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Abstract

Behavioral equivalences were introduced as a simple and elegant proof methodology for establishing whether
the behavior of two processes cannot be distinguished by an external observer. The knowledge of observers
usually depends on the observations that they can make on process behavior. Furthermore, the combination
of nondeterminism and probability in concurrent systems leads to several interpretations of process behavior.
Clearly, different kinds of observations as well as different interpretations lead to different kinds of behavioral
relations, such as (bi)simulations, traces and testing. If we restrict our attention to linear properties only, we
can identify three main approaches to trace and testing semantics: the trace distributions, the trace-by-trace
and the extremal probabilities approaches. In this paper, we propose novel notions of behavioral metrics
that are based on the three classic approaches above, and that can be used to measure the disparities in the
linear behavior of processes with respect to trace and testing semantics. We study the properties of these
metrics, like compositionality (expressed in terms of the non-expansiveness property), and we compare their
expressive powers. More precisely, we compare them also to (bi)simulation metrics, thus obtaining the first
metric linear time - branching time spectrum.

Keywords: trace metric, testing metric, bisimulation metric, nondeterministic probabilistic processes

1. Introduction

A major task in the development of complex systems is to verify whether an implementation of a system
meets its specification. Typically, in the realm of process calculi, implementation and specification are
processes, say I and S, formalized with the same language, and the verification task consists in comparing
their behavior, which can be done at different levels of abstraction, depending on which aspects of the
behavior can be ignored or must be captured. If one focuses on linear properties only, processes are usually
compared on the basis of the traces they can execute, or accordingly to their capacity to pass the same tests.
This was the main idea behind the study of trace equivalence [31] and testing equivalence [16].

If we consider also probabilistic aspects of system behavior, reasoning in terms of qualitative equivalences
is only partially satisfactory. Any tiny variation in the probability weights will break the equivalence on
processes without any further information on the distance of their behaviors. Actually, many implemen-
tations can only approximate the specification; thus, the verification task requires appropriate instruments
to measure the quality of the approximation. For this reason, we propose to use hemimetrics measuring
the disparities in process behavior with respect to linear semantics also to quantify process verification. We
recall that hemimetrics are asymmetric distances, and in our setting they will assign a real in [0, 1] to each
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pair of processes: distance 0 means that the two processes are indistinguishable with respect to the consid-
ered semantics; distance 1 means that an observation of the first computation step can distinguish them.
Informally, we may see S as a set of minimum requirements on system behavior, such as the lower bounds
on the probabilities to execute given traces or pass given tests. Then, given a hemimetric h expressing trace
(resp. testing) semantics, we can set a tolerance ε, related to the application context, and transform the
verification problem into a verification up-to-ε, or ε-robustness problem: I is ε-trace-robust (resp. ε-testing-
robust) with respect to S if whenever S can perform a trace (resp. pass a test) with probability p, then I
can do the same with probability at least p − ε, namely if h(S, I) ≤ ε. Dually, we may see S as an upper
bound to undesired system behavior, and demand that whenever S can perform a trace (resp. pass a test)
with probability p, then I can do the same with probability at most p+ ε, namely if h(I, S) ≤ ε.

The notion of behavioral metric [14, 17, 19, 29, 35, 44] becomes then crucial. In the literature, we can find
a wealth of results on the bisimilarity metric [17, 19, 44], namely the pseudometric measuring the differences
in the behavior of processes accordingly to the bisimulation semantics, but very little has been investigated
on linear semantics, especially on quantitative testing semantics.

Our goal. With this paper we aim at bridging this gap. We consider nondeterministic probabilistic labeled
transition systems (PTS ) [40], a very general model in which nondeterminism and probability coexist, and
we discuss the definition of hemimetrics and pseudometrics suitable to measure the differences in process
behavior with respect to trace and testing semantics. We will see that the interplay of probability and
nondeterminism leads to some difficulties in defining notions of behavioral distance, as already experienced
in the case of equivalences [5]. Informally, such distances are based on the comparison of the probabilities of
particular sequences of observations (or events) to occur in the two processes. In the PTS such probabilities
highly depend on nondeterminism. Consequently, different resolutions of nondeterminism give different
probabilities, and thus different distances. Usually, the nondeterministic choices are solved by schedulers
[28, 39, 45] which, roughly, assign to each process s a set of (fully probabilistic) processes, called resolutions
of s, representing each a particular way of solving the nondeterministic choices of s and its derivatives.
As there is not a univocal method of resolving nondeterminism, specially when combined with probability,
schedulers are divided into classes. Therefore, all our distances will be parametric with respect to the
considered class of schedulers. For simplicity, we consider deterministic and randomized schedulers, however
an extension to other types of schedulers seems feasible. We will see, for instance, that a distance will be
more or less discriminating accordingly to whether the choice of the trace, or test, to be analyzed precedes
or follows the choices of the scheduler.

For this reason, to give an immediate perception of the differences in the expressive power of the pro-
posed distances, we compare them to (bi)similarity metric semantics, thus obtaining the first spectrum of
behavioral metrics over processes in the PTS model. Since we consider behavioral metrics for linear and
branching semantics, we refer to our spectrum as to the metric linear time - branching time spectrum.

The composition of the spectrum. For what concerns the branching time part of our spectrum, we
consider bisimulation, ready simulation and simulation semantics [37]. In particular, to mimic the action of
randomized schedulers on linear semantics, we also consider convex (bi)simulations [41] which are evaluated
over combined transitions for processes. Interestingly, we will show that the approximation and composition
properties already established for (bi)similarity metrics hold also for their convex versions. Our contribution
can then be summarized as follows:

1. We formalize the notions of ready similarity and similarity metric.

2. We introduce the notions of convex bisimilarity, ready similarity and similarity metric.

3. We prove that convex (bi)similarity metrics can be equivalently defined as the limit of a sequence of
metrics dk comparing only the first k computation steps of processes.

4. We prove that all the considered branching metrics are compositional, in the sense of non-expansiveness
[19] with respect to parallel composition, i.e., the quantitative analogue to the congruence property



1 INTRODUCTION 3

ensuring that the distance of two composed systems is not greater than the sum of the pairwise
distances of their components.

As regards linear semantics, we consider three approaches to trace semantics, two known from the
literature and a novel one:

(i) The trace distribution approach [39], comparing entire resolutions created by schedulers by checking
if they assign the same probability to the same traces;

(ii) The trace-by-trace approach [2], in which firstly we take a trace and then we check if there are resolutions
for processes assigning the same probability to it;

(iii) The novel supremal probabilities approach, considering for each trace only the suprema of the proba-
bilities assigned to it over all resolutions for the processes.

Similarly, we consider three approaches to testing semantics:

(iv) The may/must approach [46], in which the extremal probabilities of passing a test are considered;

(v) The trace-by-trace approach [5], which is based on a traced view of testing and mimics the trace-by-trace
approach to trace semantics;

(vi) The novel supremal probabilities approach, which can be considered as the adaptation to testing se-
mantics of the supremal probability approach to trace semantics.

For each of these six approaches, and for each class of schedulers, we present a hemimetric and a pseudometric
as the quantitative variant of the related preorder and equivalence in the trace or testing semantics. We
stress that in the latter case, to the best of our knowledge, ours is the first attempt in this direction. Our
results on linear metrics can then be summarized as follows:

5. We prove that, under each hemimetric/pseudometric, the pairs of processes at distance zero are pre-
cisely those related by the corresponding preorder/equivalence.

6. In the case of trace metrics, we prove that the hemimetrics/pseudometrics for trace-by-trace and
supremal probabilities semantics are suitable for compositional reasoning, by showing their non-
expansiveness.

7. In the case of testing metrics, we prove that all hemimetrics and pseudometrics are non-expansive.

Finally, we proceed to the composition of the metric linear time - branching time spectrum by studying
the differences in the expressive powers of all the proposed distances. In particular:

8. We obtain an interesting result in the perspective of an application to process verification: the supre-
mal probabilities semantics defined either on deterministic or randomized schedulers has the same
expressive power as the trace-by-trace semantics on randomized schedulers.

9. Under deterministic schedulers, the supremal probabilities is the only approach to trace semantics that
is comparable with (bi)simulation metrics. Nonetheless, the relation with (bi)simulation semantics is
regained by the other two approaches when randomized schedulers are considered.

10. The must testing metric is comparable with a ‘reversed ’ ready similarity metric: the must distance
between s and t is always bounded from above by the ready similarity distance between t and s.

Organization of contents. In Section 2 we review the background. Then, (bi)simulation, trace and
testing metrics are discussed, respectively, in Sections 3, 4 and 5. We dedicate Section 6 to the construction
of the metric linear time - branching time spectrum. Finally, we discuss related and future work in Section 7.

A preliminary version of this paper appeared as [7]. This special issue version comes with the novel
results on convex (bi)simulation metrics and the spectrum in Section 6.
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2. Background

In this section we review the preliminary notions on the PTS model that are necessary for our dissertation.
Given an arbitrary set X, a discrete probability distribution over X is a mapping π : X → [0, 1] with∑
x∈X π(x) = 1. The support of π is the set supp(π) = {x ∈ X | π(x) > 0}. By ∆(X) we denote the set

of all finitely supported distributions over X, ranged over by π, π′, . . . Given an element x ∈ X, we let δx
denote the Dirac (or point) distribution on x, defined by δx(x) = 1 and δx(y) = 0 for all y 6= x. For a
finite set of indexes I, weights pi ∈ (0, 1] with

∑
i∈I pi = 1 and distributions πi ∈ ∆(X) with i ∈ I, the

distribution
∑
i∈I piπi is defined by (

∑
i∈I piπi)(x) =

∑
i∈I pi · πi(x), for all x ∈ X.

2.1. The PTS model

PTSs [40] extend classical LTSs [34] to model, at the same time, reactive behavior, nondeterminism and
probability. In a PTS, the state space is given by a set S of processes, ranged over by s, t, . . . , and the
transition steps take processes to probability distributions over processes.

Definition 1 (PTS, [40]). A nondeterministic probabilistic labelled transition system (PTS) is a triple
(S,A,−→), where: (i) S is a countable set of processes, (ii) A is a countable set of actions, and (iii) −→⊆
S ×A×∆(S) is a transition relation, where each transition (s, a, π) ∈−→ is denoted by s

a−→ π.

The a-derivatives of process s ∈ S are the distributions der(s, a) = {π | s a−→ π}. We write s
a−→ if

der(s, a) 6= ∅ and s
a−→6 otherwise. The initials of s are the actions init(s) = {a ∈ A | s a−→} that can be

performed by s. A PTS is fully nondeterministic if every transition has the form s
a−→ δt, for some t ∈ S. A

PTS is fully probabilistic if at most one transition is enabled for each process. Finally, a PTS is image-finite
[30] if der(s, a) is finite for each s ∈ S and a ∈ A. We consider only image-finite PTSs.

A combined transition [41] is a convex combination of equally labeled transitions, formally defined by

s
a−→c π if and only if there are a finite set of indexes I, weights pi ∈ (0, 1] with

∑
i∈I pi = 1 and distributions

πi ∈ ∆(S) with i ∈ I such that s
a−→ πi for each i ∈ I and π =

∑
i∈I piπi. We let derct(s, a) = {π | s a−→c π}.

Definition 2 (Parallel composition). Let P1 = (S1,A,−→1) and P2 = (S2,A,−→2) be two PTSs. The
(CSP-like [31]) synchronous parallel composition of P1 and P2 is the PTS P1 ‖ P2 = (S1 ×S2,A,−→), where

(s1, s2)
a−→ π if and only if s1

a−→1 π1, s2
a−→2 π2 and π(s′1, s

′
2) = π1(s′1) · π2(s′2) for all (s′1, s

′
2) ∈ S1 × S2.

