DΣ ` σ′(H),

σ′(Θ) = σ(Θ) and σ′(um) = tm for each m ∈M . Then we can infer that:

1. from σ′(Θ) = σ(Θ) we obtain that σ′(ζ) = σ(ζ) for all variables ζ ∈ var(Θ);

2. from σ′(um) = tm and Proposition 2, we get that there is a matching w̃ ∈ W(σ(Θ),
⊕

i∈I riϕi) s.t.
for each m ∈ M we have σ′(um) |= 〈ε〉ψm for ψm built on w̃ as in Definition 23.10. By the inductive
hypothesis we derive that, for each m ∈ M , there is a decomposition mapping ξm ∈ u−1

m (〈ε〉ψm) s.t.
σ′(x) |= ξm(x) for all x ∈ var(um);
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3. from DΣ ` σ′(H) we obtain that for all premises {ζ qj−−→ xj | j ∈ J} ∈ H we have DΣ ` {σ′(ζ)
qh−−→ t′h |

h ∈ H}, where {σ′(ζ)
qh−−→ t′h | h ∈ H} is σ′({ζ qj−−→ xj | j ∈ J}), for a suitable set of indexes H and

proper terms t′h. By Proposition 1, DΣ ` {σ′(ζ)
qh−−→ t′h | h ∈ H} iff σ′(ζ)(t′h) = qh and

∑
h∈H qh = 1.

Hence, as the t′h are pairwise distinct, we have

σ′(ζ) =
∑
h∈H

qhδt′h =
∑
h∈H

( ∑
j∈J,σ′(xj)=t′h

qj
)
δt′h =

∑
h∈H

( ∑
j∈J,σ′(xj)=t′h

qjδσ′(xj)
)

=
∑
j∈J

qjδσ′(xj).

Let η ∈ Θ−1
(
(
⊕

i∈I riϕi)
〈ε〉) be the decomposition mapping defined as in Definition 23.10 by means of

the Σ-distribution ruloid H

{Θ
qm−−→um|m∈M}

and the decomposition mappings ξm as in item (2) above for

each m ∈ M and i ∈ I s.t. w(um, ϕi) > 0, and ξm defined by ξm(x) = > for all x ∈ Vs for those m, i
s.t. w(um, ϕi) = 0. We aim to show that for this η it holds that σ′(ζ) |= η(ζ) for each ζ ∈ var(Θ). By
construction,

η(ζ) =


⊕

{ζ
qj−−→xj |j∈J}∈H

qj
∧
m∈M

ξm(xj) if ζ ∈ Vd

∧
m∈M

ξm(x) if ζ = x ∈ Vs.

For each variable y ∈ {xj | j ∈ J} ∪ {x} and for each m ∈M and i ∈ I, we distinguish three cases:

4. y ∈ var(um) and w(um, ϕi) > 0. Then, by item (2) above, we have σ′(y) |= ξm(y).

5. y ∈ var(um) and w(um, ϕi) = 0. Then by construction ξm(y) = >, thus giving that σ′(y) |= ξm(y)
holds trivially also in this case.

6. y 6∈ var(um). Then, whichever is the value of w(um, ϕi), we have ξm(y) = > (see Definition 23) and
consequently σ′(y) |= ξm(y) holds trivially also in this case.

Since these considerations apply to each m ∈ M and i ∈ I we can conclude that if ζ ∈ Vd then for all

{ζ qj−−→ xj | j ∈ J} ∈ H it holds that for each xj with j ∈ J we have σ′(xj) |=
∧
m∈M ξm(xj). Furthermore,

by item (3) above, if {ζ qj−−→ xj | j ∈ J} ∈ H then DΣ ` σ′(H) gives σ′(ζ) =
∑
j∈J qjδσ′(xj), from which we

can conclude that
σ′(ζ) |=

⊕
j∈J

qj
∧
m∈M

ξm(xj), namely σ′(ζ) |= η(ζ).

Similarly, if ζ = x ∈ Vs then

σ′(x) |=
∧
m∈M

ξm(x), namely σ′(x) |= η(x).

Thus, we can conclude that for each ζ ∈ var(Θ) it holds that σ′(ζ) |= η(ζ). Since moreover σ(ζ) = σ′(ζ)
(item (1) above), we can conclude that σ(ζ) |= η(ζ) as required.

(⇐) Assume now that there is a decomposition mapping η ∈ Θ−1
(
(
⊕

i∈I riϕi)
〈ε〉) s.t. σ(ζ) |= η(ζ) for

all ζ ∈ var(Θ). Following Definition 23.10, the existence of such a decomposition mapping η entails the
existence of a Σ-distribution ruloid ρD = H

{Θ
qm−−→tm|m∈M}

with
∑
m∈M qm = 1 (Lemma 1) and of a matching

w for conc(ρD) and
⊕

i∈I riϕi from which we can build the following decomposition mappings:

ξm ∈ t−1
m (〈ε〉ψm) with ψm =

⊕
i∈Im

w(tm, ϕi)

qm
ϕi
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In particular, we have that for each µ ∈ var(Θ)

η(µ) =
⊕

{µ
qj−−→xj |

∑
j∈J qj=1}∈H

qj
∧
m∈M

ξm(xj)

and for each x ∈ var(Θ)

η(x) =
∧
m∈M

ξm(x).

We define a closed substitution σ′ s.t. σ′(ζ) = σ(ζ) for each ζ ∈ var(Θ) and σ′(x) = σ(x) for each x ∈ rhs(H).
Then, the following properties hold:

(a) From σ′(ζ) = σ(ζ) and σ(ζ) |= η(ζ) we derive σ′(ζ) |= η(ζ). In particular we obtain that σ′(x) |=∧
m∈M ξm(x) for each x ∈ var(Θ).

(b) As σ′(µ) |= η(µ) for each µ ∈ var(Θ), and, by Definition 23.10b, the weights of the distribution formula

η(µ) coincide with the weights of the distribution literals in {µ qj−−→ xj |
∑
j∈J qj = 1} ∈ H, we gather

σ′(xj) |=
∧
m∈M ξm(xj), for each j ∈ J .

(c) From σ(ζ) = σ′(ζ) for each ζ ∈ var(Θ) we infer that σ′(Θ) = σ(Θ). Moreover, by Lemma 2.3 we have
that rhs(H) =

⋃
m∈M var(tm), so that σ′(x) = σ(x) for each x ∈ rhs(H) implies σ′(tm) = σ(tm) for each

m ∈M .

From items (a), (b) above and by structural induction we gather σ′(tm) |= 〈ε〉ψm for each m ∈ M . More-
over, from σ′(ζ) |= η(ζ) for each ζ ∈ var(Θ), item (a) above, we obtain that DΣ ` σ′(H), namely DΣ

proves the reduced instance w.r.t, σ′ of each set of distribution premises {ζ qj−−→ xj |
∑
j∈J qj = 1} ∈ H.

This fact taken together with item (c) above and Theorem 3 gives that DΣ proves the reduced instance of

{Θ qm−−→ tm | m ∈M} wrt. σ. Finally, notice that by Proposition 2, from σ′(tm) |= 〈ε〉ψm for each m ∈M ,

we can conclude that σ(Θ) |=
(⊕

i∈I riϕi
)〈ε〉

as requested.

Proof of the inductive step φ = (
∧

j∈J ψj)
〈ε〉

The proof for this case is analogous to the one for the inductive step φ = (
⊕

i∈I riϕi)
〈ε〉.

Proof of the inductive step φ = 〈α〉ψ

Since φ ∈ Ls, we need to show Equation (2). To this aim, we prove the two implications separately.
(⇒) Assume first that σ(t) |= 〈α〉ψ. Then, by Definition 14, there exists a probability distribution

π ∈ ∆(T(Σ)) with P ` σ(t)
α−→ π and π |= ψ. By Theorem 2, P ` σ(t)

α−→ π implies that there are a
P -ruloid H

t
α−→Θ

and a closed substitution σ′ with P ` σ′(H), σ′(t) = σ(t) and σ′(Θ) = π. We infer that:

the following facts:

1. from σ′(t) = σ(t) we obtain that σ′(x) = σ(x) for all x ∈ var(t);

2. from σ′(Θ) = π and π |= ψ, we gather σ′(Θ) |= ψ and by the inductive hypothesis we obtain that
there exists a η ∈ Θ−1(ψ) s.t. σ′(ζ) |= η(ζ) for all ζ ∈ var(Θ);

3. from P ` σ′(H) we obtain that whenever x
β−→ µ ∈ H we have P ` σ′(x)

β−→ σ′(µ). Then, if
µ ∈ var(Θ), by previous item (2), we get σ′(µ) |= η(µ). Otherwise, if µ 6∈ var(Θ), we have η(µ) = >
thus giving σ′(µ) |= η(µ) also in this case. Hence, σ′(µ) |= η(µ) and σ′(x) |= 〈β〉η(µ) in all cases.

4. from P ` σ′(H) we obtain that whenever x
γ−→6 ∈ H we have P ` σ′(x)

γ−→6 , namely P 6` σ′(x)
γ−→ υ

for any υ ∈ DT(Σ), giving σ′(x) |= ¬〈γ〉>.
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Let ξ ∈ t−1(〈α〉ψ) be defined as in Definition 23.4 by means of the P -ruloid H

t
α−→Θ

and the decomposition

mapping η introduced in item (2) above. We aim to show that for this ξ it holds that σ′(x) |= ξ(x) for each
x ∈ var(t). By construction,

ξ(x) =
∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x).

By item (3) above we have σ′(x) |= 〈β〉η(µ) for each x
β−→ µ ∈ H. By item (4) above we have σ′(x) |= ¬〈γ〉>

for each x
γ−→6 ∈ H. Finally, if x ∈ var(Θ) by item (2) above we get σ′(x) |= η(x). If x 6∈ var(Θ) then

we have η(x) = > (Definition 23.8b) thus giving σ′(x) |= η(x) also in this case. Hence, σ′(x) |= η(x) in all
cases. Thus, we can conclude that σ′(x) |= ξ(x). Since, by item (1) above, σ(x) = σ′(x) we can conclude
that σ(x) |= ξ(x) as required.

(⇐) Assume now that there is a ξ ∈ t−1(〈α〉ψ) s.t. σ(x) |= ξ(x) for all x ∈ var(t). Following Defini-
tion 23.4, we construct ξ in terms of some P -ruloid H

t
α−→Θ

and decomposition mapping η ∈ Θ−1(ψ). In

particular, we have that for each x ∈ var(t)

ξ(x) =
∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x).

We define a closed substitution σ′ s.t. the following properties hold:

(a) σ′(x) = σ(x) for all x ∈ var(t). As a consequence, from σ(x) |= ξ(x) we derive σ′(x) |= ξ(x).

(b) As σ′(x) |= ξ(x), by previous item (a), we derive that σ′(x) |= 〈β〉η(µ) for each x
β−→ µ ∈ H. This

implies that for each positive premise in H there exists a probability distribution πβ,µ s.t. P ` σ′(x)
β−→

πβ,µ and πβ,µ |= η(µ). We define σ′(µ) = πβ,µ thus obtaining that for each x
β−→ µ ∈ H we have

P ` σ′(x)
β−→ σ′(µ) and σ′(µ) |= η(µ).

(c) As σ′(x) |= ξ(x), by previous item (a), we derive that σ′(x) |= ¬〈c〉> for each x
γ−→6 ∈ H. Therefore, we

obtain that P ` σ′(x)
γ−→6 for each x

γ−→6 ∈ H.

(d) Since var(Θ) ⊆ var(t)∪ rhs(H), previous items (b) and (c) we obtain that σ′(µ) |= η(µ) for each µ ∈ Vd.

(e) σ′(x) |= η(x) for each x ∈ var(Θ).

From items (d), (e) and structural induction, we gather σ′(Θ) |= ψ. Moreover, items (b) and (c) give

P ` σ′(H). Hence, by Theorem 2 we obtain P ` σ′(t) α−→ σ′(Θ). From item (a) we have that σ′(t) = σ(t)
and, therefore, we can conclude that σ(t) |= 〈α〉ψ.

Hence, Equation (2) follows from the two implications.

Proof of the inductive step φ = 〈τ̂ 〉ψ

We prove the two implications separately.

(⇒) Assume first that σ(t) |= 〈τ̂〉ψ. Then, by Definition 14, there is a distribution π s.t. σ(t)
τ̂−→ π and

π |= ψ. We can distinguish two cases:

1. Either π = δσ(t). Then δσ(t) |= ψ and structural induction imply that there is a decomposition mapping

η ∈ δ−1
t (ψ) s.t. σ(x) |= η(x) for each x ∈ var(t). Then, define ξ ∈ t−1(〈τ̂〉ψ) by means of η as in

Definition 23.5a, namely ξ(x) = 〈τ̂〉η(x) for all x occurring Γ-liquid in t and ξ(y) = η(y) for all other
variables. Clearly, for Γ-liquid variables σ(x) |= η(x) implies σ(x) |= 〈τ̂〉η(x) and thus σ(x) |= ξ(x)
follows for all x ∈ var(t).
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2. Or P ` σ(t)
τ−→ π. By Theorem 2, P ` σ(t)

τ−→ π implies that there are a P -ruloid H

t
τ−→Θ

and a closed

substitution σ′ with P ` σ′(H), σ′(t) = σ(t) and σ′(Θ) = π. We infer that:

(a) from σ′(t) = σ(t) we obtain that σ′(x) = σ(x) for all x ∈ var(t);

(b) from σ′(Θ) = π and π |= ψ, we gather σ′(Θ) |= ψ and by the inductive hypothesis we obtain that
there exists a η ∈ Θ−1(ψ) s.t. σ′(ζ) |= η(ζ) for all ζ ∈ var(Θ).

We can distinguish two cases:

• H

t
τ−→Θ

is Γ-patient, namely it is of the form x0
τ−→µ

t
τ−→t[µ/x0]

and the unique occurrence of µ in t[µ/x0]

is Γ-liquid. Consider the decomposition mapping η obtained in item 2b above and define from
it ξ ∈ t−1(〈τ̂〉ψ) as in Definition 23.5b. Clearly, σ(µ) |= η(µ) giving that σ(x0) |= 〈τ̂〉η(µ) and
σ(x) |= η(x) for all other variables. Hence we have obtained that σ(x) |= ξ(x) for all x ∈ var(t).

• H

t
τ−→Θ

is Γ-impatient. In this case the thesis follows by applying the same arguments used in the

proof of the inductive step φ = 〈α〉ψ to a decomposition mapping built as in Definition 23.5c.

(⇐) Assume now that there is a ξ ∈ t−1(〈τ̂〉ψ) s.t. σ(x) |= ξ(x) for all x ∈ var(t). Following Defini-
tion 23.5, we can distinguish three cases.

1. ξ is constructed in terms of a decomposition mapping η ∈ δ−1
t (ψ) as in Definition 23.5a. This implies

that σ(x) |= η(x) for all x ∈ var(t) and thus, by induction we gather that δσ(t) |= ψ. By Definition 14,
we can therefore infer that σ(t) |= 〈τ̂〉ψ.

2. ξ is constructed in terms of a Γ-liquid argument x0 of t, a Γ-patient ruloid x0
τ−→µ

t
τ−→t[µ/x0]

and of a

decomposition mapping η ∈ t[µ/x0]−1(ψ) as in Definition 23.5b. In this case the thesis follows by
applying the same arguments used in the proof of the inductive step φ = 〈α〉ψ.

3. ξ is constructed in terms of a Γ-impatient P -ruloid H

t
τ−→Θ

and of a decomposition mapping η ∈ Θ−1(ψ)

as in Definition 23.5c. Also in this case the thesis follows by applying the same arguments used in the
proof of the inductive step φ = 〈α〉ψ.

Hence, Equation (2) follows from the two implications.

Proof of the inductive step φ = 〈ε〉ψ

We prove the two implications separately.
(⇒) Assume first that σ(t) |= 〈ε〉ψ. Then, by Definition 14, there are distributions π0, . . . , πn, for some

n ∈ N s.t. σ(t)
τ̂−→ π0

τ̂−→ π2
τ̂−→ . . .

τ̂−→ πn and πn |= ψ. We can distinguish two cases.

1. π0 = δσ(t) |= ψ and structural induction imply that there is a decomposition mapping η ∈ δ−1
t (ψ) s.t.

σ(x) |= η(x) for each x ∈ var(t). Then, define ξ ∈ t−1(〈ε̂〉ψ) by means of η as in Definition 23.6a.
Clearly, σ(x) |= ξ(x) follows for all x ∈ var(t).

2. We have P ` σ(t)
τ−→ π and π |= ψ〈ε〉. By Theorem 2, P ` σ(t)

τ−→ π implies that there are a P -ruloid
H

t
τ−→Θ

and a closed substitution σ′ with P ` σ′(H), σ′(t) = σ(t) and σ′(Θ) = π. We infer the following

facts:

(a) from σ′(t) = σ(t) we obtain that σ′(x) = σ(x) for all x ∈ var(t);

(b) Assume wlog. that supp(σ′(Θ)) = {σ′(tm) | m ∈ M} ⊆ T(Σ). From σ′(Θ) = π, π |= ψ〈ε〉 and
structural induction we get that there is a decomposition mapping η ∈ Θ−1(ψ〈ε〉) s.t. σ′(ζ) |= η(ζ)
for all ζ ∈ var(Θ).
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We can distinguish two cases:

• H

t
τ−→Θ

is Γ-patient, namely it is of the form x0
τ−→µ

t
τ−→t[µ/x0]

and the unique occurrence of µ in t[µ/x0]

is Γ-liquid. Consider the decomposition mapping η obtained in item 2b above and define from
it ξ ∈ t−1(〈ε〉ψ) as in Definition 23.6b. Clearly, σ(µ) |= η(µ) giving that σ(x0) |= 〈ε〉η(µ) (as

P ` σ(x)
τ−→ σ′(µ)), and σ(x) |= η(x) for all other variables. Hence we have obtained that

σ(x) |= ξ(x) for all x ∈ var(t).

• H

t
τ−→Θ

is Γ-impatient. In this case the thesis follows by applying the same arguments used in the

proof of the inductive step φ = 〈α〉ψ to a decomposition mapping ξ built as in Definition 23.6c.
We simply need to notice that for a Γ-liquid argument x in t, whenever σ(x) |= ξ(x) then
σ(x) |= 〈ε〉1ξ(x).

(⇐) Assume now that there is a ξ ∈ t−1(〈ε〉ψ) s.t. σ(x) |= ξ(x) for all x ∈ var(t). Following Defini-
tion 23.6, we can distinguish three cases.

1. ξ is constructed in terms of a decomposition mapping η ∈ δ−1
t (ψ) as in Definition 23.6a. This implies

that σ(x) |= η(x) for all x ∈ var(t) and thus, by induction we gather that δσ(t) |= ψ. By Definition 14,
we can therefore infer that σ(t) |= 〈ε〉ψ.

2. ξ is constructed in terms of a Γ-liquid argument x0 of t, a Γ-patient ruloid x0
τ−→µ

t
τ−→t[µ/x0]

and of a

decomposition mapping η ∈ t[µ/x0]−1(ψ〈ε〉) as in Definition 23.6b. We define a substitution σ′ s.t.
the following properties hold:

(a) σ′(x) = σ(x) for all x ∈ var(t). As a consequence, from σ(x) |= ξ(x) we derive σ′(x) |= ξ(x).

(b) As σ′(x) |= ξ(x), by previous item (2a), we derive that if x occurs Γ-frozen in t then σ′(x) |= η(x).

(c) As σ′(x0) |= ξ(x0), by previous item (2a), we derive that if x = x0, and thus x occurs Γ-liquid in t,

then σ′(x) |= 〈ε〉η(µ) This implies that there is a probability distribution πx s.t. P ` σ′(x)
ε̂−→ πx

and πx |= η(µ). We define σ′(µ) = πx. Since P is Γ-patient, we obtain that P ` σ′(x)
ε̂−→ σ′(µ)

and σ′(µ) |= η(µ).

(d) Since var(t[µ/x0]) = var(t) \ {x0} ∪ {µ}, by previous items (2b) and (2c) we obtain σ′(ζ) |= η(ζ)
for each ζ ∈ var(t[µ/x0]). Hence, by induction, σ′(t[µ/x0]) |= ψ.

From items (2a),(2c) we obtain that P ` σ′(x0)
τ−→ σ′(µ). Hence by Theorem 2 we obtain that

P ` σ′(t) τ−→ σ′(t[µ/x0]). As P is Γ-patient we can infer that P ` σ′(t) ε̂−→ σ′(t[µ/x0]) and since
form item (2a) we have σ′(t) = σ(t) and from item (2d) σ′(t[µ/x0]) |= ψ〈ε〉 we can conclude that
σ(t) |= 〈ε〉ψ.

3. ξ is constructed in terms of a Γ-impatient P -ruloid H

t
τ−→Θ

and of a decomposition mapping η ∈ Θ−1(ψ)

as in Definition 23.5c. In this case the thesis follows by combining the arguments used in the proof of
the inductive step φ = 〈α〉ψ with the ones proposed in the previous item.

Hence, Equation (2) follows from the two implications.

The case of multivariate terms

Assume first that t is not univariate, namely t = ς(s) for some univariate s and non-injective substitution
ς : var(s)→ Vs. Then, σ(ς(s)) |= ϕ iff there exists a decomposition mapping ξ′ ∈ s−1(ϕ) s.t. σ(ς(y)) |= ξ′(y),
which by Definition 23.7 is equivalent to require that there exists a decomposition mapping ξ′ ∈ s−1(ϕ) s.t.
for each x ∈ var(t) we have σ(x) |=

∧
y∈ς−1(x) ξ

′(y). By defining the decomposition mapping ξ ∈ t−1(ϕ) as

ξ(x) =
∧
y∈ς−1(x) ξ

′(y), we obtain the thesis.

The case for Θ not univariate, namely Θ = ς(Θ1) for some univariate Θ1 and non-injective substitution
ς : var(Θ1)→ Vd ∪ δVs , is analogous.
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σ(t) |= φ

∃ξ ∈ t−1(φ) s.t. σ(x) |= ξ(x)
∀x ∈ var(t)

1

Decomposition(Thm 4) ∧
Preservation
of constraints (Thm 5) ∧
Preservation

of modal class (Thms 6,7)

σ′(x) |= ξ(x)
∀x ∈ var(t)

2
σ(x)Rσ′(x) ∧
Logical characterization (Thm 1)

σ′(t) |= φ

3

Decomposition (Thm 4)

4
φ arbitrary ∧
Logical characterization (Thm 1)

Figure 3: General schema to prove that σ(x)Rσ′(x) for all x ∈ var(t) implies σ(t)Rσ′(t), by combining a logical characteri-
zation of R with the related modal decomposition.

7. A congruence format for (rooted) branching bisimilarity

Since [70], a successful approach to study systematically a behavioural property of interest that should
be satisfied by processes, is the structural analysis of SOS specification (see [1, 65] for surveys). In this
approach one realizes that the property of interest depends on the patterns of the specifying SOS rules and
proposes syntactical constraints on the form of these SOS rules, called a format, that ensure by construction
the considered behavioral property. In particular, we are interested in the congruence property of behavioral
equivalences, which is fundamental for compositional reasoning on systems.

Definition 24 (Congruence). A behavioral relation R is a congruence for the operators in a signature Σ
if for any term t ∈ T(Σ) and closed substitutions σ, σ′ we have that

whenever σ(x)Rσ′(x) for all x ∈ var(t), then σ(t)Rσ′(t).