With abuse of notation, the notion of parallel composition can be extended to distributions by letting
(π1 ‖ π2)(s) = π1(s1) · π2(s2), if s = s1 ‖ s2, and (π1 ‖ π2)(s) = 0, if s is not of the form s = s1 ‖ s2.

2.2. How to express linear semantics

We proceed to recall some notions, mostly from [3–5], necessary to reason on trace and testing semantics.
A computation is a weighted sequence of process-to-process transitions, denoted by �.

Definition 3 (Computation). Let �⊆ S × A × [0, 1] × S. A computation from s0 to sn has the form

c := s0
a1,p1
� s1

a2,p2
� . . .

an,pn
� sn where, for all i = 1, . . . , n, there is a transition si−1

ai−−→ πi with πi(si) = pi.

Notice that pi is the execution probability of step si−1
ai,pi
� si conditioned on the selection of the transition

si−1
ai−−→ πi at si−1. We denote by Pr(c) =

∏n
i=1 pi the product of the execution probabilities of the steps

in c. A computation c from s is maximal if it is not a proper prefix of any other computation from s.
We denote by C(s) (resp. Cmax(s)) the set of computations (resp. maximal computations) from s. For any
C ⊆ C(s), we define Pr(C) =

∑
c∈C Pr(c) whenever none of the computations in C is a proper prefix of any

of the others.
A trace is a sequence of actions in A. We denote by A? the set of finite traces in A and we let α, β, . . .

range over them. We say that a computation is compatible with α ∈ A? if the sequence of actions labeling
the computation steps is equal to α. We denote by C(s, α) ⊆ C(s) the set of computations from s that are
compatible with α, and by Cmax(s, α) the set Cmax(s, α) = Cmax(s) ∩ C(s, α).
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Figure 1: Examples of deterministic and randomized resolutions of process s.

To express linear semantics we need to evaluate and compare the probability of particular sequences of
events to occur. As in PTSs this probability highly depends also on nondeterminism, schedulers [28, 39, 45]
(or adversaries) resolving it become fundamental. They can be classified into two main classes: deterministic
and randomized schedulers [39]. For each process, a deterministic scheduler selects exactly one transition
among the possible ones, or none of them, thus treating all internal nondeterministic choices as distinct.
Randomized schedulers allow for a convex combination of the equally labeled transitions. The resolution
given by a deterministic scheduler is a fully probabilistic process, whereas from randomized schedulers we
get a fully probabilistic process with combined transitions.

Definition 4 (Resolution). Assume a PTS P = (S,A,−→) and a process s ∈ S.
We say that a PTS Z = (Z,A,−→Z) is a deterministic resolution for s if and only if there is a function
corrZ : Z → S with s = corrZ(zs), for some zs ∈ Z, and moreover:

(i) If z
a−→Z π then corrZ(z)

a−→ π′, with π(z′) = π′(corrZ(z′)) for all z′ ∈ Z.

(ii) If z
a1−−→Z π1 and z

a2−−→Z π2 then a1 = a2 and π1 = π2.

Conversely, Z is a randomized resolution for s if combined transitions are considered, namely (i) is rewritten

(i)’ If z
a−→Z π then corrZ(z)

a−→c π
′, with π(z′) = π′(corrZ(z′)) for all z′ ∈ Z.

In both cases, the resolution Z is maximal if it cannot be further extended in accordance with the graph
structure of P and the constraints above. For x ∈ {det, rand}, we denote by Resx(s) the set of determinis-
tic/randomized resolutions for s and by Resxmax(s) the subset of the maximal resolutions in Resx(s).

Example 1. Consider process s in Figure 1. Processes z1s and z2s are two examples of resolutions of s via a
deterministic scheduler, whereas the resolutions zr,1s and zr,2s are obtained via randomized schedulers. Notice
that z1s and z2s are both related to the leftmost a-branch of s: z1s does not select any move for process s1,
giving init(z1s1) = ∅, whereas z2s selects the b-move of s1. zr,1s is obtained by weighting each a-branch of s by
0.5, and not selecting any move for process s1. Conversely, zr,2s gives weight 0.3 to the left-most a branch
and 0.7 to the right-most one, and enables both the b-move by s1 and the c-move by s2. �

2.3. Behavioral metrics and their compositional properties

Behavioral equivalences answer the question of whether two processes behave precisely the same way or
not with respect to the observations that we can make on them. Behavioral metrics [14, 17, 19, 42, 44]
answer the more general question of measuring the differences in the behavior of processes. Usually, they are
defined as 1-bounded pseudometrics expressing the behavioral distance on processes, namely they quantify
the disparities in the observations that we can make on processes.

A 1-bounded pseudometric on a set X is a function d : X × X → [0, 1] such that: (i) d(x, x) = 0,
(ii) d(x, y) = d(y, x), and (iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X. Then, d is a hemimetric if it
satisfies (i) and (iii). The kernel of a (hemi,pseudo)metric d on X consists in the set of the pairs of elements
in X that are at distance 0, namely ker(d) = {(x, y) ∈ X ×X | d(x, y) = 0}.

As elsewhere in the literature, we will sometimes use the term metric in place of pseudometric.



3 (BI)SIMULATION RELATIONS AND METRICS 6

Behavioral metrics are normally parametric with respect to a discount factor allowing us to specify how
much the distance of future transitions is mitigated [15, 19]. Informally, any difference that can be observed
only after a long sequence of computation steps does not have the same impact of the differences that can
be witnessed at the beginning of the computation. We will argue that different approaches to the semantics
will require different technical formalization of the discount.

We conclude this section by recalling the notion of non-expansiveness [19] of a (hemi,pseudo)metric, which
is the quantitative analogous to the (pre)congruence property for behavioral equivalences and preorders.
Informally, a behavioral distance is non-expansive, and thus compositional, if the distance of two composed
systems is not greater than the sum of the pairwise distances of their components. Here we consider also
the stronger notion of strict non-expansiveness [24] that gives tighter bounds on the distance of processes
composed in parallel: the distance between s1 ‖ t1 and s2 ‖ t2 is bounded by the sum of pairwise distances
on the components minus their product. Intuitively, this allows us to avoid double evaluations of distances.

Definition 5 ((Strict) non-expansiveness, [19, 24]). A (hemi,pseudo)metric d on S is non-expansive if and
only if for all processes s1, s2, t1, t2 ∈ S we have d(s1 ‖ s2, t1 ‖ t2) ≤ d(s1, t1) + d(s2, t2). Moreover, d is
strictly non-expansive if d(s1 ‖ s2, t1 ‖ t2) ≤ d(s1, t1) + d(s2, t2)− d(s1, t1) · d(s2, t2).

3. (Bi)simulation relations and metrics

In this section we discuss the metrics measuring the disparities in process behavior with respect to
bisimulation semantics. In Section 3.1 we recall first the equivalences and preorders in the classic approach
to probabilistic bisimulation of [37, 40] and their convex counterparts, then we consider the corresponding
distances. We prove that the quantitative analogous to probabilistic ready similarity and similarity, and the
convex (bi)simulation metrics enjoy the strict non-expansiveness property (Theorem 2), which was already
established for the quantitative analogous to bisimilarity in [24]. In Section 3.2 we compare the expressive
power of these metrics, thus composing the first part of the spectrum (Theorems 3 and 4).

3.1. (Bi)simulation metrics

A probabilistic bisimulation is an equivalence relation over S that equates two processes if they can
mimic each other’s transitions and evolve to distributions that are related, in turn, by the same relation.
To formalize this idea, we need to lift relations over processes to relations over distributions. We rely on the
notion of matching, also referred to in the literature as coupling or weight function.

Definition 6 (Matching). Assume two sets X and Y . A matching for distributions π ∈ ∆(X), π′ ∈ ∆(Y )
is a distribution over the product space w ∈ ∆(X × Y ) with π and π′ as left and right marginal, namely:

(i)
∑
y∈Y w(x, y) = π(x), for all x ∈ X, and (ii)

∑
x∈X w(x, y) = π′(y), for all y ∈ Y .

We let W(π, π′) denote the set of all matchings for π and π′.

Definition 7 (Relation lifting, [40]). Assume two sets X and Y and a relation R ⊆ X × Y . The lifting of
R to a relation R† ⊆ ∆(X)×∆(Y ) is defined by letting, for any π ∈ ∆(X) and π′ ∈ ∆(Y ), πR† π′ if and
only if there is a matching w ∈W(π, π′) with xR y whenever w(x, y) > 0.

Definition 8 (Probabilistic (bi)simulations, [37, 40]). Assume a PTS (S,A,−→). Then:

• A binary relation R ⊆ S × S is a probabilistic simulation if, whenever sR t:
for each transition s

a−→ πs there is a transition t
a−→ πt such that πsR †πt.

• A probabilistic simulation R is a probabilistic ready simulation if, whenever sR t, s a−→6 implies t
a−→6 .

• A probabilistic bisimulation is a symmetric probabilistic simulation.
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The union of all probabilistic simulations (resp.: ready simulations, bisimulations) is the greatest prob-
abilistic simulation (resp.: ready simulation, bisimulation), is denoted by vdet

s (resp.: vdet
r , ∼det

b ), is called
probabilistic similarity (resp.: ready similarity, bisimilarity), and is a preorder (resp.: preorder, equivalence).
If we consider combined transitions, then we get the convex similarity (resp.: convex ready similarity, convex
bisimilarity), denoted by vrand

s (resp.: vrand
r , ∼rand

b ).
Bisimulation metrics [17, 19, 44] base on the quantitative analogous to the bisimulation game: two

processes can be at some given distance ε < 1 only if they can mimic each other’s transitions and evolve to
distributions that are, in turn, at a distance ≤ ε. To formalize this intuition, we need to lift pseudometrics
on processes to pseudometrics on distributions. We rely on the notions of matching and Kantorovich lifting.

Definition 9 (Kantorovich metric, [33]). Given a (hemi,pseudo)metric d on a space X, the Kantorovich
lifting of d is the (hemi,pseudo)metric K(d) : ∆(X)×∆(X)→ [0, 1] defined for all π, π′ ∈ ∆(X) by

K(d)(π, π′) = min
w∈W(π,π′)

∑
x,y∈X

w(x, y) · d(x, y).

In the bisimulation game, discounting the difference of future transitions requires a discount factor
λ ∈ (0, 1] such that the distance arising at step n is mitigated by λn. Then, bisimulation metrics (resp.:
ready simulation metrics, simulation metrics) can be defined as the prefixed points of a suitable functional
parametric on λ and defined on the complete lattice (D(S),�), with D(S) the set of the 1-bounded pseu-
dometrics over S and d1 � d2 if and only if d1(s, t) ≤ d2(s, t) for all s, t ∈ S. For each set D ⊆ D(S) the
supremum and infinimum are defined by sup(D)(s, t) = supd∈D d(s, t) and inf(D)(s, t) = infd∈D d(s, t) for
all s, t ∈ S. Notice that the bottom element of the lattice is the constant function 0 with 0(s, t) = 0 for all
s, t ∈ S.