Our aim is to derive a congruence format for (rooted) branching bisimilarity by exploiting the logical
characterization given in Section 3 and the decomposition method given in Section 6. The underlying idea
is that a congruence format for (rooted) branching bisimilarity must ensure that the formulae in the class
characterizing it are always decomposed into formulae in the same class, so that by combining the logical
characterizations of the equivalence (Theorem 1) and the decomposition theorem (Theorem 4) we can derive
the congruence result, as sketched in Figure 3. Informally, given any term t and closed substitutions σ and σ′,
assume that σ(x)Rσ′(x) for all x in var(t). By the characterization theorem, to conclude that σ(t)Rσ′(t)
it is enough to prove that for all formulae φ in the class characterizing R we have that σ(t) |= φ implies
σ′(t) |= φ (step (4) in Figure 3), and viceversa. Assume then that σ(t) |= φ for an arbitrary formula φ in the
class characterizing R . The decomposition theorem ensures that there is a mapping ξ ∈ t−1(φ) such that
σ(x) |= ξ(x) for all variables x ∈ var(t) (step (1) in Figure 3). If, moreover, the decomposition preserves
the class characterizing R , then all the decomposed formulae ξ(x) are in that class. Therefore, by the
hypothesis σ(x)Rσ′(x) and the characterization theorem, we infer σ′(x) |= ξ(x) for all x in t (step (2) in
Figure 3). By the decomposition theorem we conclude σ′(t) |= φ (step (3) in Figure 3). Summarizing, we
can conclude that σ(t) |= φ implies σ′(t) |= φ.

7.1. The PRBB format

Firstly we need to identify the syntactic constraints characterizing our format. Interestingly, they coincide
with those proposed in [31, 37] to obtain a format for (rooted) branching bisimilarity in the non-probabilistic
setting. Clearly, the syntactical constraints for the probabilistic version of any equivalence cannot be less
demanding that those for the classical non-probabilistic version, since any labelled transition system can be



7 A CONGRUENCE FORMAT FOR (ROOTED) BRANCHING BISIMILARITY 40

viewed as a particular PTS with only Dirac distributions. We can informally explain why the constraints in
[31, 37] apply also to the probabilistic case.

First of all we notice that both the format in [37] and the PGSOS format do not allow lookahead, namely
the ability to testing for two consecutive moves of a process. A consequence of this inability, is that in our
case probability is never involved in the derivation of nondeterministic transitions. Equivalently, we are
guaranteed that Σ-distribution rules (and ruloids) are never used to determine the provability of a closed
literal. Moreover, the constraints on the probability weights in the definition of behavioral relations do not
depend on the syntactical definition of processes and thus they are independent from the constraints of rule
formats. We refer the interested reader to a comparison of the RBB safe format of [31] and the format in
[61] as a further evidence of this fact. In addition, the syntactical representation of distributions through
Σ-distribution rules together with the notion of -liquid contexts on them, further simplify the reasoning
over PGSOS-rules. Hence, we can follow [37] and build our formats on the predicates ℵ and Λ introduced
in Section 2. Informally, these predicates allow us to properly control the weak behavior of processes, since
Λ-liquid arguments are those that can satisfy the weak branching condition, the Λ-frozen ones are those for
which we need the rootedness condition and ℵ-frozen arguments are those that cannot be tested.

We remark that although the source terms of a PGSOS rule are always univariate, we define the format
for general multivariate terms. This generalization will simplify the reasoning when lifting the format to
P -ruloids (Theorem 5 below) and, moreover, can be easily applied to the generalization of our decomposition
method to the ntµfθ format discussed in upcoming Section 9.

Definition 25 (PRBB rule). A PGSOS rule r is probabilistic rooted branching bisimulation safe (PRBB)
with respect to predicates ℵ and Λ if it satisfies the following conditions.

1. Right-hand sides of positive premises occur only Λ-liquid in target trg(r).

2. If x occurs only Λ-liquid in source src(r), then x occurs only Λ-liquid in the rule r.

3. If x occurs only ℵ-frozen in source src(r), then x does not occur in prem(r).

4. If x has exactly one ℵ-liquid occurrence in source src(r), which is also Λ-liquid, then x has at most
one occurrence in prem(r), which must be in a positive premise. If moreover this premise is labeled τ ,
then r must be ℵ ∩ Λ-patient.

Since the two definitions coincide, we refer the interested reader to [37, 61] for the counterexamples
showing that the constraints in Definition 25 are necessary for the congruence result. Here we briefly give
an intuition for them. In item 1, since a positive premise x

a−→ µ clearly implies that all processes in the
support of any closed instance of µ are running, it is required that µ appears in the target only at Λ-liquid
positions, which are those dedicated to running processes. Item 2 guarantees that running processes, namely
those marked by predicate Λ, maintain their mark and thus the possibility to execute. Item 3 prevents the
testing of processes that cannot execute namely those that are at ℵ-frozen positions in the source. Finally,
item 4 regulates the testing of processes at (ℵ ∩ Λ)-liquid positions, namely those for which the rootedness
property of ≈rb does not need to hold. For an immediate intuition, consider processes s = a.δnil ‖{c} b.δnil

and t = a.δnil ‖{c} τ.δt1 , for t1 = b.δnil. Clearly, s ≈b t. Since s can perform both a and b, whereas t cannot,
two premises testing the ability to perform both a and b are able to discriminate them. The same happens
with a premise testing for the inability to perform b or for the ability to perform τ . For these reasons, item 4
forbids double testing and negative premises for process arguments that may be branching but not rooted
branching bisimilar and allows for these arguments the testing of τ -moves only in patience rules.

Notice that the first two constraints on the conservation of predicate Λ are the only ones that involve
distribution terms. However, there is no need to translate these into constraints over Σ-distribution rules,
as they are implicit in the definition of Γ-liquid contexts on distribution terms (Definition 19).

Definition 26 (PRBB format). A PGSOS-TSS is in probabilistic rooted branching bisimulation (PRBB)
format if, for some predicates ℵ and Λ, it is (ℵ ∩ Λ)-patient and it only contains PRBB rules. It is in
probabilistic branching bisimulation (PBB) format if moreover the predicate Λ is universal.
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7.2. Preservation of syntactic restrictions

Since the decomposition method in Definition 23 is not defined in terms of PGSOS rules but of P -
ruloids, we need to guarantee that the syntactic constraints imposed by the PRBB format are preserved
in the construction of ruloids from PGSOS rules fitting the format. Further, as differently from PGSOS
rules a P -ruloid can have a negative literal as conclusion, we need to extend the notion of PRBB rule to
non-standard rules. Briefly, no constraint on right-hand sides of premises is necessary and we need to drop
also item 4 of Definition 25. This is because non-standard rules are built by denying premises of other rules
and thus no further control on the occurrences of (ℵ ∩ Λ)-liquid arguments can be guaranteed.

Definition 27 (PRBB non-standard rule). A non-standard rule H

t
a−→6 is probabilistic rooted branching bisim-

ulation safe (PRBB) with respect to predicates ℵ and Λ if it satisfies the following conditions.

1. If x occurs only Λ-liquid in t, then x occurs only Λ-liquid in H.

2. If x occurs only ℵ-frozen in t, then x does not occur in H.

Theorem 5. Let P be a PGSOS-PTSS in PRBB format with respect to predicates ℵ and Λ. Then each
P -ruloid is rooted branching bisimulation safe with respect to ℵ and Λ.

Proof. Assume that term t is the source of ruloid. We proceed by induction over the structure of t.
Base case t = x. Then the P -ruloids having t as source are of the form

t
α−→ µ

t
α−→ µ

or
t
α−→6

t
α−→6
.

Both are PRBB safe wrt. ℵ and Λ.
Inductive step t = f(t1, . . . , tn). We distinguish two cases.

• Consider any P -ruloid

ρ =
H

f(t1, . . . , tn)
α−→ Θ

Then there are a substitution σ and a PGSOS-rule

r =
{xi

αi,m−−−→ µi,m | m ∈Mi, i ∈ I} {xi
αi,n−−−→6 | n ∈ Ni, i ∈ I}

f(x1, . . . , xn)
α−→ Θ′

with σ(xi) = ti and σ(Θ′) = Θ s.t. H =
⋃
m∈Mi,i∈I Hi,m ∪

⋃
n∈Ni,i∈I Hi,n and, by induction over each

σ(xi),

– for each positive premise, the P -ruloid ρi,m =
Hi,m

σ(xi)
αi,m−−−→ σ(µi,m)

is a PRBB safe rule wrt. ℵ

and Λ, and

– for each negative premise, the P -ruloid ρi,n =
Hi,n

σ(xi)
αi,n−−−→6

is a PRBB safe non-standard rule

wrt. ℵ and Λ.

We prove that ρ satisfies the four conditions of Definition 25.

1. Let µ ∈ rhs(H). As rhs(H) are all distinct by Definition 20, there is a particular pair of indexes
ĩ, m̃ s.t. µ ∈ rhs(Hĩ,m̃) Since ρĩ,m̃ is a PRBB safe rule wrt. ℵ and Λ, by item 1 of Definition 25 we
have that µ occurs only Λ-liquid in σ(µĩ,m̃). Since moreover, r is PRBB safe, the same condition
gives that µĩ,m̃ occurs only Λ-liquid in Θ′ and thus σ(µĩ,m̃) occurs only Λ-liquid in σ(Θ′). As a
consequence, µ occurs only Λ-liquid in Θ.



7 A CONGRUENCE FORMAT FOR (ROOTED) BRANCHING BISIMILARITY 42

2. Assume that x ∈ var(t) occurs only Λ-liquid in t. Let I(x) = {i ∈ I | x ∈ var(σ(xi))}. As
t = σ(f(x1, . . . , xn)), for each i ∈ I(x) we have Λ(f, i) and x occurs only Λ-liquid in σ(xi). Since
r is PRBB safe wrt. ℵ and Λ, by item 2 of Definition 25 for all i ∈ I(x) it holds that xi occurs
only Λ-liquid in r. Hence x occurs only Λ-liquid in σ(prem(r)). Since ρi,m and ρi,n are PRBB
safe wrt. ℵ and Λ for all i ∈ I,m ∈ Mi, n ∈ Ni, we can infer that x occurs only Λ-liquid in
these ruloids, thus implying that x occurs only Λ-liquid in H. Moreover, x occurs only Λ-liquid
in σ(µi,m) for all i ∈ I,m ∈ Mi and by item 1 of Definition 25 µi,m occurs only Λ-liquid in Θ′.
Furthermore, for each i ∈ I(x), Λ(f, i) implies that xi occurs only Λ-liquid in Θ′. Therefore, we
can infer that x occurs only Λ-liquid in Θ, and we can conclude that x occurs only Λ-liquid in ρ.

3. Assume that x occurs only ℵ-frozen in t. For each h = 1, . . . , n, we have that either ¬ℵ(f, h)
or x occurs only ℵ-frozen in σ(xh). Notice that in the first case, since r is PRBB safe wrt. ℵ
and Λ, by item 3 of Definition 25 xh does not occur in prem(r), which clearly implies that also
x is never tested. Hence, in both cases, since ρi,m and ρi,n are PRBB safe wrt. ℵ and Λ for all
i ∈ I,m ∈ Mi, n ∈ Ni, we can infer that x does not occur in the premises of these ruloids, thus
implying that x does not occur in H.

4. Assume that x has exactly one ℵ-liquid occurrence in t, which is also Λ-liquid. Then there is an
ĩ ∈ {1, . . . , n} with ℵ(f, ĩ) and Λ(f, ĩ) s.t. x has exactly one ℵ-liquid occurrence in σ(xĩ), which
is also Λ-liquid. Moreover, for each h ∈ {1, . . . , n} \ {̃i}, either ¬ℵ(f, h) or x occurs only ℵ-frozen
in σ(xh). Since r is PRBB safe wrt. ℵ and Λ, by item 3 of Definition 25 if ¬ℵ(f, h) then xh
does not occur in prem(r). Further, by item 4 of Definition 25 xĩ has at most one occurrence
in prem(r), which must be in a positive premise. By item 2 of Definition 25 this occurrence
is also Λ-liquid. Therefore, we have that there is one m̃ ∈ Mĩ s.t. x has exactly one ℵ-liquid
occurrence in Hĩ,m̃, which is also Λ-liquid. Since ρi,m and ρi,n are PRBB safe wrt. ℵ and Λ for
all i ∈ I,m ∈Mi, n ∈ Ni, by item 4 of Definition 25 we can infer that such an occurrence of x in
Hĩ,m̃ must be in the left-hand side of a positive premise. Thus, x has at most one occurrence in
a premise of H which must be positive.

Assume now that this positive premise is labeled τ . Since ρĩ,m̃ is PRBB safe wrt. ℵ and Λ, by

item 4 of Definition 25 it must be ℵ∩Λ-patient. Hence, ℵ∩Λ(f, ĩ) gives that xĩ has an ℵ∩Λ-liquid
occurrence in prem(r) and thus, as r is PRBB safe wrt. ℵ and Λ, by item 4 of Definition 25 r
must be an ℵ ∩ Λ-patience rule. Therefore, by construction of P -ruloids for P ℵ ∩ Λ-patient, we
can conclude that ρ is ℵ ∩ Λ-patient.

• Consider any P -ruloid

ρ =
H

f(t1, . . . , tn)
α−→6
.

where H = opp(pick(<Pα )) is built from the P -ruloids having f(t1, . . . , tn)
α−→ Θ as conclusion, for

some Θ ∈ DT(Σ), as described in Definition20. In particular we note that the transformation operated
by the mappings pick and opp does not affect the labeling of arguments of operators. Moreover, as
we have shown is previous item, all P -ruloids having f(t1, . . . , tn)

α−→ Θ as conclusion are PRBB safe
wrt. ℵ and Λ. We prove that ρ satisfies the two conditions of Definition 27.

1. Assume that x ∈ var(t) occurs only Λ-liquid in t. Let I(x) = {i ∈ I | x ∈ var(σ(xi))}. As
t = σ(f(x1, . . . , xn)), for each i ∈ I(x) we have Λ(f, i) and x occurs only Λ-liquid in σ(xi). Since

all P -ruloids having f(t1, . . . , tn)
α−→ Θ, for some Θ ∈ DT(Σ), as conclusion are PRBB safe wrt.

ℵ and Λ, by item 2 of Definition 25 we can infer that x occurs only Λ-liquid in these ruloids, thus
implying that x occurs only Λ-liquid in their premises and therefore in H

2. Assume that x occurs only ℵ-frozen in t. For each i = 1, . . . , n, we have that either ¬ℵ(f, i) or

x occurs only ℵ-frozen in σ(xi). In both cases, since all P -ruloids having f(t1, . . . , tn)
α−→ Θ as

conclusion are PRBB safe wrt. ℵ and Λ, by item 3 of Definition 25 we have that x does not occur
in their premises. This implies that x does not occur in H.
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7.3. Preservation of logical characterizations

Our next task is to ensure that the decomposition of formulae in a chosen class preserves the syntactic
restrictions of that class. In particular we are interested in showing that a formula in Lrb (resp. Lb) is
decomposed into formulae in L≡rb (resp. L≡b ). More precisely, in Theorem 7 we will show that given a term
t ∈ T(Σ) (resp. distribution term Θ ∈ DT(Σ)), if ϕ ∈ Lrb (resp. ψ ∈ Ld

b) then ξ(x) ∈ L≡rb (resp. η(ζ) ∈ L≡rb)
for all x ∈ var(t) and ξ ∈ t−1(ϕ) (resp. ζ ∈ var(Θ) and η ∈ Θ−1(ψ)). Furthermore, in Theorem 6 we prove
that for (distribution) variables occurring Λ-liquid in t (resp. Θ) formulae decomposed from formulae in Lb

are in L≡b .

Theorem 6. Assume a PGSOS-TSS P = (T(Σ),A,−→) in PRBB format with respect to predicates ℵ and
Λ. For any term t and variable x that occurs Λ-liquid in t

whenever ϕ ∈ Ls
b then for all decomposition mapping ξ ∈ t−1(ϕ) we have ξ(x) ∈ L≡b (4)

and for any distribution term Θ and variable ζ that occurs Λ-liquid in Θ

whenever ψ ∈ Ld
b then for all decomposition mapping η ∈ Θ−1(ψ) we have η(ζ) ∈ L≡b . (5)

Proof. We start with univariate terms t ∈ T(Σ) and Θ ∈ DT(Σ). We proceed by induction on the structure
of φ ∈ Lb to prove both statements at the same time.

• Base case φ = >. By Definition 23.1 ξ(x) = > ∈ L≡b . Moreover, we notice that by Lemma 4.1 we have
that whenever x 6∈ var(t), then ξ(x) ≡ > ∈ L≡b . Hence, Equation (4) follows in this case.

• Inductive step φ = ¬ϕ. By Definition 23.2 there is a function f : t−1(ϕ)→ var(t) s.t.

ξ(x) =
∧

ξ′∈f−1(x)

¬ξ′(x).

By structural induction ξ′(x) ∈ L≡b for all ξ′ ∈ f−1(x). Therefore, ¬ξ′(x) ∈ L≡b for all ξ′ ∈ f−1(x) and
thus ξ(x) ∈ L≡b . Hence, Equation (4) follows in this case.

• Inductive step φ =
∧
j∈J ϕj . By Definition 23.3 ξ(x) =

∧
j∈J ξj(x) for some ξj ∈ t−1(ϕj) for all j ∈ J .

By structural induction, ξj(x) ∈ L≡b for all j ∈ J , thus giving that ξ(x) ∈ L≡b . Hence, Equation (4)
follows in this case.

• Inductive step φ =
⊕

i∈I riϕi. By Definition 23.8 there are a Σ-distribution ruloid ρD = H

{Θ
qm−−→tm|m∈M}

and a matching w ∈ W({Θ qm−−→ tm | m ∈ M},
⊕

i∈I riϕi) s.t. for all m ∈ M and i ∈ I there is a

decomposition mapping ξm,i with

{
ξm,i ∈ t−1

m (ϕi) if w(tm, ϕi) > 0

ξm,i ∈ t−1
m (>) otherwise

and we can distinguish two cases:

1. ζ = µ ∈ Vd. Then by Definition 23.8a we have

η(µ) =


⊕

µ
qj−−→xj∈H

qj
∧
i∈I
m∈M

ξm,i(xj) if µ ∈ var(Θ)

1> otherwise

Clearly, 1> ∈ L≡b , hence assume that µ ∈ var(Θ). By Definition 21, the right-hand sides of ρD

are pairwise distinct and thus we can infer that since µ occurs only Λ-liquid in Θ then for each
j ∈ J , xj occurs only Λ-liquid in trg(ρD). Thus, structural induction gives that ξm,i(xj) ∈ L≡b
for all m ∈M, i ∈ I, j ∈ J . Hence

∧
i∈I
m∈M

ξm,i(xj) ∈ L≡b for all j ∈ J from which we can conclude

that η(µ) ∈ L≡b .



7 A CONGRUENCE FORMAT FOR (ROOTED) BRANCHING BISIMILARITY 44

2. ζ = x ∈ Vs. Then by Definition 23.8b we have

η(x) =


∧
i∈I
m∈M

ξm,i(x) if x ∈ var(Θ)

> otherwise.

Clearly, > ∈ L≡b , hence assume that x ∈ var(Θ). By Definition 21, the right-hand sides of ρD

are pairwise distinct and thus we can infer that since x occurs only Λ-liquid in Θ then x occurs
only Λ-liquid in trg(ρD). Thus, structural induction gives that ξm,i(x) ∈ L≡b for all m ∈M, i ∈ I.
Hence

∧
i∈I
m∈M

ξm,i(x) ∈ L≡b , namely η(x) ∈ L≡b .

Hence, Equation (5) follows from both cases.

• Inductive step φ =
∧
j∈J ψj . By Definition 23.9, η(ζ) =

∧
j∈J ηj(ζ) for some ηj ∈ Θ−1(ψj) for all j ∈ J .

By structural induction, ηj(ζ) ∈ L≡b for all j ∈ J , thus giving that η(ζ) ∈ L≡b . Hence, Equation (5)
follows in this case.

• Inductive step φ =
(⊕

i∈I riϕi
)〈ε〉

. By Definition 23.10, we can distinguish two cases:

1. Either there is a decomposition mapping η′ ∈ Θ−1(
⊕

i∈I riϕi) such that η(ζ) = η′(ζ) for all
ζ ∈ var(Θ). Then the thesis follows as in the case of φ =

⊕
i∈I riϕi.

2. Or there are a Σ-distribution ruloid ρD = H

{Θ
qm−−→tm|m∈M}

and a matching w for conc(ρD) and⊕
i∈I riϕi s.t. for all m ∈ M there is a decomposition mapping ξm ∈ u−1

m (〈ε〉ψm), where ψm =⊕
i∈Im

w(um,ϕi)
qm

ϕi, with Im = {i ∈ I | w(um, ϕi) > 0}. We can distinguish two cases:

(a) ζ = µ ∈ Vd. Then by Definition 23.10(b)i we have

η(µ) =


⊕

µ
qj−−→xj∈H

qj
∧
m∈M

ξm(xj) if µ ∈ var(Θ)

1> otherwise

Clearly, 1> ∈ L≡b , hence assume that µ ∈ var(Θ). By Definition 21, the right-hand sides of
ρD are pairwise distinct and thus we can infer that since µ occurs only Λ-liquid in Θ then
for each j ∈ J , xj occurs only Λ-liquid in trg(ρD). Thus, structural induction gives that
ξm(xj) ∈ L≡b for all m ∈ M, j ∈ J . Hence

∧
m∈M ξm(xj) ∈ L≡b for all j ∈ J from which we

can conclude that η(µ) ∈ L≡b .

(b) ζ = x ∈ Vs. Then by Definition 23.10(b)ii we have

η(x) =


∧
m∈M

ξm(x) if x ∈ var(Θ)

> otherwise.

Clearly, > ∈ L≡b , hence assume that x ∈ var(Θ). By Definition 21, the right-hand sides of
ρD are pairwise distinct and thus we can infer that since x occurs only Λ-liquid in Θ then
x occurs only Λ-liquid in trg(ρD). Thus, structural induction gives that ξm(x) ∈ L≡b for all
m ∈M . Hence

∧
m∈M ξm,i(x) ∈ L≡b , namely η(x) ∈ L≡b .

Hence, Equation (5) follows from both cases.

• Inductive step φ = 〈ε〉1(ϕ ∧ 〈a〉ψ). We can distinguish three cases:
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1. ξ(x) is defined on the basis of Definition 23.6a. Then there is a η′ ∈ δ−1
t (1(ϕ ∧ 〈a〉ψ)) s.t.

ξ(x) = 〈ε〉η′(x) if x occurs ℵ ∩Λ-liquid in t and ξ(x) = η′(x) otherwise. As we are considering δt
as distribution term, we have that there is a ξ′ ∈ t−1(ϕ ∧ 〈a〉ψ) s.t. η′(x) = ξ′(x). In particular,
we have that by Definition 23.3 ξ′(x) = ξ1(x) ∧ ξ2(x) with ξ1 ∈ t−1(ϕ) and ξ2 ∈ t−1(〈a〉ψ). By
structural induction we can immediately conclude that ξ1(x) ∈ L≡b . Then, by Definition 23.4
there are a P ruloid ρ = H

t
a−→Θ

and a η ∈ Θ−1(ψ) s.t.

ξ2(x) =
∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x).

By Theorem 5, ρ is PRBB safe wrt. ℵ and Λ and therefore

– rhs(H) occur only Λ-liquid in Θ (Definition 25.1), and

– x occurs only Λ-liquid in Θ (Definition 25.2).

Thus, by structural induction over ψ we get that η(ζ) ∈ L≡b for any ζ ∈ {x} ∪ rhs(H). We
distinguish two cases:

(a) The occurrence of x in t is ℵ-liquid. Then ξ(x) ≡ 〈ε〉1(ξ1(x) ∧ ξ2(x)). The P -ruloid ρ is
PRBB safe wrt. ℵ and Λ and thus (by Definition 25.4) x is the left-hand side of at most one
premise in H, which must be positive. Hence, either ξ2(x) = η(x) or ξ2(x) = η(x) ∧ 〈β〉η(µ)

for x
β−→ µ ∈ H. As a 6= τ we get that β 6= τ (Definition 25.4). Therefore,

either ξ(x) ≡ 〈ε〉1
(
ξ1(x) ∧ η(x)

)
or ξ(x) ≡ 〈ε〉1

(
(ξ1(x) ∧ η(x)) ∧ 〈β〉η(µ)

)
we can conclude that ξ(x) ∈ L≡b .