Definition 10 ((Bi)simulation metric functional). Assume a discount factor λ ∈ (0, 1]. The functionals
Bλ,Rλ,Sλ : D(S)→ D(S) are defined for all functions d ∈ D(S) and processes s, t ∈ S by

Bλ(d)(s, t) = sup
a∈A

max
{

sup
πs∈der(s,a)

inf
πt∈der(t,a)

λ ·K(d)(πs, πt), sup
πt∈der(t,a)

inf
πs∈der(s,a)

λ ·K(d)(πs, πt)
}

Rλ(d)(s, t) =

1 if init(s) 6= init(t)

sup
a∈A

sup
πs∈der(s,a)

inf
πt∈der(t,a)

λ ·K(d)(πs, πt) otherwise

Sλ(d)(s, t) = sup
a∈A

sup
πs∈der(s,a)

inf
πt∈der(t,a)

λ ·K(d)(πs, πt)

where sup ∅ = 0 and inf ∅ = 1.

A pseudometric d ∈ D(S) is a bisimulation metric if it is a prefixed point of Bλ, where Bλ(d) � d

ensures that whenever d(s, t) < 1, any transition s
a−→ πs is mimicked by a transition t

a−→ πt with
λ · K(d)(πs, πt) ≤ d(s, t), and vice versa. Then, the ready simulation hemimetrics and the simulation
hemimetrics are hemimetrics being prefixed points of Rλ and Sλ, respectively.

Functional Bλ (resp.: Rλ, Sλ) will be denoted Bλ,det (resp.: Rλ,det, Sλ,det) when we intend to stress that
we do not consider any combined transition derivable from the PTS, and Bλ,rand (resp.: Rλ,rand, Sλ,rand)
when, conversely, we intend to stress that we consider all the combined transitions derivable from the PTS.

Definition 11 ((Bi)simulation (hemi)metric). A pseudometric (resp.: hemimetric, hemimetric) d ∈ D(S) is
a bisimulation metric (resp.: ready simulation hemimetric, simulation hemimetric) if and only if Bλ,det(d) �
d (resp.: Rλ,det(d) � d, Sλ,det(d) � d). Then, d ∈ D(S) is a convex bisimulation metric (resp.: convex ready
simulation hemimetric, convex simulation hemimetric) if and only if Bλ,rand(d) � d (resp.: Rλ,rand(d) � d,
Sλ,rand(d) � d).

The monotonicity of K and of functions sup, inf ensure that all these functionals are monotone. Therefore,
accordingly to Tarski’s fixed point theorem, they have the least prefixed point.
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Definition 12 ((Bi)similarity (hemi)metric). The least prefixed point of Bλ,det (resp.: Rλ,det, Sλ,det) is
denoted by bλ,det (resp. rλ,det, sλ,det) and called the bisimilarity metric (resp.: ready similarity hemimetric,
similarity hemimetric). Analogously, the least prefixed point of Bλ,rand (resp.: Rλ,rand, Sλ,rand) is denoted
by bλ,rand (resp. rλ,rand, sλ,rand) and called the convex bisimilarity metric (resp.: convex ready similarity
hemimetric, convex similarity hemimetric).

Let F be any of the functionals used in Definitions 11–12. Tarski’s theorem ensures also that the least
prefixed point of F coincides with the least fixed point and can be obtained in an iterative fashion, meaning
that there exists an ordinal α with Fα(0) = Fα+1(0). By exploiting the image-finiteness of PTSs, following,
e.g., [20, 36], we could easily show that Bλ,det, Rλ,det, Sλ,det are Scott continuous, thus inferring that
their closure ordinal is ω. Unfortunately, this argument does not apply to Bλ,rand, Rλ,rand, Sλ,rand, since
combined transitions clearly break image-finiteness. However, by relying on the fact that we consider image-
finite PTSs with finitely supported distributions, we can prove the following result of non-expansiveness [43]
for all six functionals, which is a property ensuring that the closure ordinal is ω [43, Corollary 1].

Proposition 1. Assume an image finite PTS in which, for each transition s
a−→ π, π is a distribution with

finite support. Let F ∈ {Bλ,x,Rλ,x,Sλ,x} for λ ∈ (0, 1] and x ∈ {det, rand}. Then, given any d1, d2 ∈ D(S)
with d2 � d1, for all s, t ∈ S we have:

F(d1)(s, t)− F(d2)(s, t) ≤ sup
u,v∈S

(d1(u, v)− d2(u, v)).

Proof. The proof can be found in Appendix A.1.

As a consequence, we can associate to each of the six distances introduced in Definition 12 a notion of
up-to-k distance, which considers only the discrepancies arising in the first k computation steps.

Definition 13 (Up-to-k (bi)similarity metric). Let x ∈ {det, rand}. We define the up-to-k bisimilarity

metric bλ,xk for k ∈ N by bλ,xk = (Bλ,x)k(0). Similarly, the up-to-k ready similarity metric rλ,xk is defined by

rλ,xk = (Rλ,x)k(0) and the up-to-k similarity metric sλ,xk is defined by sλ,xk = (Sλ,x)k(0).

Let F ∈ {Bλ,x,Rλ,x,Sλ,x}. Since the chain of up-to-k distances 0 � F(0) � F2(0) . . . is non-decreasing,
and being ω the closure ordinal of F, such a chain converges to the least fixed point.

Proposition 2. Assume an image finite PTS in which, for each transition s
a−→ π, π is a distribution with

finite support. Let λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {b, r, s}. Then dλ,x = limk→∞ dλ,xk .

Proof. The proof can be found in Appendix A.2.

The kernels of the (hemi,pseudo)metrics in Definition 12 are the behavioral relations in Definition 8.

Theorem 1. Let (S,A,−→) be a PTS, x ∈ {det, rand} and λ ∈ (0, 1]. Then:

• The function bλ,x is a 1-bounded pseudometric on S, with ∼x
b as kernel.

• The function rλ,x is a 1-bounded hemimetric on S, with vx
r as kernel.

• The function sλ,x is a 1-bounded hemimetric on S, with vx
s as kernel.

Proof. The first item was proved in [17]. The remaining cases can be proved by analogous arguments.

Moreover, all these distances are compositional, in the sense of strict non-expansiveness.

Theorem 2. Let (S,A,−→) be a PTS, x ∈ {det, rand} and λ ∈ (0, 1]. All functions bλ,x, rλ,x and sλ,x are
strictly non-expansive.

Proof. The result for bλ,det is in [24]. The proof of other cases is similar and given in Appendix A.3.
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bλ,det

bλ,rand rλ,det

rλ,rand sλ,det

sλ,rand

Figure 2: The spectrum of (bi)simulation metrics. An arrow between two distances d → d′ stands for d > d′. We use black
arrows to compare metrics, blue arrows to compare hemimetrics, dashed arrows to compare the same distance with respect to
different classes of schedulers, and red arrows to compare metrics with hemimetrics.
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Figure 3: Processes u, v show the strictness of the relation in Theorem 3, and s, t show the strictness of relations in Theorem 4.

3.2. Comparing the distinguishing power of bisimulation semantics

In this section, we compare the distances in Definition 12 obtaining the spectrum in Figure 2. In detail,
we order the distances with respect to their distinguishing power: we write d > d′ for d, d′ ∈ D(S) if and
only if: (i) d(s, t) ≥ d′(s, t) for all processes s, t ∈ S, and (ii) d(u, v) > d′(u, v) for some processes u, v ∈ S.

Firstly, we notice that when classic transitions are considered, the three (bi)simulation distances are, in
general, more discriminating with respect to their correspondent ones on combined transitions.

Theorem 3. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and d ∈ {b, r, s}. Then dλ,rand < dλ,det.

Proof. The proof of the non-strict relations dλ,rand ≤ dλ,det can be found in Appendix A.4. Then the
strictness of the relations follows by Example 2.

Example 2. Consider processes u, v in Figure 3. It is not hard to see that bλ,det(u, v) = rλ,det(u, v) =
sλ,det(u, v) = λ · 0.5. This is due to the central a-branch of u for which K(sλ,det)(0.5δu2

+ 0.5δu3
, δvi) = 0.5

for i ∈ {1, 2}, since vi can simulate only one of processes u2 and u3. The cases of rλ,det and bλ,det are
analogous. However, if we allow v to combine its two a-branches, giving weight 0.5 each, we obtain the
combined transition v

a−→c 0.5δv1 + 0.5δv2 , which clearly matches the central a-branch of u with respect to
(bi)simulation. Moreover, any combined transition of u can be matched by the combined transitions of v
(and vice versa), thus giving bλ,rand(u, v) = rλ,rand(u, v) = sλ,rand(u, v) = 0. �

Next, we fix the type of transitions that are considered, and we compare the three metric semantics.
As one can expect, the distance given by the bisimilarity metric is greater than that given by the ready
similarity metric, which is, in turn, greater than that given by the similarity metric.

Theorem 4. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then sλ,x < rλ,x < bλ,x.

Proof. The proof of the non-strict relations rλ,x ≤ bλ,x and sλ,x ≤ rλ,x is immediate by Definitions 10
and 12. Then the strictness of the relations follows by Example 3.

Example 3. Consider processes s, t in Figure 3. Firstly, we have sλ,x(s, t) = λ · 0.1, which is obtained
by comparing the unique a-move for s with the leftmost a-move for t. Clearly, we have sλ,x(s1, t1) =
sλ,x(s2, t1) = sλ,x(s2, t2) = 0 and sλ,x(s1, t2) = 1, thus giving K(sλ,x)(0.6δs1 + 0.4δs2 , 0.5δt1 + 0.5δt2) = 0.1.
Secondly, by comparing the same transitions, we get rλ,x(s, t) = λ · 0.6. In fact we have rλ,x(s1, t1) =
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rλ,x(s2, t1) = rλ,x(s1, t2) = 1 and rλ,x(s2, t2) = 0, thus giving K(rλ,x)(0.6δs1 + 0.4δs2 , 0.5δt1 + 0.5δt2) = 0.6.
Finally, we show that bλ,x(s, t) = λ, due to the rightmost a-move for t. In fact, from analogous calculations
to those used to evaluate rλ,x(s, t), we get that the bisimulation distance between the a-move for s and
the leftmost a-move for t is λ · 0.6. However, we have bλ,x(s1,nil) = bλ,x(s2,nil) = 1 and thus, when the
rightmost a-move for t is considered we get K(bλ,x)(0.6δs1 + 0.4δs2 , δnil) = 1. �

4. Metrics for traces

In this section we define the metrics for trace semantics. We consider three approaches to the combina-
tion of nondeterminism and probability: the trace distribution (Section 4.1), the trace-by-trace (Section 4.2)
and the supremal probabilities approach (Section 4.3), and we study their compositional properties (Theo-
rems 7 and 9). Then, in Section 4.4 we pursue the composition of our metric spectrum by comparing the
distinguishing power of the trace metrics defined for the three approaches (Theorems 10, 11 and 12).

4.1. The trace distribution approach

In the seminal work [39], the observable events characterizing the trace semantics are the so called
trace distributions, namely the probability measures over traces that are induced by the resolutions of
nondeterminism for processes. Hence, in this approach, each resolution for a process, and thus the scheduler,
identifies an observable event. Processes s, t ∈ S are then trace distribution equivalent if, for any resolution
for s there is a resolution for t inducing the same trace distribution, meaning that the execution probability
of each trace in the two resolutions is exactly the same, and vice versa.

Definition 14 (Trace distribution equivalence [39]). Let (S,A,−→) be a PTS and x ∈ {det, rand}. Processes
s, t ∈ S are in the trace distribution preorder, written s vx

Tr,dis t, if:

for each resolution Zs ∈ Resx(s) there is a resolution Zt ∈ Resx(t) such that

for each trace α ∈ A? : Pr(C(zs, α)) = Pr(C(zt, α)).

Then, s, t are trace distribution equivalent, notation s ∼x
Tr,dis t, if and only if s vx

Tr,dis t and t vx
Tr,dis s.