(b) The occurrence of x in t is ℵ-frozen. Then ξ(x) = ξ1(x) ∧ ξ2(x). The P -ruloid ρ is PRBB
safe wrt. ℵ and Λ and thus (by Definition 25.3) x does not occur in H, thus implying that
ξ2(x) = η(x). We can therefore conclude that ξ(x) = ξ1(x) ∧ η(x) ∈ L≡b .

2. ξ(x) is defined on the basis of Definition 23.6b. Then there are a Γ-patient ruloid ρ = x
τ−→µ

t
τ−→t[µ/x]

and an η ∈ t[µ/x]−1
(
(1(ϕ ∧ 〈a〉ψ))〈ε〉

)
s.t.

ξ(x) =

{
〈ε〉η(µ) if x occurs ℵ ∩ Λ-liquid in t

η(x) otherwise.

The case for x occurring ℵ-frozen in t follows by the same arguments used in the proof of previous
item. Hence, let us consider the case of x occurring ℵ-liquid in t. By Theorem 5, ρ is PRBB
safe wrt. ℵ and Λ and therefore µ occur only Λ-liquid in t[µ/x] (Definition 25.1), and thus it is
ℵ ∩ Γ-liquid in t[µ/x]. By Definition 23.10(b)i, considering that the distribution formula assigns
weight 1 to the state formula ϕ ∧ 〈a〉ψ, we have that

η(µ) =
⊕

µ
qj−−→xj∈H

qjξ
′(xj)

for a distribution ruloid

ρD =

{µ qj−−→ xj} ∪
⋃

x′∈var(t)\{x}

{δ′x
1−→ x′}

{t[µ/x]
qj−−→ t[xj/x] | j ∈ J}
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and decomposition mappings ξ′ ∈ t−1(〈ε〉1(ϕ ∧ 〈a〉ψ)) for each . In particular we have that
η(µ) ≡ 1ξ′(x). Therefore, we can proceed as in the previous item for x occurring ℵ ∩ Γ-liquid in
t to prove

either ξ(x) ≡ 〈ε〉1
(
ξ1(x) ∧ η(x)

)
or ξ(x) ≡ 〈ε〉1

(
(ξ1(x) ∧ η(x)) ∧ 〈β〉η(µ)

)
and thus concluding that ξ(x) ∈ L≡b .

3. ξ(x) is defined on the basis of Definition 23.6c, namely in terms of a Γ-impatient ruloid ρ = H

t
τ−→Θ

and an η ∈ Θ−1((1(ϕ ∧ 〈a〉ψ))
〈ε〉

). By Theorem 5, ρ is PRBB safe wrt. ℵ and Λ and therefore

– rhs(H) occur only Λ-liquid in Θ (Definition 25.1), and

– x occurs only Λ-liquid in Θ (Definition 25.2).

Since moreover φ ∈ Lb, by structural induction we can immediately infer that η(ζ) ∈ L≡b for all
ζ ∈ {x} ∪ rhs(H). We can distinguish two cases:

(a) The occurrence of x in t is ℵ-liquid. Then

ξ(x) = 〈ε〉1
( ∧
x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x)
)
.

By Definition 25.4, H has at most one premise of the form x
β−→ µ, for which moreover β 6= τ ,

and it has no negative premises having x has left-hand side. Thus

either ξ(x) = 〈ε〉1η(x)

or ξ(x) = 〈ε〉1
(
η(x) ∧ 〈β〉η(µ)

)
In the first case there is nothing more to prove. In the second case we have that both
η(x), η(µ) ∈ L≡b and thus we can conclude that ξ(x) ∈ L≡b .

(b) The occurrence of x in t is ℵ-frozen. Then

ξ(x) =
∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x).

By Definition 25.3, x does not occur in H and thus ξ(x) = η(x) ∈ L≡b .

Hence, Equation (4) follows in this case.

• Inductive step φ = 〈ε〉1(ϕ ∧ 〈τ̂〉ψ). This case is analogous to the previous one for φ = 〈ε〉1(ϕ ∧ 〈a〉ψ).
Hence, Equation (4) follows also in this case.

Finally, let us deal with multivariate terms.
Assume first that t is not univariate, namely t = σ(s) for some univariate term s and non-injective

substitution σ : var(s) → Vs. Then, by Definition 23.7 each ξ ∈ t−1(ϕ), for some ϕ ∈ Ls
b, is built in terms

of a ξ′ ∈ s−1(ϕ) s.t. ξ(x) =
∧
y∈σ−1(x) ξ

′(x). As s is univariate and for each y ∈ σ−1(x) the occurrence of y

in s is Λ-liquid we can infer that ξ′(y) ∈ L≡b for all y ∈ σ−1(x). Therefore, we can conclude that ξ(x) ∈ L≡b .
Hence, Equation (4) follows also in this case.

The case for Θ not univariate, namely Θ = σ(θ) for some univariate distribution term θ and a non-
injective substitution σ : var(θ)→ V, is analogous.

Theorem 7. Assume a PGSOS-TSS P = (T(Σ),A,−→) in PRBB format with respect to predicates ℵ and
Λ. For any term t and variable x

whenever ϕ ∈ Lrb then for all decomposition mapping ξ ∈ t−1(ϕ) we have ξ(x) ∈ L≡rb (6)
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and for any distribution term Θ and variable ζ

whenever ψ ∈ Ld
b then for all decomposition mapping η ∈ Θ−1(ψ) we have η(ζ) ∈ L≡rb . (7)

Proof. We start with univariate terms t ∈ T(Σ) and Θ ∈ DT(Σ). We proceed by induction on the structure
of φ ∈ Lrb to prove both statements at the same time.

• The proof for the base case φ = > and for the inductive steps φ = ¬ϕ, φ =
∧
j∈J ϕj , φ =

⊕
i∈I riϕi

and φ =
∧
j∈J ψj follow as in the analogous cases of the proof of Theorem 6.

• Inductive step φ = 〈α〉ψ. Notice that since Lb ⊆ Lrb, we can apply induction over ψ. By Definition 23.4
there are a P -ruloid ρ = H

t
α−→Θ

and a decomposition mapping η ∈ Θ−1(ψ) s.t.

ξ(x) =
∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x)

By structural induction we have that η(x) ∈ L≡rb. Moreover, by Theorem 5 ρ is PRBB safe and thus,
by Definition 25.1, we have that all variables in rhs(H) occur only Λ-liquid in Θ. Hence, by Theorem 6

we obtain that η(µ) ∈ L≡b . This implies that 〈β〉η(µ) ∈ L≡rb for all x
β−→ µ ∈ H. Further, we have that

¬〈γ〉> ∈ L≡rb for all x
γ−→6 ∈ H directly by definition. Therefore, we can conclude that ξ(x) ∈ L≡rb.

Hence, Equation (6) follows also in this case.

• Inductive step φ ∈ Lb. The cases φ = >, φ = ¬ϕ, φ =
∧
j∈J ϕj , φ =

⊕
i∈I riϕi and φ =

∧
j∈J ψj

follow as in the analogous cases of the proof of Theorem 6. Moreover, if the occurrence of x in t is
Λ-liquid, then ξ(x) ∈ L≡rb follows from Theorem 6. Hence, assume that the occurrence of x in t is
Λ-frozen.

– φ = 〈ε〉1
(
ϕ ∧ 〈a〉ψ

)
. We can distinguish three cases.

1. ξ(x) is defined on the basis of Definition 23.6a. Since x occurs Λ-frozen in t then there is a
η′ ∈ δ−1

t (1(ϕ ∧ 〈a〉ψ)) s.t. ξ(x) = η′(x). As we are considering δt as distribution term, we
have that there is a ξ′ ∈ t−1(ϕ ∧ 〈a〉ψ) s.t. η′(x) = ξ′(x). In particular, we have that by
Definition 23.3 ξ′(x) = ξ1(x) ∧ ξ2(x) with ξ1 ∈ t−1(ϕ) and ξ2 ∈ t−1(〈a〉ψ). Since, Ls

b ⊆ Lrb

and 〈α〉ψ ∈ Lrb, by structural induction we can immediately conclude that ξ1(x), ξ2(x) ∈ L≡rb.
Therefore, we can conclude that ξ(x) ∈ L≡rb.

2. ξ(x) is defined on the basis of Definition 23.6b. Then there are a Γ-patient ruloid ρ =
x
τ−→µ

t
τ−→t[µ/x]

and an η ∈ t[µ/x]−1
(
(1(ϕ ∧ 〈a〉ψ))〈ε〉

)
s.t.

ξ(x) =

{
〈ε〉η(µ) if x occurs ℵ ∩ Λ-liquid in t

η(x) otherwise.

Since x occurs Λ-frozen in t the proof follows by the same arguments used in the proof of
previous item.

3. ξ(x) is defined on the basis of Definition 23.6c, namely in terms of a Γ-impatient ruloid
ρ = H

t
τ−→Θ

and an η ∈ Θ−1
(
(1(ϕ ∧ 〈a〉ψ))〈ε〉

)
. By Theorem 5, ρ is PRBB safe wrt. ℵ and Λ

and therefore

∗ rhs(H) occur only Λ-liquid in Θ (Definition 25.1), and

∗ Since x occurs Λ-frozen in t then x does not occur in H (Definition 25.3).

Since φ ∈ Lb, by structural induction we can immediately infer that η(ζ) ∈ L≡rb for all
ζ ∈ {x} ∪ rhs(H). Moreover, as x occurs Λ-frozen in t we have

ξ(x) =
∧

x
β−→µ∈H

〈β〉η(µ) ∧
∧

x
γ−→6 ∈H

¬〈γ〉> ∧ η(x)

and since x does not occur in H, we can conclude that ξ(x) = η(x) ∈ L≡b .
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– φ = 〈ε〉1(ϕ ∧ 〈τ̂〉ψ). This case is analogous to the previous one for φ = 〈ε〉1(ϕ ∧ 〈a〉ψ).

Hence, Equation (6) follows also in this case.

The proof for multivariate terms follows by the same arguments used in the proof of Theorem 6.

7.4. The congruence theorems

We can now exploit the schema in Figure 3 to derive the congruence results. Firstly, from Theorem 1.1,
Theorem 4 and Theorem 6 we get that ≈b is a congruence for all operators defined in a PGSOS-PTSS in
PBB format.

Theorem 8. Let P be a complete PGSOS-PTSS in branching bismulation format. Then ≈b is a congruence
for all operators defined by P .

Proof. Let t ∈ T(Σ) and let σ, σ′ be two closed substitutions. We aim to show that

whenever σ(x) ≈b σ
′(x) for each x ∈ var(t) then σ(t) ≈b σ

′(t). (8)

Considering the characterization result of Lb for probabilistic branching bisimilarity (Theorem 1.1), to prove
Equation (8) we simply have to show that σ(t) and σ′(t) satisfy the same formulae in Lb. By Definition 26
each rule in P is PRBB safe wrt. some predicate ℵ and a universal predicate Λ and P is ℵ ∩ Λ-patient.
Assume that σ(t) |= ϕ, for some state formula ϕ ∈ Ls

b. By Theorem 4, (taking Γ = ℵ ∩ Λ) there is a
decomposition mapping ξ ∈ t−1(ϕ) s.t. σ(x) |= ξ(x) for each x ∈ var(t). Since Λ is universal, we have that
each x ∈ var(t) occurs Λ-liquid in t and thus by Theorem 6 we gather that ξ(x) ∈ L≡b and moreover by
Thm 1.1 from σ(x) ≈b σ

′(x) we obtain that σ′(x) |= ξ(x) for each x ∈ var(t). By applying Theorem 4 once
again, we obtain that σ′(t) |= ϕ, thus proving Equation (8).

Similarly, from Theorem 1.2, Theorem 4 and Theorem 7 we obtain that ≈rb is a congruence for all
operators defined in a PGSOS-PTSS in PRBB format.