The quantitative analogue to trace distribution equivalence is based on the evaluation of the differences in
the trace distributions of processes: the distance between processes s, t is at most ε ≥ 0 if, for any resolution
for s there is a resolution for t exhibiting a trace distribution differing at most by ε. The difference between
trace distributions is computed as the greatest difference of probabilities for each trace α multiplied by
the discount related to α, that is λ|α|−1. We can observe that the longer is a trace, the lower will be its
contribution to the distance between two processes.

Definition 15 (Trace distribution metric). Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. The trace

distribution hemimetric and the trace distribution metric are the functions hλ,xTr,dis,m
λ,x
Tr,dis : S × S → [0, 1]

defined for all processes s, t ∈ S by

hλ,xTr,dis(s, t) = sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|

mλ,x
Tr,dis(s, t) = max

{
hλ,xTr,dis(s, t),h

λ,x
Tr,dis(t, s)

}
.

We observe that the expression supα∈A? λ
|α|−1|Pr(C(zs, α)) − Pr(C(zt, α))| used in Definition 15 corre-

sponds to the (weighted) total variation distance between the trace distributions given by the two resolutions
Zs and Zt. An equivalent formulation is given, for finite processes, in [11, 42] via the Kantorovich lifting
of the discounted discrete metric over traces. The latter is obtained by identifying each maximal resolution
of nondeterminism for a process with the probability distribution over (complete) traces that it induces.
Then, taken as ground distance the discounted discrete metric over traces, the distance between two such
distributions is obtained via the Kantorovich metric.

We now state that trace distribution hemimetrics and metrics are well-defined and that their kernels are
the trace distribution preorder and equivalence, respectively.
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Figure 4: We will evaluate the trace distances between sp and t with respect to the different approaches, schedulers and
parameter p ∈ [0, 1]. In all upcoming examples we will investigate only the traces and the resolutions that are significant for
the evaluation of the considered distance.

Theorem 5. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTr,dis is a 1-bounded hemimetric on S, with vx
Tr,dis as kernel.

2. The function mλ,x
Tr,dis is a 1-bounded pseudometric on S, with ∼x

Tr,dis as kernel.

Proof. The proof can be found in Appendix B.1.

Example 4. Consider processes sp and t in Figure 4, with p ∈ [0, 1]. If we focus on deterministic schedulers,
the following trace distributions can be obtained:

sp t

(s.1) {a : 1} (t.1) {a : 1}

(s.2) {a : 1, ab : 1} (t.2) {a : 1, ab : 1}

(s.3a) {a : 1, ab : p} (t.3a) {a : 1, ab : 0.5}

(t.3b) {a : 1, ab : 0.5, ac : 0.5}

(s.3b) {a : 1, ac : p} (t.3c) {a : 1, ac : 0.5}

(s.4) {a : 1, ac : 1} (t.4) {a : 1, ac : 1}

To compute the distance hλ,detTr,dis(sp, t) we have to match each trace distribution π1 of sp with a trace

distribution π2 of t that minimizes supα∈A? λ
|α|−1|π1(α) − π2(α)|. The latter can be considered as the

distance between π1 and π2. It is easy to see that there is a perfect match between trace distributions (s.1),
(s.2) and (s.4) of sp with the trace distributions (t.1), (t.2) and (t.4) of t, respectively. Let us consider
the trace distributions (s.3a) and (s.3b), which are induced by the schedulers selecting the left-most and
right-most a-transitions of sp, respectively. The distances between these trace distributions of sp and the
ones of t are summarized by in the following table:

(t.1) (t.2) (t.3a) (t.3b) (t.3c) (t.4)

(s.3a) λ · p λ · (1− p) λ · |p− 0.5| λ · 0.5 λ ·max{0.5, p} λ · 1

(s.3b) λ · p λ · 1 λ ·max{0.5, p} λ · 0.5 λ · |p− 0.5| λ · (1− p)

Then, by simple algebra and by observing that p ∈ [0, 1], we obtain hλ,detTr,dis(sp, t) = λ · min{p, 0.5, 1 − p}.
Similarly, we can easily prove that hλ,detTr,dis(t, sp) = λ · 0.5 and that mλ,det

Tr,dis(sp, t) = λ · 0.5.
If we consider randomized schedulers, one can observe that for any q ∈ [0, 1] the trace distribution

{a : 1, ab : q, ac : 1− q} can be induced from both sp and t. This because both sp and t can perform traces
ab and ac with probability 1. This means that a randomized scheduler is always able to combine this two
resolutions in the appropriate way. Finally, hλ,randTr,dis (sp, t) = hλ,randTr,dis (t, sp) = 0 for any p ∈ [0, 1]. �
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Figure 5: Processes s, t are s.t. mλ,x
Tr,dis(s, t) = 0. However, mλ,det

Tr,dis(s ‖ u, t ‖ u) = 0.5 ·λ2 and mλ,rand
Tr,dis (s ‖ u, t ‖ u) = 0.25 ·λ2.
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Figure 6: For ε1, ε2 ∈ [0, 0.5], we have mλ,det
Tr,tbt(s, t) = mλ,rand

Tr,tbt (s, t) = λ ·max(ε1, ε2), mλ,det
Tr,dis(s, t) = λ ·0.5 and mλ,rand

Tr,dis (s, t) =

λ ·max{0.25 + ε1, 0.25 + ε2}.

Trace distribution equivalence comes with some desirable properties, such as the full backward compati-
bility with both the fully nondeterministic and the fully probabilistic cases (cf. [5, Theorem 3.4]). However,
it is not a congruence with respect to parallel composition [39], and thus the related metrics cannot be

non-expansive. To see this, consider processes s, t in Figure 5. Clearly, we have that mλ,x
Tr,dis(s, t) = 0.

However, when we compose each of them in parallel with process u in the same figure, we obtain that
mλ,det

Tr,dis(s ‖ u, t ‖ u) = λ2 · 0.5 and mλ,rand
Tr,dis (s ‖ u, t ‖ u) = λ2 · 0.25. This is due to the duplication phe-

nomenon that we witness mixing internal nondeterminism and probability: processes are discriminated by
the order of occurrence of the nondeterministic and probabilistic choices.

Moreover, due to the crucial role of the schedulers in the discrimination process, trace distribution
distances are sometimes too demanding. Take, for example, processes s, t in Figure 6, with ε1, ε2 ∈ [0, 0.5].

We have hλ,detTr,dis(s, t) = λ · 0.5 and hλ,detTr,dis(t, s) = λ ·maxi∈{1,2}max{0.5− εi, εi}, thus giving mλ,det
Tr,dis(s, t) =

λ · 0.5 for all ε1, ε2 ∈ [0, 0.5]. However, s and t can perform the same traces with probabilities that differ
at most by max(ε1, ε2). Specially, for ε1, ε2 = 0, s, t would perform the same traces with exactly the same
probability. Hence, it would be reasonable for s and t to be considered equivalent for εi = 0, and at a trace
distance of λ ·max(ε1, ε2) for εi ∈ (0, 0.5]. This example then suggests to change the notion of observable
event: from the trace distributions induced by the schedulers, to the classic notion of trace. Following the
same approach considered in [2], in the next section a trace-by-trace approach is considered.

4.2. The trace-by-trace approach

To overcome some of the issues related to trace-distribution approach, in [2] an alternative definition of
trace equivalence has been proposed that is based on the so called trace-by-trace (tbt) approach. The idea
is to choose first the event that we want to observe, namely a single trace, and only as a second step we let
the scheduler perform its selection: processes s, t are equivalent with respect to the trace-by-trace approach
if for each trace α, for each resolution for s there is a resolution for t that assigns to α exactly the same
probability, and vice versa.

Definition 16 (Tbt-trace equivalence [2, 5]). Let (S,A,−→) be a PTS and x ∈ {det, rand}. We say that
processes s, t ∈ S are in the tbt-trace preorder, written s vxTr,tbt t, if

for each trace α ∈ A? :

for each resolution Zs ∈ Resx(s) there is a resolution Zt ∈ Resx(t) with Pr(C(zs, α)) = Pr(C(zt, α)).
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Then, s, t ∈ S are tbt-trace equivalent, notation s ∼xTr,tbt t, if and only if s vxTr,tbt t and t vxTr,tbt s.

In [2] it was proved that tbt-trace equivalences enjoy the congruence property and are full backward
compatible with the fully nondeterministic and the fully probabilistic cases.

We introduce now the quantitative analogous to tbt-trace equivalences. Processes s, t are at distance
ε ≥ 0 if, for each trace α, for each resolution for s there is a resolution for t such that the two resolutions
assign to α probabilities that differ at most by ε, and vice versa. Notably, such difference is multiplied by
λ|α|−1 when a discount λ ∈ (0, 1] is applied. This mitigates the role of traces when their length increases.

Definition 17 (Tbt-trace metric). Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. For each trace

α ∈ A?, the function hα,λ,xTr,tbt : S × S → [0, 1] is defined for all processes s, t ∈ S by

hα,λ,xTr,tbt(s, t) = λ|α|−1 sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

|Pr(C(zs, α))− Pr(C(zt, α))|

The tbt-trace hemimetric and the tbt-trace metric are the functions hλ,xTr,tbt,m
λ,x
Tr,tbt : S × S → [0, 1] defined

for all processes s, t ∈ S by

hλ,xTr,tbt(s, t) = sup
α∈A?

hα,λ,xTr,tbt(s, t)

mλ,x
Tr,tbt(s, t) = max

{
hλ,xTr,tbt(s, t),h

λ,x
Tr,tbt(t, s)

}
.

It is not hard to see that for processes in Figure 6 we have mλ,x
Tr,tbt(s, t) = λ · max(ε1, ε2) (and, in

particular, s ∼xTr,tbt t if ε1, ε2 = 0). We show now that tbt-trace hemimetrics and metrics are well-defined
and that their kernels are the tbt-trace preorder and equivalence, respectively.

Theorem 6. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTr,tbt is a 1-bounded hemimetric on S, with vxTr,tbt as kernel.

2. The function mλ,x
Tr,tbt is a 1-bounded pseudometric on S, with ∼xTr,tbt as kernel.

Proof. The proof can be found in Appendix B.2.

Example 5. Consider Figure 4. In Example 4 we showed that hλ,detTr,dis(sp, t) = λ ·min{p, |0.5 − p|, 1 − p}.
In this particular case the two hemimetrics hλ,detTr,tbt(sp, t) and hλ,detTr,dis(sp, t) coincide, since each resolution for
sp gives positive probability to at most one of the traces ab and ac, so that quantifying on traces before or
after having quantified on resolutions becomes irrelevant.

Let us evaluate now hλ,detTr,tbt(t, sp). To this aim, we focus on trace ab and the resolution Zt obtained from
the central a-branch of t, for which we have Pr(C(zt, ab)) = 0.5. We need the resolution Zsp for sp that
minimizes |0.5 − Pr(C(zsp , ab))|. Since for any resolution Zsp for sp we have Pr(C(zsp , ab)) ∈ {0, p, 1}, we
infer that the resolution Zsp we are looking for satisfies Pr(C(zsp , ab)) = p. By considering also the other

resolutions for ab and, then, the other traces, we can check that hλ,detTr,tbt(t, sp) = λ · |0.5−p|. In Example 4 we

showed that hλ,detTr,dis(t, sp) = λ · 0.5 for all p ∈ [0, 1]. Hence, we get hλ,detTr,dis(t, sp) = hλ,detTr,tbt(t, sp) for p ∈ {0, 1},
and hλ,detTr,dis(t, sp) > hλ,detTr,tbt(t, sp) for p ∈ (0, 1). This disparity is due to the fact that the trace distributions
approach forced us to match the resolution for t assigning positive probability to both ab and ac, whereas
in the trace-by-trace approach one never considers two traces at the same time.