Theorem 9. Let P be a complete PGSOS-PTSS in rooted branching bismulation format. Then ≈rb is a
congruence for all operators defined by P .

Proof. Let t ∈ T(Σ) and let σ, σ′ be two closed substitutions. We aim to show that

whenever σ(x) ≈rb σ
′(x) for each x ∈ var(t) then σ(t) ≈rb σ

′(t). (9)

Considering the characterization result of Lrb for probabilistic rooted branching bisimilarity (Theorem 1.2),
to prove Equation (9) we simply have to show that σ(t) and σ′(t) satisfy the same formulae in Lrb. By
Definition 26 each rule in P is PRBB safe wrt. some predicates ℵ and Λ and P is ℵ ∩ Λ-patient. Assume
that σ(t) |= ϕ, for some state formula ϕ ∈ Lrb. By Theorem 4, (taking Γ = ℵ ∩Λ) there is a decomposition
mapping ξ ∈ t−1(ϕ) s.t. σ(x) |= ξ(x) for each x ∈ var(t). By Theorem 7 we gather that ξ(x) ∈ L≡rb and
moreover by Thm 1.2 from σ(x) ≈rb σ

′(x) we obtain that σ′(x) |= ξ(x) for each x ∈ var(t). By applying
Theorem 4 once again, we obtain that σ′(t) |= ϕ, thus proving Equation (9).

8. Application

In general, an SOS specification format guaranteeing a given property is relevant only if it is not too
demanding, namely if it captures an interesting bulk of operators. In this section, we consider the operators
of the probabilistic process algebra PPA from [40] and we apply to them our congruence formats. PPA
extends the basic process algebra BPAε,τ [6] with probabilistic operators from (probabilistic) CCS [54] and
(probabilistic) CSP [19, 26, 54] as well as with recursion [7, 64]. More precisely, PPA is obtained from the
disjoint extension of the four PTSSs represented in Table 1 and Tables 3–5 below, where we let α range
over Aτ ∪ {

√
}, for

√
the special action from BPA denoting successful termination. We will show that

by assigning a proper liquid/frozen labeling, with respect to predicates Λ and ℵ, of arguments of operators
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ε
√
−−→ δnil α.

n⊕
i=1

[pi]xi
α−→

n∑
i=1

piδxi

x
α−→ µ a 6=

√

x; y
α−→ µ; δy

x
√
−−→ µ y

a−→ ν

x; y
α−→ ν

x
α−→ µ

x+ y
α−→ µ

y
α−→ ν

x+ y
α−→ ν

x
α−→ µ α 6=

√

x ‖ y α−→ µ ‖ δy
y

α−→ ν α 6=
√

x ‖ y α−→ δx ‖ ν
x
√
−−→ µ y

√
−−→ ν

x ‖ y
√
−−→ δnil

x
τ−→ µ

x | y τ−→ µ | δy
y

τ−→ ν

x | y τ−→ δx | ν
x

α−→ µ y
α−→ ν α 6= τ,

√

x | y α−→ µ | ν
x
√
−−→ µ y

√
−−→ ν

x | y
√
−−→ δnil

x
α−→ µ α /∈ B ∪ {

√
}

x ‖B y
α−→ µ ‖B δy

y
α−→ ν α /∈ B ∪ {

√
}

x ‖B y
α−→ δx ‖B ν

x
α−→ µ y

α−→ ν α ∈ B \ {
√
}

x ‖B y
α−→ µ ‖B ν

x
√
−−→ µ y

√
−−→ ν

x ‖B y
√
−−→ δnil

Table 3: Standard non-recursive operators.

in PPA specified in Table 1 and Tables 3–5 our formats provide congruence results for probabilistic rooted
branching bisimilarity (Corollary 1–2) and also for probabilistic branching bisimilarity (Corollary 1). We
also show that the operator in Table 5 is outside of our format.

First of all, notice that the PTSSs in Tables 3–5 are in PGSOS-format.
In Table 3 we have the PGSOS rules specifying standard non-recursive operators. The probabilistic

prefix operator expresses that the process α.
⊕n

i=1[pi]ti can perform action α and evolves to process ti with
probability pi. We mark all arguments of this operator as (ℵ ∩ Λ)-frozen) since each process ti has not yet
started to run and cannot start to run. The constraints in Definition 25 are trivially satisfied. The sequential
composition t; t′ and the alternative composition t+ t′ are as usual and so is the labeling of their arguments:
the first argument of sequential composition is Λ-liquid, whereas its second argument and both arguments
of alternative composition are Λ-frozen, exactly as those for its probabilistic variant already discussed in
Example 2. In fact, the first argument of sequential composition can be a process that has already started
its execution, whereas the second argument has to wait for the first one to end its execution before starting
its own. Notice that the two rules for sequential composition satisfy constraints 1, 2 of Definition 25 since
x, µ, ν occur only Λ-liquid in them. Moreover, we set both arguments of both operators to be ℵ-liquid as they
can all start their execution. Thus, the rules for both operators trivially satisfy constraint 3 of Definition 25.
Finally, we need to check whether the two rules for sequential composition satisfy constraint 4 of the same
Definition with respect to the first argument which is (ℵ ∩ Λ)-liquid. We have that in both rules x occurs
as left-hand side of a single positive premise. Moreover, in the first rule, if α = τ then the rule becomes a
patient-rule for the operator.

In Example 2 we already marked both arguments of CSP-like parallel composition operator ‖B as (ℵ ∩
Λ)-liquid. The same marking holds for interleaving operator ‖ and the synchronous parallel composition
operator |, which are special cases of ‖B , with B = ∅ and B = A, respectively. Constraints 1 and 3 of
Definition 25 are then easy to check for all these three operators. As regards constraint 2, we notice that, by
Definition 19, x (resp. y) occur always Λ-liquid in δx (resp. δy) which in turns occurs at a Λ-liquid position in
the targets of the considered rules. Finally, the same arguments used to verify constraint 4 of Definition 25
for the first argument of sequential composition hold also in this case.

Notice that if we exclude the rules for sequential and alternative composition from Table 3 and those for
probabilistic alternative composition in Table 1 then predicate Λ is universal on the remaining rules in the
two Tables. Also notice that the PTSSs in Tables 1 and 3 are ℵ ∩ Λ-patient.

Corollary 1. Probabilistic rooted branching bisimilarity is a congruence for all operators specified in Table 1
and Table 3. Moreover, probabilistic branching bisimilarity is a congruence for prefixing and all parallel
composition operators specified in Table 1 and Table 3.

Table 4 presents the PGSOS rules specifying (probabilistic) recursive operators. The infinite iteration tω

of process t expresses that t is performed infinitely many times in a row. The binary Kleene-star expresses
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x
α−→ µ a 6=

√

xω
α−→ µ; δxω

x
α−→ µ a 6=

√

x∗y
α−→ µ; δx∗y

y
α−→ ν

x∗y
α−→ ν

x
α−→ µ α 6=

√

!x
α−→ µ ‖ δ!x

x
α−→ µ α 6=

√

!px
α−→ µ⊕p (µ ‖ δ!px)

x
α−→ µ y

α−→ ν α 6=
√

x∗py
α−→ ν ⊕p µ; δx∗py

x
α−→ µ y

α−→6 α 6=
√

x∗py
α−→ µ; δx∗py

x
α−→6 y

α−→ ν α 6=
√

x∗py
α−→ ν

y
√
−−→ ν

x∗py
√
−−→ ν

Table 4: Recursive operators.

x
τ−→ µ

x ‖p y
τ−→ µ ‖p δy

y
τ−→ ν

x ‖p y
τ−→ δx ‖p ν

x
α−→ µ y

α−→6 α 6= τ,
√

x ‖p y
α−→ µ ‖p δy

x
α−→6 y

α−→ ν α 6= τ,
√

x ‖p y
α−→ δx ‖p ν

x
α−→ µ y

α−→ ν α 6= τ,
√

x ‖p y
α−→ µ ‖p δy ⊕p δx ‖p ν

x
√
−−→ µ y

√
−−→ ν

x ‖p y
√
−−→ δnil

Table 5: Probabilistic parallel composition is outside our format.

for t1
∗t2 that either t1 is performed infinitely often in sequel, or t1 is performed a finite number of times in

sequel, followed by t2. The bang operator !t expresses that infinitely many copies of t evolve asynchronously.
The probabilistic Kleene iteration expresses that t1

∗pt2 evolves to a probabilistic choice (with, resp., the
probability p and 1 − p) between the two nondeterministic choices of the Kleene star operation t1

∗t2 for
actions which can be performed by both t1 and t2. For actions that can be performed by either only t1 or
only t2, t1

∗pt2 behaves just like t1
∗t2. The probabilistic bang replication expresses that !pt replicates the

argument process t with probability 1− p and behave like t with probability p.
The arguments of all these operators are labeled Λ-frozen, as they do not contain running processes, and

ℵ-liquid, as they can all start their execution immediately. Thus, constraints 2–4 of Definition 25 are trivially
satisfied by the rules in Table 4. To check constraint 1, notice that for each rule whenever the right-hand
side of a positive premise occurs in the target of the rule it does it in a Λ-liquid position, accordingly to the
liquid/frozen labeling of arguments with respect to predicates ℵ and Λ discussed for the operators specified
by the rules in Table 3. Moreover, the PTSS in Table 4 is (ℵ ∩ Λ)-patient.

Corollary 2. Probabilistic rooted branching bisimilarity is a congruence for all operators specified in Table 4.

Table 5 contains the PGSOS rules defining the probabilistic parallel composition ‖p, which falls outside
of our format. For actions that can be performed by both t and t′, t ‖p t′ evolves to a probabilistic choice
(with probability weights p and 1 − p) between the two targets of the asynchronous parallel composition
t ‖ t′. For actions that can be performed by either only t or only t′, the probabilistic parallel composition
t ‖p t′ behaves just like the asynchronous parallel composition t ‖ t′. However, notice that differently from
the rules for ‖ in Table 3, the asynchronous moves for t, t′ in t ‖p t′ are derived by testing also negative
premises: if t does an α-move, then t′ must not be able to perform α in order to derive the asynchronous
α-move for t ‖p t′. The presence of negative premises causes the probabilistic parallel composition operator
to fail our format. In fact, both arguments of ‖p have to be labeled (ℵ ∩ Λ)-liquid since they can both
contain processes that are running (as in asynchronous parallel composition) as well as processes that can
immediately start their execution. The testing of negative premises for one of the two arguments then
violates constraint 4 of Definition 25.

Notice that operator ‖p breaks rooted branching bisimilarity. For instance, given processes s = a.τ.a.ε
and t = a.a.ε we have s ≈rb t but s ‖p t 6≈rb t ‖p t.

9. Extending the format to ntµfθ/ntµxθ specifications

As previously outlined, the choice of considering transition system specifications in the PGSOS format
was motivated by the fact that it allowed us to present a constructive definition of ruloids as an inductive
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composition of PGSOS rules. Although technical, Definition 20 is way more simpler and intuitive than
the one proposed in, e.g., [10] for a transition system specification (TSS) in the ntyft/ntyxt format, which
involves the transformation of the TSS into an equivalent TSS (in the sense of provability) in nxytt format.
However, the reader may wonder whether the use of PGSOS rules led to an oversimplified framework and
thus how general and relevant our results can be.

In this Section we address this issue at an informal level and we show how our results can be extended
to complete PTSSs in decent ntµfθ/ntµxθ format. The choice of discussing this section only in an informal
fashion relies on the fact that the main results of this paper already come with a such heavy amount of
technical definitions and proofs that we prefer not to add more technicalities to the paper. Moreover, most
of the results that we will discuss in this section can be adapted from their non-probabilistic counterparts
in [10] in a straightforward manner.

The key idea is that all the results in Sections 5–7 of [10] on TSSs in ntyft/ntyxt format without lookahead
can be extended to PTSSs in the simple ntµfθ/ntµxθ format from [41]. We remark that the latter format
does not allow lookahead by definition (see Definition 28 below). As the absence of lookahead in the rules
is required by all the aforementioned results in [10], this feature is neither a restriction nor a simplification
of the format.