The same argument used in Example 4 allows us to conclude that with randomized schedulers we have
hλ,randTr,tbt (sp, t) = hλ,randTr,tbt (t, sp) = 0. �

We conclude this section by stating that tbt-trace distances are strictly non-expansive. As a corollary,
we re-obtain the (pre)congruence properties for their kernels (proved in [5]).

Theorem 7. All distances hλ,detTr,tbt, hλ,randTr,tbt , mλ,det
Tr,tbt, mλ,rand

Tr,tbt are strictly non-expansive.
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Figure 7: Processes s and t are distinguished by ∼det
Tr,tbt, but related by ∼det

Tr,sup. We remark that t and u are related by all

the relations in the three approaches to trace semantics.

Proof. The proof can be found in Appendix B.3.

The trace-by-trace approach improves on trace distribution approach since it supports equivalences
and metrics that are compositional. Moreover, by focusing on traces instead of resolutions, the trace-
by-trace approach puts processes in Figure 6 in the expected relations. However, we argue here that
trace-by-trace approach on deterministic schedulers still gives some questionable results. Take, for example,
processes s, t in Figure 7. We believe that these processes should be equivalent in any semantics approach,
since, after performing the action a, they reach two distributions that should be identified, as they assign
total probability 1 to states with an identical behavior. But, if we consider the trace ab, the resolution
Zt ∈ Resdet(t) in Figure 7 is such that Pr(C(zt, ab)) = 0.5, whereas the unique resolution for s assigning
positive probability to ab is Zs in Figure 7, for which Pr(C(zs, ab)) = 1. Hence no resolution in Resdet(s)

matches Zt on trace ab, thus giving mλ,det
Tr,tbt(s.t) = λ · 0.5 and, consequently, s 6∼det

Tr,tbt t. This motivates
to look for an alternative approach that allows us to equate processes in Figure 7 and, at the same time,
preserves all the desirable properties of the tbt-trace semantics.

4.3. The supremal probabilities approach

The solution proposed in this section takes inspiration from the extremal probabilities approach proposed
in [3], which bases on the comparison, for each trace α, of both suprema and infima execution probabilities,
with respect to resolutions, of α: two processes are equated if they assign the same extremal probabilities
to all traces. However, reasoning on infima may cause some arguable results. In particular, it is unclear
whether such infima should be evaluated over the whole class of resolutions or over a restricted class, as
for instance the resolutions in which the considered trace is actually executed. Besides, desirable properties
like the backward compatibility and compositionality are not guaranteed. For all these reasons, we find it
more reasonable to define a notion of trace equivalence, and a related metric, based on the comparison of
supremal probabilities only.

Notice that, if we focus on verification, the comparison of supremal probabilities becomes natural. To
exemplify, we let the classical non-probabilistic case guide us. To verify whether a process t satisfies the
specification S, we check that whenever S can execute a particular trace, then so does t. Actually, only
positive information is considered: if there is a resolution for S in which a given trace is executed, then this
information is used to verify the equivalence. Still, resolutions in S in which such a trace is not enabled are
not considered. The same principle should hold for PTSs: a process should perform all the traces enabled
in S and it should do it with at least the same probability, in the perspective that the quantitative behavior
expressed in the specification expresses the minimal requirements on process behavior.

Focusing on supremal probabilities means relaxing the tbt-trace approach by simply requiring for equiv-
alent processes s, t that for each trace α and resolution Zs there is a resolution for t assigning to α at least
the same probability given by Zs, and vice versa.

Definition 18 (Sup-trace equivalence). Let (S,A,−→) be a PTS and x ∈ {det, rand}. We say that processes
s, t ∈ S are in the sup-trace preorder, written s vx

Tr,sup t, if

for each trace α ∈ A? :

sup
Zs∈Resx(s)

Pr(C(zs, α)) ≤ sup
Zt∈Resx(t)

Pr(C(zt, α)).
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Then, s, t ∈ S are sup-trace equivalent, notation s ∼x
Tr,sup t, if and only if s vx

Tr,sup t and t vx
Tr,sup s.

We stress that all good properties of trace-by-trace approach, as the backward compatibility with the fully
nondeterministic and fully probabilistic cases and the strict non-expansiveness of the metric with respect to
parallel composition, are preserved by the supremal probabilities approach (Proposition 3 and Theorem 9
below). Let ∼N

Tr denote the trace equivalence on fully nondeterministic systems [6] and ∼P
Tr denote the one

on fully-probabilistic systems [32].

Proposition 3. Assume a PTS P = (S,A,−→) and processes s, t ∈ S. Then:

1. If P is fully-nondeterministic, then s ∼det
Tr,sup t⇔ s ∼rand

Tr,sup t⇔ s ∼N
Tr t.

2. If P is fully-probabilistic, then s ∼det
Tr,sup t⇔ s ∼rand

Tr,sup t⇔ s ∼P
Tr t.

Proof. The proof can be found in Appendix B.4.

The idea behind the quantitative analogue of sup-trace equivalence is that two processes are at distance
ε ≥ 0 if, for each trace α, the difference in supremal execution probabilities with respect to the resolutions
of nondeterminism for the two processes multiplied by λ|α|−1 is at most ε.

Definition 19 (Sup-trace metric). Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. For each trace

α ∈ A?, the function hα,λ,xTr,sup : S × S → [0, 1] is defined for all processes s, t ∈ S by

hα,λ,xTr,sup(s, t) = max
{

0, λ|α|−1
(

sup
Zs∈Resx(s)

Pr(C(zs, α))− sup
Zt∈Resx(t)

Pr(C(zt, α))
)}
.

The sup-trace hemimetric and the sup-trace metric are the functions hλ,xTr,sup,m
λ,x
Tr,sup : S ×S → [0, 1] defined

for all processes s, t ∈ S by

hλ,xTr,sup(s, t) = sup
α∈A?

hα,λ,xTr,sup(s, t)

mλ,x
Tr,sup(s, t) = max

{
hλ,xTr,sup(s, t),hλ,xTr,sup(t, s)

}
.

We can show that sup-trace hemimetrics and metrics are well-defined and that their kernels are the
sup-trace preorders and equivalences, respectively.

Theorem 8. Assume a PTS (S,A,−→), λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTr,sup is a 1-bounded hemimetric on S, with vx
Tr,sup as kernel.

2. The function mλ,x
Tr,sup is a 1-bounded pseudometric on S, with ∼x

Tr,sup as kernel.

Proof. The proof can be found in Appendix B.5.

We conclude this section by showing that sup-trace distances are strictly non-expansive. As a corollary,
we infer the (pre)congruence property of their kernels.

Theorem 9. All distances hλ,detTr,sup, hλ,randTr,sup , mλ,det
Tr,sup, mλ,rand

Tr,sup are strictly non-expansive.

Proof. The proof can be found in Appendix B.6.

Remark 1. We can show that the upper bounds to the distance of composed processes provided in Theorems 7
and 9 are tight, namely for each distance d considered in these theorems, there are processes s1, s2, t1, t2
with d((s1, s2), (t1, t2)) = d(s1, t1) + d(s2, t2)− d(s1, t1) · d(s2, t2). Indeed, for zs, zt in Figure 7, with λ = 1,
we have d(zs, zt) = 0.5 and d((zs, zs), (zt, zt)) = 0.75 = 0.5 + 0.5− 0.5 · 0.5.
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Figure 8: The spectrum of trace distances.

4.4. Comparing the distinguishing power of trace metrics

So far, we have discussed the properties of trace-based behavioral distances under different approaches.
Our aim is now to compare these distances with respect to their distinguishing power. By applying the same
ordering relation used in Section 3.2, we will obtain the spectrum in Figure 8.

For trace distributions and trace-by-trace semantics, the distances evaluated on deterministic schedulers
are more discriminating than their randomized analogues.

Theorem 10. Let (S,A,−→) be a PTS, λ ∈ (0, 1], y ∈ {dis, tbt} and d ∈ {h,m}. Then dλ,randTr,y < dλ,detTr,y .

Proof. In Appendix B.7 we show that dλ,randTr,y ≤ dλ,detTr,y . Moreover, we can consider the processes s, t in

Figure 7 with s ∼rand
Tr,dis t, s ∼rand

Tr,tbt t, s 6∼det
Tr,dis t, s 6∼det

Tr,tbt t that witness the strictness of the relations.

As a corollary of Theorem 10, by using the relations between distances and equivalences in Theorems 5
and 6, we re-obtain the relations ∼det

Tr,dis⊂∼rand
Tr,dis and ∼det

Tr,tbt⊂∼rand
Tr,tbt proved in [5]. Moreover, also the

analogous results for preorders follow.
As one can expect, the metrics on trace distributions are more discriminating than their corresponding

ones in the trace-by-trace approach.

Theorem 11. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {h,m}. Then dλ,xTr,tbt < dλ,xTr,dis.

Proof. The proof can be found in Appendix B.8 where we show that dλ,xTr,tbt ≤ dλ,xTr,dis. The strictness of the
relations follows by considering the processes in Figure 6.

As a corollary, by using the kernel relations given in Theorems 5 and 6, we re-obtain the relation
∼x

Tr,dis⊂∼xTr,tbt proved in [5] and we get vx
Tr,dis⊂vxTr,tbt.

Theorem 10 states that the distances on deterministic schedulers are more discriminating than those on
randomized ones, and Theorem 11 states that the distances on trace distributions are more discriminating
than those in the trace-by-trace approach. A natural question is how mλ,rand

Tr,dis and mλ,det
Tr,tbt are related.

Example 6. Non comparability of mλ,rand
Tr,dis and mλ,det

Tr,tbt.

Consider processes s, t in Figure 6. We have mλ,rand
Tr,dis (s, t) = λ·max{0.25+ε1, 0.25+ε2} and mλ,det

Tr,tbt(s, t) =

λ ·max(ε1, ε2). Conversely, for s, t in Figure 7 we have mλ,rand
Tr,dis (s, t) = 0 and mλ,det

Tr,tbt(s, t) = λ · 0.5. �

We focus now on supremal probabilities approach, that comes with a particularly interesting result:
the sup-trace metric on deterministic schedulers coincides with tbt-trace metrics on randomized schedulers.
Moreover, mλ,det

Tr,sup coincides also with its randomized version.

Theorem 12. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and d ∈ {h,m}. Then dλ,randTr,tbt = dλ,detTr,sup = dλ,randTr,sup .

Proof. The proof can be found in Appendix B.9.
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This result is fundamental in the perspective of the application of our trace metrics to process verification:
by comparing solely the suprema execution probabilities of the linear properties of interest we get the same
expressive power as a pairwise comparison of the probabilities in all possible randomized resolutions of
nondeterminism.

Clearly, Theorem 12 together with the kernel relations from Theorems 8 and 6 imply that the relations
for the supremal probabilities semantics coincide with those for the tbt-trace semantics with respect to
randomized schedulers, ie. vdet

Tr,sup=vrand
Tr,sup=vrand

Tr,tbt and ∼det
Tr,sup=∼rand

Tr,sup=∼rand
Tr,tbt.

5. Metrics for testing

Testing semantics [16] compares processes according to their capacity to pass a test. The latter is a PTS
equipped with a distinguished state indicating the success of the test.