We recall that a variable occurring in an inference rule is said to be free if it occurs neither in the source
nor in the right-hand sides of the positive premises of the rule.

Definition 28 (ntµtθ rules). A simple ntµfθ rule has the form

{ti
αi−−→ µi | i ∈ I} {tj

αj−−→6 | j ∈ J}
f(x1, . . . , xn)

α−→ Θ

with ti, tj ∈ T(Σ) ∪ DT(Σ), αi, αj , α ∈ Aτ , µi ∈ Vd, f ∈ Σ, x1, . . . , xn ∈ Vs, Θ ∈ DT(Σ), and constraints:

• all µi, for i ∈ I, are pairwise different;

• all x1, . . . , xn are pairwise different.

Then, starting from a simple ntµfθ rule we define:

• simple ntµxθ rules having as source of their conclusion a variable x ∈ Vs instead of f(x1, . . . , xn);

• simple ntµtθ rules having as source of their conclusion an arbitrary term t ∈ T(Σ) instead of f(x1, . . . , xn);

• simple nxµfθ (resp. nxµtθ) rules are ntµfθ (resp. ntµtθ) rules in which left-hand sides of premises are
variables;

• simple xµnfθ (resp. xµntθ) rules are ntµfθ (resp. ntµtθ) rules in which left-hand sides of positive
premises are variables.

A simple ntµfθ/ntµxθ rule is either a simple ntµfθ rule or a simple ntµxθ rule. For x ∈ {ntµfθ, ntµxθ, ntµtθ,
nxµfθ, nxµtθ, xµnfθ, xµntθ}, a simple x rule is decent if no free variable occurs in it. A PTSS is in (decent)
simple x format if all its rules are (decent) simple x rules.

Notice that PGSOS rules are decent simple nxµfθ rules.
For a PTSS P in simple ntµfθ/ntµxθ format, the notion of P -ruloid is strictly related to that of irredun-

dant proof.

Definition 29 (Irredundant proof, [10]). Assume a PTSS P . An irredundant proof of an inference rule H
`

from P is a well-founded, upwardly branching tree of which the nodes are labeled by literals, and some of
the leaves are marked ‘hypothesis’, such that:

• the root is labeled by `,

• H is the set of labels of the hypothesis, and
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• if `′ is the label of a node which is not an hypothesis and K is the set of labels of the nodes directly
above it, then K

`′ is a substitution instance of a transition rule in P .

A proof of K
` from P is an irredundant proof of H

` from P with H ⊆ K. We say that K
` is provable (resp.

irredundantly provable) from P , notation P 
 K
` (resp. P 
irr

K
` ), if an proof (resp. irredundant proof) of

K
` from P exists.

We recall that the notion of provability ` in Definition 9 is called well-supported provability in [10, 46].
Then, to obtain the ruloids for a PTSS in ntµfθ/ntµxθ format we would need the following results:

1. Firstly we show that for any standard PTSS P in simple ntµfθ/ntµxθ format, there exists a standard
PTSS P ′ in decent xµntθ format such that P ` ` iff P ′ ` ` for all closed literals `.

2. We show that the notion of well-supported provability from P ′ coincides with the less demanding
notion of supported provability [46] from P ′.

3. From P ′ we build a PTSS P+ in decent simple ntµfθ format such that supported provability from P ′

coincides with the provability 
 from P+. We remark that P+ is not guaranteed to contain standard
rules only and, moreover, that the transformation form P ′ to P+ performed in the non-probabilistic
case [10] subsumes the same construction proposed in Definition 20 for the definition of ruloids having
a negative literal as conclusion.

4. We prove that in P+, for each operator f there is a collection of decent simple nxµfθ rules that are
irredundantly provable from P+ and that allow us to derive all the closed literals having f(t1, . . . , tn)
as left-hand side that are provable from P+.

5. Finally, P -ruloids are defined as such decent simple ntµfθ/ntµxθ rules that are irredundantly provable
form P+.

Interestingly, all these results can be proved by following the same reasoning and arguments proposed in
[10]. In fact, we notice that the right-hand sides of positive premises basically play no role in the proofs in
[10], that can thus be easily adapted to deal with distribution variables and terms. Clearly, the decomposition
method would be defined as in Definition 23 by exploiting the ruloids obtained from the simple ntµfθ/ntµxθ
rules. Then, we can extend the PRBB and PBB formats to PTSSs in decent simple ntµfθ/ntµxθ format
with respect to predicates ℵ and Λ. To this purpose we need to slightly modify Definition 25 in order to
deal with the presence of arbitrary terms as left-hand sides of premises.

Definition 30 (Extended PRBB rule). An ntµtθ rule r is probabilistic rooted branching bisimulation safe
(PRBB) with respect to predicates ℵ and Λ if it as in Definition 25, with items 3–4 rewritten as:

3. If x occurs only ℵ-frozen in source src(r), then x occurs only ℵ-frozen in prem(r).

4. If x has exactly one ℵ-liquid occurrence in source src(r), which is also Λ-liquid, then x has at most
one ℵ-liquid occurrence in prem(r), which must be in a positive premise. If moreover this premise is
labeled τ , then r must be ℵ ∩ Λ-patient.

Definition 31 (Extended format). A PTSS P is in probabilistic rooted branching bisimulation (PRBB)
format if, for some predicates ℵ and Λ, it is (ℵ ∩ Λ)-patient, it is in decent simple ntµfθ/ntµxθ format and
it only contains PRBB rules. It is in probabilistic branching bisimulation (PBB) format if moreover the
predicate Λ is universal.

The proof of the congruence results then follows as discussed in our Section 7:

A. We must show that the syntactic constraints imposed by the format on the rules of P are preserved by
the ruloids. This is done in three steps: i) We prove that the syntactic constraints on P are preserved by
the PTSS P ′ introduced in item 1 above. ii) We prove that the syntactic constraints on P ′ are preserved
by the PTSS P+ introduced in item 3 above. iii) We prove that the syntactic constraints on P+ are
preserved by the decent simple nxµfθ rules that are irredundantly provable from P+.
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B. We need to show that the logical characterization is preserved by the decomposition method. This is
proved by applying the same reasoning of the proof of Theorems 6 and 7.

C. We remark that the Σ-DS is independent from the choice of the format for inference rules on terms
and thus all the results about Σ-distribution rules and ruloids, and the decomposition of distribution
formulae would still hold in this general setting.

D. The congruence property is then derived by following the schema in Figure 3.

10. Conclusions

We have defined the PRBB and the PBB formats guaranteeing, respectively, that probabilistic rooted
branching bisimilarity and probabilistic branching bisimilarity are congruences for nondeterministic proba-
bilistic processes specified via PGSOS rules.

Up to our knowledge, the only other proposal of a format for probabilistic weak semantics is the RBB
safe specification format of [61]. Although the constraints on inference rules are almost the same, the con-
struction of our PRBB format results technically simpler. In [61], terms are built on a two sorted signature,
mixing state and distribution terms. Thus, to obtain a proper labeling of arguments of operators, defined
in terms of wild/tame labels as in [9, 31], they need to define w-nesting graphs which allow them to keep
track of wild arguments of operators in the derivation of transitions. The use of unary predicates and the
liquid/frozen labeling of arguments of operators, together with the use of Σ-distribution rules naturally
substitute this technical construction.

To derive the congruence results we have developed an SOS-based decomposition method for modal
formulae expressing both probabilistic and weak behavior of processes.

Formally, we have introduced the modal logic L which extends HML by providing the probabilistic choice
operator

⊕
from [24] to capture probabilistic behavior, and the modalities 〈τ̂〉 and 〈ε〉 to capture the weak

behavior. In particular, formulae of the form 〈ε〉ψ, with ψ a formula capturing the probabilistic behavior,
express a form of probabilistic lookahead : it specifies the probabilistic behavior that the processes have to
show after the execution of an arbitrary sequence of silent steps and such behavior can be verified only
without loosing all the information of probabilistic step-by-step behavior.

As a first result we have proved that two fragments of L, denoted by Lb and Lrb, allow us to characterize,
respectively, probabilistic branching bisimilarity and its rooted version.

Recently, [62] proposed an alternative characterization of branching bisimilarity obtained on a modal
logic equipped with a quantitative modality [φ]r from [66] that simulates the quantitative diamond modality
from [59]: a probability distribution π satisfies [φ]r iff π({t ∈ T(Σ) | t |= φ}) ≥ r. Moreover, since the
hyper-transitions in [62] always subsume the silent moves, they do not need to test the ε sequences, namely
our formulae 〈ε〉1(ϕ∧ 〈a〉ψ) and 〈ε〉1(ϕ∧ 〈τ̂〉ψ) are replaced, resp., by ϕ∧ 〈a〉ϕ′ and ϕ∧ 〈τ̂〉ϕ′ for ϕ′ generic
formula in their logic. However, the use of this kind of hyper-transitions would have ended up in a much
more technical dissertation of our results.

To define a modal decomposition for formulae in L we have exploited the ruloids and SOS-like machinery
for distribution terms that we proposed in [13] that, in particular, allowed us to decompose formulae of the
form 〈ε〉ψ and thus the probabilistic lookahead introduced by them. Then, we have introduced the set
of syntactical constraints of the RBB format from [37] on PGSOS rules and we have proved that they
are preserved in the construction of ruloids. Further we have shown that the logical characterizations are
preserved in the decomposition: by decomposing formulae in Lb (resp. Lrb) we obtain formulae in Lb (resp.
Lrb). We have then obtained the congruence theorems as direct consequences of these results.

As a final remark, we recall that differently from [10, 33, 36, 37] our decomposition method and format
are defined on a PGSOS specification instead of the more general ntµfθ/ntµxθ specification [19]. Undoubt-
edly, this choice resulted in a simplified framework. However, we remark that all the technical results proved
in [10] and exploited in [33, 36, 37] to the derive congruence formats from the decomposition, were aimed
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at transforming a ntyft/ntyxt specification into a GSOS specification without double testing, on which the
ruloids are defined (cf. [47]). Thus, to simplify reasoning and improve the readability of our paper, we de-
cided to start directly from a PGSOS PTSS. Notice that this choice also allowed us to present the concrete
construction of P -ruloids. Nevertheless, in Section 9 we have sketched how it would possible to extend our
formats and results to ntµfθ/ntµxθ specifications.

As future work, we aim to extend the formats in [10, 33, 37] to the probabilistic setting and to apply our
decomposition method to systematically derive congruence formats for other relations in the weak spectrum
[45]. This can be done in a straightforward fashion for the probabilistic relations of η, delay and weak
bisimilarity. Intuitively, the definition of ruloids and the decomposition method would be the same that we
have proposed in this paper. The logical characterizations would be obtained on proper sub-classes of L and
the syntactic constraints of the formats could be derived from those of the corresponding formats in [33, 37].

Conversely, the definition of formats for weak relations respecting stability or with divergence [35] would
be more challenging as the introduction of syntactic constraints also on probabilistic behavior, and thus on
distribution specifications, seems inevitable.

Moreover, in [12, 15] we provided a logical characterization of the bisimulation metric [22, 28, 71].
Inspired by this result, we aim to extend the divide & congruence approach to derive the compositional
properties of a behavioral pseudometric from the modal decomposition of formulae characterizing it. As
the metric semantics provide notions of distance over processes, the formats for them guarantee that a
small variance in the behavior of the subprocesses leads to a bounded small variance in the behavior of the
composed processes (uniform continuity [40]). We aim to use the decomposition method to re-obtain the
formats for the bisimilarity metric proposed in [42–44] and to automatically derive original formats for weak
metric semantics [29, 56], and metric variants of branching bisimulation equivalence.
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Appendix A. Relation lifting

We recall here some equivalent definitions to Definition 3 which will be useful in our proofs.

Proposition 3 ([24]). Consider a relation R ⊆ X × Y . Then R† ⊆ ∆(X)×∆(Y ) is the smallest relation
satisfying

1. xR y implies δxR† δy;

2. πiR† π′i implies (
∑
i∈I piπi)R† (

∑
i∈I piπ

′
i), for any set of indexes I with

∑
i∈I pi = 1.