Definition 20 (NPT). A nondeterministic probabilistic test transition system (NPT) is a finite PTS
(O,A,−→) where O is a set of processes, called tests, containing a distinguished success process

√
with

no outgoing transitions. We say that a computation from o ∈ O is successful if and only if its last state is√
.

Given a process s and a test o, we can consider the interaction system among the two. This models the
response of the process to the application of the test, so that s passes the test o if there is a computation
in the interaction system that reaches

√
. Informally, the interaction system is the result of the parallel

composition of the process with the test.

Definition 21 (Interaction system). The interaction system of a PTS P = (S,A, −→) and an NPT O =
(O,A,−→O) is the PTS P ‖ O = (S ×O,A,−→′) where: (i) (s, o) ∈ S ×O is called a configuration and is
successful if and only if o =

√
; (ii) a computation from (s, o) ∈ S ×O is successful if and only if its last

configuration is successful; (iii) −→′ is obtained from −→ and −→O as described in Definition 2.

For a configuration (s, o) and a resolution Zs,o ∈ Resx(s, o), with x ∈ {det, rand}, we let SC(zs,o) be the
set of successful computations from zs,o. Then, for a trace α ∈ A?, SC(zs,o, α) is the set of α-compatible
successful computations from zs,o.

Probabilistic testing semantics should compare processes with respect to their probability to pass a
test. In this Section we consider three approaches to it: (i) the may/must (Section 5.1), (ii) the trace-
by-trace (Section 5.2), and (iii) the supremal probabilities (Section 5.3). For each approach, we present
(hemi,pseudo)metrics that measure the differences in the behavior of processes when they interact with
tests. We study the non-expansiveness of these distances (Theorems 14, 16 and 18), and, in Section 5.4 we
compare their discriminating powers (Theorems 19 and 20). To the best of our knowledge, ours is the first
attempt in this direction.

5.1. The may/must approach

In the original work on nondeterministic systems [16], testing equivalence was defined via the may
and must preorders. The former expresses the ability of processes to pass a test. The latter expresses the
impossibility to fail a test. When also probability is considered, these two preorders are defined, respectively,
in terms of suprema and infima success probabilities [46].

Definition 22 (May/must testing equivalence, [46]). Let (S,A,−→) be a PTS, (O,A,−→O) an NPT and
x ∈ {det, rand}. We say that processes s, t ∈ S are in the may testing preorder, written s vxTe,may t, if for
each test o ∈ O

sup
Zs,o∈Resxmax(s,o)

Pr(SC(zs,o)) ≤ sup
Zt,o∈Resxmax(t,o)

Pr(SC(zt,o)).

Then, s, t ∈ S are may testing equivalent, written s ∼xTe,may t, if and only if s vxTe,may t and t vxTe,may s.
The notions of must testing preorder, vxTe,must, and must testing equivalence, ∼xTe,must, are obtained by

replacing the suprema in vxTe,may with infima.
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Finally, we say that s, t ∈ S are in the may/must testing preorder, written s vxTe,mM t, if s vxTe,may t
and s vxTe,must t. They are may/must testing equivalent, written s ∼xTe,mM t, if and only if s vxTe,mM t and
t vxTe,mM s.

The quantitative analogue to may/must testing equivalence bases on the evaluation of the differences in
the extremal success probabilities. The may (resp. must) distance between s, t ∈ S is at most ε ≥ 0 if the
difference in the suprema (resp. infima) success probabilities with respect to all resolutions of nondeterminism
for s and t is at most ε. For a correct evaluation of the discounted distances, also with respect to the other
metrics discussed in the paper, we need to consider success probabilities in a step-by-step fashion. Given
any maximal resolution Zs,o for (s, o), we let Prn(SC(zs,o)) be the probability of zs,o to reach a successful
configuration in exactly n computation steps. Notice that Pr(SC(zs,o)) =

∑∞
n=1 Prn(SC(zs,o)). Then,

accordingly to the general discounting policy, for each n ≥ 1, we will apply a discount of λn−1 to Prn(SC(·)).

Definition 23. [May/must testing metric] Let (S,A,−→) be a PTS, (O,A,−→O) an NPT, λ ∈ (0, 1] and

x ∈ {det, rand}. For each test o ∈ O, the function ho,λ,xTe,may : S × S → [0, 1] is defined for all s, t ∈ S by

ho,λ,xTe,may(s, t) = max
{

0,
(

sup
Zs,o∈Resxmax(s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o))− sup
Zt,o∈Resxmax(t,o)

∞∑
n=1

λn−1 · Prn(SC(zt,o))
)}
.

Function ho,λ,xTe,must : S × S → [0, 1] is obtained by replacing the suprema in ho,λ,xTe,may with infima. Given y ∈
{may,must}, the y testing hemimetric and the y testing metric are the functions hλ,xTe,y,m

λ,x
Te,y : S×S → [0, 1]

defined for all processes s, t ∈ S by

hλ,xTe,y(s, t) = sup
o∈O

ho,λ,xTe,y (s, t)

mλ,x
Te,y(s, t) = max{hλ,xTe,y(s, t),hλ,xTe,y(t, s)}.

The may/must testing hemimetric and the may/must testing metric are the functions hλ,xTe,mM,m
λ,x
Te,mM :

S × S → [0, 1] defined for all processes s, t ∈ S by

hλ,xTe,mM(s, t) = max{hλ,xTe,may(s, t),hλ,xTe,must(s, t)}

mλ,x
Te,mM(s, t) = max{mλ,x

Te,may(s, t),mλ,x
Te,must(s, t)}.

We now state that may/must testing hemimetrics and metrics are well-defined and that their kernels are
the may/must testing preorder and equivalence, respectively.

Theorem 13. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and y ∈ {may,must,mM}:

1. The function hλ,xTe,y is a 1-bounded hemimetric on S, with vx
Te,y as kernel.

2. The function mλ,x
Te,y is a 1-bounded pseudometric on S, with ∼x

Te,y as kernel.

Proof. The proof can be found in Appendix C.1.

Example 7. Consider processes t, u in Figure 7 and their interactions with test o1 in Figure 9. Let
x ∈ {det, rand}. If we compare the infima success probabilities, we get infZt,o1∈Resxmax(t,o1)

Pr(SC(zt,o1)) = 1
since (t, o1) has only one maximal resolution corresponding to (t, o1) itself and that with probability 1 reaches
√

. Still, infZu,o1∈Resxmax(u,o1)
Pr(SC(zu,o1)) = 0, given by the maximal resolution corresponding to (u, o1)

a
�

nil. Hence, mλ,x
Te,must(t, u) = |λ · 1−λ · 0| = λ. Conversely, to evaluate the may testing distance between t, u,

consider their interactions with the test o2 in the same figure. Due to the duplication phenomenon induced
by o2 on u, we get supZt,o2∈Resxmax(t,o2)

Pr(SC(zt,o2)) = 1 and supZu,o2∈Resxmax(u,o2)
Pr(SC(zu,o2)) = 0.5, from

which we obtain mλ,x
Te,may(s, t) = 0.5 · λ. �
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Figure 9: We use the tests o1, o2 to evaluate the distance between processes s, t, u in Figure 7 with respect to testing semantics.
• represents a generic configuration in the interaction system. In all upcoming examples we will consider only the tests and
traces that are significant for the evaluations of the testing metrics.

We can finally observe that the may/must testing (hemi)metrics are non-expansive. As a corollary, we
re-obtain the (pre)congruence properties of their kernels.

Theorem 14. Let y ∈ {may,must,mM}. All distances hλ,detTe,y , hλ,randTe,y , mλ,det
Te,y , mλ,rand

Te,y are non-expansive.

Proof. The proof can be found in Appendix C.2.

5.2. The trace-by-trace approach

In [5] it was proved that the may/must testing is fully backward compatible with the restricted class of
processes only if the same restriction is applied to the class of tests, namely if we consider respectively fully
nondeterministic and fully probabilistic tests only. This is due to the duplication ability of nondeterministic
probabilistic tests. However, by applying the trace-by-trace approach to testing semantics, we regain the
full backward compatibility with respect to all tests (cf. [5, Thm. 5.4]).

Definition 24 (Tbt-testing equivalence, [5]). Let (S,A,−→) be a PTS, (O,A,−→O) an NPT and x ∈
{det, rand}. We say that processes s, t ∈ S are in tbt-testing preorder, written s vxTe,tbt t, if

for each test o ∈ O and trace α ∈ A? :

for each Zs,o ∈ Resxmax(s, o) there is Zt,o ∈ Resxmax(t, o) with Pr(SC(zs,o, α)) = Pr(SC(zt,o, α)).

Then, s, t ∈ S are tbt-testing equivalent, notation s ∼xTe,tbt t, if and only if s vxTe,tbt t and t vxTe,tbt s.

The definition of the tbt-testing metric naturally follows from Definition 17.

Definition 25 (Tbt-testing metric). Let (S,A,−→) be a PTS, (O,A,−→O) an NPT, λ ∈ (0, 1] and x ∈
{det, rand}. For each test o ∈ O and trace α ∈ A?, the function ho,α,λ,xTe,tbt : S × S → [0, 1] is defined for all
processes s, t ∈ S by

ho,α,λ,xTe,tbt (s, t) = λ|α|−1 sup
Zs,o∈Resxmax(s,o)

inf
Zt,o∈Resxmax(t,o)

|Pr(SC(zs,o, α))− Pr(SC(zt,o, α))|

The tbt-testing hemimetric and the tbt-testing metric are the functions hλ,xTe,tbt,m
λ,x
Te,tbt : S×S → [0, 1] defined

for all processes s, t ∈ S by

hλ,xTe,tbt(s, t) = sup
o∈O

sup
α∈A?

ho,α,λ,xTe,tbt (s, t)

mλ,x
Te,tbt(s, t) = max

{
hλ,xTe,tbt(s, t),h

λ,x
Te,tbt(t, s)

}
.

We now state that tbt-testing hemimetrics and metrics are well-defined and that their kernels are the
tbt-testing preorder and equivalence, respectively.

Theorem 15. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:



5 METRICS FOR TESTING 20

o3

a

1

o′
2

b c√ √

s, o3

a

1

•
b c√ √

t, o3

a

0.5 0.5

•
b c

•
b c√ √ √ √

Figure 10: Processes s, t are such that mλ,det
Te,tbt(s, t) = 0.5 · λ and mλ,rand

Te,tbt (s, t) = 0.

1. The function hλ,xTe,tbt is a 1-bounded hemimetric on S, with vxTe,tbt as kernel.

2. The function mλ,x
Te,tbt is a 1-bounded pseudometric on S, with ∼xTe,tbt as kernel.

Proof. The proof can be found in Appendix C.3.

Example 8. Consider processes s, t in Figure 7 and their interactions with test o3 in Figure 10. The same
reasoning detailed in the last paragraph of Section 4.2, gives mλ,det

Te,tbt(s, t) = λ · 0.5 and mλ,rand
Te,tbt (s, t) = 0. �

When the tbt-approach is used to define testing metrics, we get a refinement of the non-expansiveness
property to strict non-expansiveness. As a corollary, we re-obtain the (pre)congruence properties of their
kernels (proved in [5]).

Theorem 16. All distances hλ,detTe,tbt, hλ,randTe,tbt , mλ,det
Te,tbt, mλ,rand

Te,tbt are strictly non-expansive.

Proof. The proof can be found in Appendix C.4.