Proposition 4 ([25, Proposition 1]). Consider two sets X,Y , Let π ∈ ∆(X), π′ ∈ ∆(Y ) and R ⊆ X × Y .
Then πR† π′ iff there are a set of indexes I and of weights pi ∈ (0, 1] with

∑
i∈I pi = 1, such that

(i) π =
∑
i∈I piδxi ,

(ii) π′ =
∑
i∈I piδyi and

(iii) xi R yi for all i ∈ I.

Appendix B. Proofs of results in Section 3

In order to prove Theorem 1, we need to introduce the following auxiliary Lemma.

Lemma 5. Assume a family of distributions {πj | j ∈ J} such that πj |= ψ for each j ∈ J . Then, whenever
π =

∑
j∈J pjπj, for weights pj ∈ (0, 1] with

∑
j∈J pj = 1, then π |= ψ.

The proof of Theorem 1 is based on the analogous result for nonprobabilistic processes in [37].

Proof of Theorem 1. We prove that s ≈b t if and only if Ls
b(s) = Ls

b(t). The proof that s ≈rb t if and
only if Lrb(s) = Lrb(t) is analogous. We proceed as follows:

1. First we prove that s ≈b t implies Ls
b(s) = Ls

b(t) by showing that for any formula φ ∈ L we have:

(i) if φ is a state formula and s ≈b t then we have φ ∈ Ls
b(s) if and only if φ ∈ Ls

b(t), and

(ii) if φ is a distribution formula and π1 ≈†b π2 then we have φ ∈ Ld
b(π1) if and only if φ ∈ Ld

b(π2).

2. Then we prove that Ls
b(s) = Ls

b(t) implies s ≈b t by showing that the relation

R = {(s, t) ∈ T(Σ)×T(Σ) | Ls
b(s) = Ls

b(t)}

is a probabilistic branching bisimulation.

1. We prove 1i and 1ii in parallel, by induction over φ.

• Base case ϕ = >. In this case there is nothing to prove as s |= > and t |= > always hold.

• Inductive step ϕ = ¬ϕ′. By Definition 14, s |= ¬ϕ′ implies s 6|= ϕ′, which by the inductive
hypothesis and the symmetry of ≈b gives t 6|= ϕ′ and thus, by Definition 14, t |= ¬ϕ′.

• Inductive step ϕ =
∧
j∈J ϕj . By Definition 14, s |=

∧
j∈J ϕj implies that s |= ϕj for all j ∈ J ,

which by the inductive hypothesis gives t |= ϕj for all j ∈ J and thus, by Definition 14, t |=∧
j∈J ϕj .

• Inductive step ψ =
⊕

i∈I riϕi. On one hand, by Definition 3, π1 ≈†b π2 implies the existence of a
matching w ∈W(π1, π2) s.t.

(a) for each s′ ∈ supp(π1), π1(s′) =
∑
t′∈supp(π2) w(s′, t′);

(b) for each t′ ∈ supp(π2), π2(t′) =
∑
s′∈supp(π1) w(s′, t′);
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(c) s′ ≈b t
′ whenever w(s′, t′) > 0.

Item (1c) and the inductive hypothesis give Ls
b(s′) = Ls

b(t′) whenever w(s′, t′) > 0. On the other
hand, by Definition 14, π1 |= ψ implies the existence of a matching w′ ∈W(π1,

⊕
i∈I riϕi) s.t.

(d) for each s′ ∈ supp(π1), π1(s′) =
∑
i∈I w

′(s′, ϕi);

(e) for each i ∈ I, ri =
∑
s′∈supp(π1) w

′(s′, ϕi);

(f) s′ |= ϕi whenever w′(s′, ϕi) > 0.

We need to exhibit a matching w̃ ∈W(π2,
⊕

i∈I riϕi) s.t. t′ |= ϕi whenever w̃(t′, ϕi) > 0. Define,
for all t′ ∈ supp(π2) and i ∈ I,

w̃(t′, ϕi) =
∑

s′∈supp(π1)

w(s′, t′) ·w′(s′, ϕi)
π1(s′)

.

First we show that w̃ is a well defined matching in W(π2,
⊕

i∈I riϕi). We have

∑
i∈I

w̃(t′, ϕi) =
∑
i∈I

 ∑
s′∈supp(π1)

w(s′, t′) ·w′(s′, ϕi)
π1(s′)


=

∑
s′∈supp(π1)

w(s′, t′)

π1(s′)
·

(∑
i∈I

w′(s′, ϕi)

)

=
∑

s′∈supp(π1)

w(s′, t′)

π1(s′)
· π1(s′) (by item (1d))

=
∑

s′∈supp(π1)

w(s′, t′)

= π2(t′) (by item (1b))

and, similarly,

∑
t′∈supp(π2)

w̃(t′, ϕi) =
∑

t′∈supp(π2)

 ∑
s′∈supp(π1)

w(s′, t′) ·w′(s′, ϕi)
π1(s′)


=

∑
s′∈supp(π1)

w′(s′, ϕi)

π1(s′)
·

 ∑
t′∈supp(π2)

w(s′, t′)


=

∑
s′∈supp(π1)

w′(s′, ϕi)

π1(s′)
· π1(s′) (by item (1a))

=
∑

s′∈supp(π1)

w′(s′, ϕi)

= ri (by item (1e)).

Finally, notice that w̃(t′, ϕi) > 0 if and only if w(s′, t′) > 0 and w′(s′, ϕi) > 0, which, together
with items (1c) and (1f), gives that t′ |= ϕi whenever w̃(t′, ϕi) > 0. We can therefore conclude
that π2 |=

⊕
i∈I riϕi.

• Inductive step ψ =
∧
j∈J ψj . By Definition 14, π1 |=

∧
j∈J ψj implies that π1 |= ψj for each

j ∈ J . By the inductive hypothesis, this entails that π2 |= ψj for each j ∈ J , thus implying
π2 |=

∧
j∈J ψj .

• Inductive step ϕ = 〈ε〉1
(
ϕ′ ∧ 〈a〉ψ

)
. By Definition 14, s |= ϕ implies that for some n ∈ N there

are distributions π0, . . . , πn ∈ ∆(T(Σ)) with
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(a) s
τ̂−→ π0,

(b) πk
τ̂−→ πk+1 for k = 0, . . . , n− 1 and

(c) πn |= 1
(
ϕ′ ∧ 〈a〉ψ

)
.

We proceed by induction over n ∈ N.

– Base case n = 0. Then π0 = δs and δs |= 1
(
ϕ′ ∧ 〈a〉ψ

)
which means that s |= ϕ′ and

moreover there is a distribution πs s.t. s
a−→ πs and πs |= ψ. As s ≈b t, by Definition 5 we

have t
ε̂−→ π

â−→ πt with π ≈†b δs and πt ≈†b πs. Assume wlog. that π =
∑
j∈J pjδtj . By

Definition 4, π
â−→ πt implies that there are distributions πj s.t. tj

a−→ πj , for all j ∈ J ,

and πt =
∑
j∈J pjπj . Then, by Definition 3, π ≈†b δs implies tj ≈b s for all j ∈ J . Thus,

structural induction and s |= ϕ′ give

tj |= ϕ′ for all j ∈ J. (B.1)

Moreover, π
â−→ πt, tj ≈b s and s

â−→ πs imply that for each j ∈ J there is a distribution

πj s.t. tj
â−→ πj and πj ≈†b πs. By structural induction, πs |= ψ and πs ≈†b πj implies that

πj |= ψ for all j ∈ J . Hence, by Lemma 5, from πt =
∑
j∈J pjπj we can conclude that

πt |= ψ. This gives that
tj |= 〈a〉ψ for all j ∈ J. (B.2)

Summarizing, we have obtained:

∗ t ε̂−→ π
â−→ πt,

∗ Equations (B.1),(B.2) give π |= 1(ϕ′ ∧ 〈a〉ψ).

Therefore we can conclude that t |= 〈ε〉1(ϕ′ ∧ 〈a〉ψ).

– Inductive step n > 0. As s
τ̂−→ π0 and s ≈b t according to Definition 5 there are two

possibilities.

(a) Either π0 ≈†b δt. Since π0 |= 1(ϕ′ ∧ 〈a〉ψ), then s′ |= 〈ε〉1(ϕ′ ∧ 〈a〉ψ) for all s′ ∈ supp(π0).

Moreover, π0 ≈†b δt implies that s′ ≈b t for all s′ ∈ supp(π0). Hence, by induction over n
we gather that t |= 〈ε〉1(ϕ′ ∧ 〈a〉ψ).

(b) Or t
ε̂−→ π

â−→ πt with π ≈†b π0. Since s′ |= 〈ε〉1(ϕ′ ∧ 〈a〉ψ) for all s′ ∈ supp(π0) and

π0 ≈†b π, by induction over n we gather that t′ |= 〈ε〉1(ϕ′ ∧ 〈a〉ψ) for all t′ ∈ supp(π).
Hence, we can conclude that t |= 〈ε〉1(ϕ′ ∧ 〈a〉ψ) as well.

• Inductive step ϕ = 〈ε〉1(ϕ′ ∧ 〈τ̂〉ψ). This case can be treated similarly to the previous case of
ϕ = 〈ε〉1(ϕ′ ∧ 〈a〉ψ).

2. Assume that s
α̂−→ πs. Firstly we notice that whenever α = τ and πsR† δt, then the first item of

Definition 5 is satisfied. Hence, we can assume now that either α 6= τ or πs 6R† δt. We introduce two
sets:

D1 =
{
π′ ∈ ∆(T(Σ)) | t ε̂−→ π′ ∧ δs 6R† π′

}
D2 =

{
π′′ ∈ ∆(T(Σ)) | ∃π′ s.t. t

ε̂−→ π′
α̂−→ π′′ ∧ πs 6R† π′′

}
.

For each π′ ∈ D1, let ϕπ′ ∈ Ls
b be s.t. δs |= 1ϕπ′ and π′ 6|= 1ϕπ′ . We define

ϕ =
∧

π′∈D1

ϕπ′ .

For each π′′ ∈ D2, let ψπ′′ ∈ Ld
b be s.t. πs |= ψπ′′ and π′′ 6|= ψπ′′ . We define

ψ =
∧

π′′∈D2

ψπ′′ .



APPENDIX B PROOFS OF RESULTS IN SECTION 3 60

Clearly, ϕ ∈ Ls
b, ψ ∈ Ld

b, s |= ϕ and πs |= ψ. We distinguish two cases.

• α 6= τ . Since s |= 〈ε〉1
(
ϕ ∧ 〈α〉ψ

)
and sR t, then also t |= 〈ε〉1

(
ϕ ∧ 〈α〉ψ

)
. Hence t

ε̂−→ π1
α̂−→ π2

with, in particular π1 |= 1ϕ and π2 |= ψ. By construction of ϕ and ψ we can infer, resp., that
δsR† π1 and πsR† π2.

• α = τ and πs 6R† δt. Let ψ′ be any formula in Ld
b s.t. πs |= ψ′ and δs, δt 6|= ψ′. Since s |=

〈ε〉1
(
ϕ ∧ 〈τ̂〉(ψ′ ∧ ψ)

)
and sR t, then also t |= 〈ε〉1

(
ϕ ∧ 〈τ̂〉(ψ′ ∧ ψ)

)
. Hence t

ε̂−→ π1 with

π1 |= 1
(
ϕ∧ 〈τ̂〉(ψ′ ∧ψ)

)
. In particular this gives that π1 |= 1ϕ which, by construction of ϕ allows

us to infer that δsR† π1. Therefore, δs 6|= ψ′ implies that also π1 6|= ψ′ and thus π1 |= 1〈τ̂〉(ψ′∧ψ)

only if π1
τ̂−→ π2 for a distribution π2 s.t. π2 |= ψ′ ∧ ψ. By construction of ψ we can thus infer

that πsR† π2.

In both cases we have that the second item of Definition 5 is satisfied, and thus we can conclude that
R is a branching bisimulation as required.