5.3. The supremal probabilities approach

If we focus on verification, we can use the testing semantics to verify whether a process will behave
as intended by its specification in all possible environments, as modeled by the interaction with tests.
Informally, we could see each test as a set of requests of the environment to the system: the ones ending in
the success state are those that must be answered. The interaction of the specification with the test then
tells us whether the system is able to provide those answers. Thus, an implementation has to guarantee at
least all the answers provided by the specification. For this reason we decided to introduce also a supremal
probabilities variant of testing semantics: for each test and for each trace we compare the suprema with
respect to all resolutions of nondeterminism of the probabilities of processes to reach success by performing
the considered trace.

Definition 26 (Sup-testing equivalence). Let (S,A,−→) be a PTS, (O,A,−→O) an NPT and x ∈ {det, rand}.
We say that processes s, t ∈ S are in the sup-testing preorder, written s vx

Te,sup t, if for each test o ∈ O and
trace α ∈ A?

sup
Zs,o∈Resxmax(s,o)

Pr(SC(zs,o, α)) ≤ sup
Zt,o∈Resxmax(t,o)

Pr(SC(zt,o, α)).

Then, s, t ∈ S are sup-testing equivalent, notation s ∼x
Te,sup t, if and only if s vx

Te,sup t and t vx
Te,sup s.

We obtain the sup-testing metric as a direct adaptation to tests of Definition 19.

Definition 27 (Sup-testing metric). Let (S,A,−→) be a PTS, (O,A,−→O) an NPT, λ ∈ (0, 1] and x ∈
{det, rand}. For each test o ∈ O and trace α ∈ A?, the function ho,α,λ,xTe,sup : S × S → [0, 1] is defined for all
processes s, t ∈ S by

ho,α,λ,xTe,sup (s, t) = max
{

0, λ|α|−1
(

sup
Zs,o∈Resxmax(s,o)

Pr(SC(zs,o, α))− sup
Zt,o∈Resxmax(t,o)

Pr(SC(zt,o, α))
)}
.
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Figure 11: The spectrum of testing metrics

The sup-testing hemimetric and the sup-testing metric are the functions hλ,xTe,sup,m
λ,x
Te,sup : S × S → [0, 1]

defined for all processes s, t ∈ S by

hλ,xTe,sup(s, t) = sup
o∈O

sup
α∈A?

ho,α,λ,xTe,sup (s, t)

mλ,x
Te,sup(s, t) = max{hλ,xTe,sup(s, t),hλ,xTe,sup(t, s)}.

We now state that sup-testing hemimetrics and metrics are well-defined and that their kernels are the
sup-testing preorder and equivalence, respectively.

Theorem 17. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTe,sup is a 1-bounded hemimetric on S, with vx
Te,sup as kernel.

2. The function mλ,x
Te,sup is a 1-bounded pseudometric on S, with ∼x

Te,sup as kernel.

Proof. The proof can be found in Appendix C.5.

Finally, we can show that both hλ,xTe,sup and mλ,x
Te,sup are strictly non-expansive. As a corollary, we obtain the

(pre)congruence properties of their kernels.

Theorem 18. All distances hλ,detTe,sup, hλ,randTe,sup, mλ,det
Te,sup, mλ,rand

Te,sup are strictly non-expansive.

Proof. The proof can be found in Appendix C.6.

Remark 2. For all distances d considered in Theorems 14, 16, 18 and processes zs, zt in Figure 7, with λ = 1,
we have d(zs, zt) = 0.5 and d(zs ‖ zs, zt ‖ zt) = 0.75 = 0.5 + 0.5− 0.5 · 0.5. Hence, the upper bounds to the
distance between composed processes provided in Theorems 16 and 18 are tight. We leave as a future work
the analogous result for distances considered in Theorem 14.

5.4. Comparing the distinguishing power of testing metrics

In this section we compare the testing distances with respect to their distinguishing power, thus obtaining
the spectrum in Figure 11.

In the may/must and in the supremal probabilities approach, the distance evaluated on deterministic and
randomized schedulers coincide. Notice that in the supremal probabilities approach, we already observed
this fact with trace semantics (cf. Theorem 12). As regards the tbt-testing semantics, the distances evaluated
on deterministic schedulers are more discriminating than their randomized analogues, analogously to what
happens in the case of trace semantics (cf. Theorem 10).

Theorem 19. Let (S,A,−→) be a PTS, λ ∈ (0, 1], y ∈ {may,must,mM} and d ∈ {h,m}:

1. dλ,randTe,y = dλ,detTe,y .
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• • • •
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Figure 12: Processes s, t and their interaction systems with the test o3 in Figure 10.

2. dλ,randTe,tbt < dλ,detTe,tbt.

3. dλ,randTe,sup = dλ,detTe,sup.

Proof. The proof of the relations in Theorem 19.1 and 19.3 and of the non strict relation dλ,randTe,tbt ≤ dλ,detTe,tbt

in Theorem 19.2 can be found in Appendix C.7. Then, the strict version of the relation in Theorem 19.2
follows from Example 8.

From Theorem 19, by using the kernel relations in Theorems 13 and 15, we regain relations∼rand
Te,may=∼det

Te,may,

∼rand
Te,must=∼det

Te,must, ∼rand
Te,mM=∼det

Te,mM, ∼det
Te,tbt⊂∼rand

Te,tbt, and their analogues on preorders, proved in [5]. From

Theorem 17 we get vrand
Te,sup=vdet

Te,sup and ∼rand
Te,sup=∼det

Te,sup.
The metrics on the may/must approach are more discriminating that their corresponding ones in the

supremal probabilities approach. As already observed in the trace semantics (cf. Theorem 11), the metrics on
trace-by-trace approach are more discriminating that their corresponding ones in the supremal probabilities
approach.

Theorem 20. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {h,m}:

1. dλ,xTe,may < dλ,xTe,mM and dλ,xTe,must < dλ,xTe,mM.

2. dλ,xTe,sup < dλ,xTe,may.

3. dλ,xTe,sup < dλ,xTe,tbt.

Proof. Given any relation d′ < d in Theorem 20, the proof of the non-strict relation d′ ≤ d is presented in Ap-
pendix C.8. Then, the strict relation d′ < d follows from: (i) Example 9 for Theorem 20.1; (ii) Example 12
for Theorem 20.2; (iii) Example 13 for Theorem 20.3.

The following Examples prove the strictness of the inequalities in Theorem 20 and the (possible) non
comparability of the testing (hemi)metrics. For simplicity, we consider only the cases of the metrics.

Example 9. Non comparability of mλ,x
Te,may with mλ,x

Te,must.
This example provides the strictness of the relation in Theorem 20.1 by showing that the may metric is

not comparable to the must metric.
In Example 7 we showed that for t, u in Figure 7 from their interaction with the test o1 in Figure 9 we

obtain mλ,x
Te,must(t, u) = λ and mλ,x

Te,may(t, u) = 0.5 · λ.
Consider now s, t and their interactions in Figure 12 with the test o3 from Figure 10. Clearly, we have

supZs,o3∈Resxmax(s,o3)
Pr(SC(zs,o3)) = 1 and supZt,o3∈Resxmax(t,o3)

Pr(SC(zt,o3)) = 0.3 and thus mλ,x
Te,may(s, t) =

0.7 ·λ. Conversely, if we consider infima success probabilities, we have infZs,o3∈Resxmax(s,o3)
Pr(SC(zs,o3)) = 0

and infZt,o3∈Resxmax(t,o3)
Pr(SC(zt,o3)) = 0.3. Thus, mλ,x

Te,must(s, t) = 0.3 · λ. �
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Figure 13: Processes s, t are such that mλ,x
Te,tbt(s, t) = 0 and mλ,x

Te,must(s, t) = 0.5 · λ, as witnessed by the test o1/2.

Example 10. Non comparability of mλ,x
Te,must with mλ,x

Te,sup and mλ,x
Te,tbt.

We start with mλ,x
Te,sup. Form Example 7 we know that for t, u in Figure 7 it holds mλ,x

Te,must(t, u) = λ.

Since both t and u have maximal resolutions giving probability 1 to either ab or ac, we get mλ,x
Te,sup(t, u) = 0.

Consider now s, t in Figure 12. In Example 9 we showed that mλ,x
Te,must(s, t) = 0.3 · λ. From the interaction

systems in Figure 12, by considering the suprema success probabilities of trace ac, we obtain mλ,x
Te,sup = 0.4·λ.

Next we deal with the tbt-testing metrics. Consider s, t in Figure 13 and the family of tests O =
{op | p ∈ (0, 1)}, each duplicating the actions b in the interaction with s and t. For each op ∈ O,
infZs,op∈Resxmax(s,o

p) Pr(SC(zs,op)) = 0 and infZt,op∈Resxmax(t,o
p) Pr(SC(zt,op)) = min{p, 1 − p}, thus giv-

ing ho
p,λ,x

Te,must(t, s) = λ2 · min{p, 1 − p}. One can then easily check that hλ,xTe,must(t, s) = mλ,x
Te,must(s, t) =

λ2 · supp∈(0,1) min{p, 1− p} = 0.5 · λ2. Conversely, as the tbt-testing metric compares the success probabili-

ties related to the execution of a single trace per time, we get mλ,x
Te,tbt(s, t) = 0. In the case of randomized

schedulers, all the resolutions for t, op combining the two a-moves can be matched by s, op by combining the
b-moves and vice versa. Consider now s, t in Figure 12. Even under randomized schedulers, the tbt-testing
distance on them is given by the difference in the success probability of the trace ac (or equivalently ad)

and thus mλ,x
Te,tbt(s, t) = 0.4 · λ. However, we have already showed that mλ,x

Te,must(s, t) = 0.3 · λ. �

Example 11. Non comparability of mλ,x
Te,may with mλ,x

Te,tbt.

Consider processes s, t in Figure 13. In Example 10 we showed that mλ,x
Te,tbt(s, t) = 0. However, the

same reasoning giving mλ,x
Te,must(s, t) = 0.5 · λ2, can be applied on suprema success probabilities, thus giving

mλ,x
Te,may(s, t) = 0.5 · λ2. Consider now t, u in Figure 7 and their interactions with test o1 in Figure 9. As we

consider maximal resolutions only, for both classes of schedulers, the success probability of trace ab evaluates
to 1 on t, o1, whereas on u, o1 it evaluates to 0, due to the maximal resolution corresponding to the rightmost
a-branch. Hence mλ,x

Te,tbt(t, u) = λ, whereas we already showed that mλ,x
Te,may(t, u) = 0.5 · λ. �

Example 12. Strictness of mλ,x
Te,sup < mλ,x

Te,may.

Consider s, t in Figure 12. In Example 9 we have shown that mλ,x
Te,may(s, t) = 0.7 · λ. However, since the

supremal probability approach to testing proceeds in a trace-by-trace fashion, the sup-testing distance is
given by the difference in the success probability of the trace ac (or ad) and thus mλ,x

Te,sup(s, t) = 0.4 · λ. �

Example 13. Strictness of mλ,x
Te,sup < mλ,x

Te,tbt.
Consider now t, u in Figure 7 and their interactions with test o1 in Figure 9. In Example 11 we have

shown that mλ,x
Te,tbt(t, u) = λ. However, one can easily check that mλ,x

Te,sup(t, u) = 0.
We stress that the strictness of the relation in Theorem 20.3 is due to the restriction to maximal resolu-

tions, necessary to reason on testing semantics. �
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Figure 14: The metric linear time - branching time spectrum. The green arrow rλ,rand→hλ,xTe,must specifies that the relation

rλ,rand > hλ,xTe,must holds by reversing the order of processes.

s
a a

1

s1
b

t
a

1

t1
b

o
a

1

o1

b√

s, o
a a

1

•
b√

t, o
a

1

•
b√

Figure 15: Processes s, t are such that rλ,x(s, t) = hλ,xTe,must(t, s) = λ and rλ,x(t, s) = hλ,xTe,must(s, t) = 0.

6. The metric linear time - branching time spectrum

In this section we compare the distinguishing power of all the metrics discussed so far and combine the
spectra obtained in Sections 3–5 into the first metric linear time - branching time spectrum presented in
Figure 14. The connections among the three spectra are stated in Theorem 21.

An interesting result regards the relation between the ready similarity and the must testing metric
semantics. We have that for all processes s, t ∈ S it holds that rλ,x(s, t) ≥ hλ,xTe,must(t, s), whereas rλ,x(s, t)

and hλ,xTe,must(s, t) are, in general, not comparable. As shown in the following Example 14 this process

inversion is due to the fact that for hλ,xTe,must(t, s) > 0 the differences in infima success probabilities of t and
s allow us to detect the possible presence of actions that are performed only by t, which means that t cannot
ready simulate s, namely rλ,x(s, t) > 0.

Example 14. Consider processes s, t in Figure 15. Clearly, rλ,x(s, t) = λ, due to the presence of the

transition s
a−→ δnil. Conversely, as t corresponds to the leftmost a-branch of s, we have rλ,x(t, s) = 0.

Consider now the interaction of s, t with the test o in the same figure, that tests for the ability of
performing the trace ab. We have that infZs,o∈Resxmax(s,o)

Pr(SC(zs,o)) = 0, due to the maximal computation

(s, o)
a
� δ(nil,o1), whereas infZt,o∈Resxmax(t,o)

Pr(SC(zt,o)) = 1, as (t, o) has only one maximal resolution which

corresponds to a successful computation. Hence, we infer hλ,xTe,must(s, t) = 0 and hλ,xTe,must(t, s) = λ. �

Theorem 21. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {h,m}:
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1. hλ,xTe,may < sλ,rand.

2. For all s, t ∈ S it holds hλ,xTe,must(t, s) ≤ rλ,rand(s, t), and there are u, v ∈ S such that hλ,xTe,must(u, v) <

rλ,rand(v, u).

3. mλ,x
Te,mM < bλ,rand.

4. hλ,randTe,tbt < rλ,rand and mλ,rand
Te,tbt < bλ,rand.

5. dλ,xTr,tbt < dλ,xTe,tbt.

6. dλ,xTe,sup = dλ,xTr,sup.

Proof. Given any relation d′ < d in Theorem 21, the proof of the non-strict relation d′ ≤ d is presented in Ap-
pendix D.1. Then, the strict relation d′ < d follows from: (i) Example 15 for Theorem 21.1; (ii) Example 17
for Theorem 21.2; (iii) Example 18 for Theorem 21.3; (iv) Example 20 for Theorem 21.4; (v) Example 23
for Theorem 21.5.

The following examples prove the strictness of the inequalities in Theorem 21 and the non comparability
of the distances shown in Figure 14. For simplicity, when possible, we consider only the cases of the metrics.

Example 15. Strictness of hλ,xTe,may < sλ,rand.

Consider processes s, t in Figure 13. From Examples 10 and 11 we can infer that hλ,xTe,may(s, t) = 0.5 · λ2.

However, it is easy to check that sλ,x(s, t) = λ, due to the nondeterministic choice of s1. �

Example 16. Non comparability of sλ,x with hλ,xTe,must and hλ,xTe,tbt.

Consider processes s, t in Figure 13. In previous Example 15, we obtained that sλ,x(s, t) = λ. However,

it is easy to check that hλ,xTe,must(s, t) = hλ,xTe,tbt(s, t) = 0.

Consider now processes s, t in Figure 15. In Example 14 we showed that hλ,xTe,must(t, s) = λ and by applying

the same reasoning we obtain hλ,xTe,tbt(s, t) = λ (notice the inversion of the two processes). However, since

process nil is simulated by any process, we have that sλ,x(s, t) = sλ,x(t, s) = 0. �

Example 17. Existence of s, t ∈ S such that hλ,xTe,must(t, s) < rλ,rand(s, t).

Consider processes s, t in Figure 13. In Example 10 we showed that hλ,xTe,must(t, s) = 0.5 · λ2. However,

we clearly have that rλ,x(s, t) = λ. �

Example 18. Strictness of mλ,x
Te,mM < bλ,rand.

The same reasoning used in previous Examples 15 and 17 allows us to conclude that for processes s, t in
Figure 13 we have bλ,x(s, t) = λ and mλ,x

Te,mM(s, t) = 0.5 · λ2. �

The following example stresses the non comparability of bisimilarity metric with respect to trace distri-
bution and (testing) trace-by-trace metrics under deterministic schedulers. Conversely, as a consequence of
Theorem 21, the novel supremal probabilities approach to trace and testing metrics fits in with bisimilarity
as expected.

Example 19. Non comparability of bλ,det with mλ,det
Tr,dis, mλ,det

Tr,tbt and mλ,det
Te,tbt.

As already discussed at the end of Section 4.2 and in Example 8 processes s, t in Figure 7 are such that
bλ,det(s, t) = 0, whereas mλ,det

Tr,dis(s, t) = mλ,det
Tr,tbt(s, t) = mλ,det

Te,tbt(s, t) = 0.5 · λ. Conversely, by considering

processes s, t in Figure 15 we have that bλ,det(s, t) = λ, whereas clearly mλ,det
Tr,dis(s, t) = mλ,det

Tr,tbt(s, t) = 0.

Similarly, processes s, t in Figure 13 are such that bλ,det(s, t) = λ, whereas in Example 10 we derived

mλ,det
Te,tbt(s, t) = 0. �
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Figure 16: Processes s, t are such that mλ,det
Tr,dis(s, t) = 0.3 · λ, mλ,rand

Tr,dis (s, t) = 0.21 · λ and mλ,x
Te,tbt(s, t) = 0.

Example 20. Strictness of mλ,rand
Te,tbt < bλ,rand.

Consider processes s, t in Figure 13. Clearly we have that bλ,rand(s, t) = λ, whereas in Example 10 we

derived mλ,rand
Te,tbt (s, t) = 0. �

Example 21. Non comparability of mλ,x
Te,may with mλ,det

Tr,dis and mλ,det
Tr,tbt.

For processes s, t in Figure 13, we showed, in Example 11, that mλ,x
Te,may(s, t) = 0.5 ·λ2. However, as both

processes have a single resolution each allowing them to execute either trace abc or abd, we can infer that
mλ,x

Tr,dis(s, t) = mλ,x
Tr,tbt(s, t) = 0. Notice that this also shows the strictness of the relation mλ,rand

Tr,dis < mλ,x
Te,may.

Consider now s, t in Figure 7. As discussed in Section 4.2 we have that mλ,det
Tr,dis = mλ,det

Tr,tbt(s, t) = 0.5 · λ.

However, one can easily check that mλ,x
Te,may(s, t) = 0. �

Example 22. Non comparability of mλ,x
Te,must with mλ,x

Tr,dis, mλ,x
Tr,tbt and mλ,x

Tr,sup.

Consider processes t, u in Figure 7. Clearly, mλ,x
Tr,dis(t, u) = mλ,x

Tr,tbt(t, u) = mλ,x
Tr,sup(t, u) = 0. However,

in Example 7 we showed that mλ,x
Te,must(t, u) = λ. Consider now s, t in Figure 12. From Example 9 we have

mλ,x
Te,must(s, t) = 0.3 · λ, but clearly mλ,x

Tr,dis(s, t) = mλ,x
Tr,tbt(s, t) = mλ,x

Tr,sup(s, t) = 0.4 · λ. �

Example 23. Strictness of mλ,x
Tr,tbt < mλ,x

Te,tbt.
Consider processes t, u in Figure 7 and their interactions with the test o1 in Figure 9. Clearly, we have

mλ,x
Tr,tbt(t, u) = 0, whereas mλ,x

Te,tbt(t, u) = λ, as discussed in Example 11. �

Example 24. Non comparability of mλ,x
Te,tbt and mλ,x

Tr,dis.

Consider processes s, t in Figure 16. We have that mλ,det
Tr,dis(s, t) = 0.3·λ in that s will use the resolution Zs,

in the same Figure, corresponding to its rightmost a-branch to match the resolution Zt for t corresponding to
the process itself, and reported in the same Figure. Interestingly, we can show that this distance is lowered
when randomized schedulers are considered. In fact if we match the resolution Zt with the randomized
resolution Zr

s in Figure 16, obtained by applying weights 0.3 and 0.7 to the resolutions for s corresponding,

respectively, to its leftmost and rightmost a-branches, we obtain that mλ,rand
Tr,dis (s, t) = 0.21 · λ. However, it is

easy to see that mλ,x
Te,tbt(s, t) = 0, since success probabilities are evaluated in the trace-by-trace fashion.

Consider now processes t, u in Figure 7 and their interactions with the test o1 in Figure 9. We already
noticed in Figure 7 that mλ,x

Tr,dis(t, u) = 0. Still, in Example 11 we showed that mλ,x
Te,tbt(t, u) = λ. �

7. Related and future work

Trace metrics have been thoroughly studied on quantitative systems, as testified by the spectrum of
distances, defined as the generalization of a chosen trace distance, in [22] and the one on Metric Transition
Systems (MTSs) in [14]. In [22], the spectrum is obtained by applying to LTSs the theory of quantitative
Ehrenfeucht-Fräıssé games [21, 23]. However, our results on PTSs cannot be obtained from the ones in
[22] since the considered metric semantics are quite different and the well-behavedness property assumed for
the metrics in [22] does not hold for distances on PTSs. Notably, in [14] the trace distance is based on a
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propositional distance defined over valuations of atomic propositions that characterize the MTS. Although
such valuation could play the role of the probability distributions in the PTS, it is unclear whether we
could combine the ground distance on atomic propositions and the propositional distance, to obtain trace
distances comparable to ours. In [1, 13] trace metrics on Markov Chains (MCs) are defined as total variation
distances on the cones generated by traces. As in MCs probability depends only on the current state and
not on nondeterminism, our quantification over resolutions would be trivial on MCs, giving a total variation
distance as well.

Although ours is the first proposal of a metric expressing testing semantics, testing equivalences for
probabilistic processes have been studied also in [2, 3, 18]. In detail, [18] proposed notions of probabilistic
may/must testing for a Kleisli lifting of the PTS model, i.e., the transition relation is lifted to a relation
(→)† ⊆ (∆(S)×A×∆(S)) taking distributions over processes to distributions over processes. Interestingly,
they prove that the so obtained may testing preorder coincides with forward similarity [40], namely the
simulation preorder obtained on those lifted transitions, and that the must testing preorder coincides with
the forward failure similarity, obtained as the lifting of the failure simulation preorder. Again, the disparity in
the two models prevents us from thoroughly comparing the proposed testing relations. Our intuition is that
the metrics defined for forward (bi)simulation semantics would result into less discriminating metrics with
respect to those for (bi)simulation semantics and that, due to the duplication phenomenon introduced by
probabilistic tests, the equality between non-zero forward and testing metrics could no longer be guaranteed.
We leave as future work a thorough investigation on this issue.

As future work, we aim at extending the metric spectrum to decorated trace semantics and to metrics on
different semantic models, and to study their logical characterizations and compositional properties, along
the same line proposed in [8–10, 12, 25–27] for bisimulation semantics. Further, in light of the relation
among the supremal and randomized trace-by-trace metrics, we aim to provide efficient algorithms for the
evaluation of the proposed metrics and to develop a tool for quantitative process verification: we will use the
distance between a process and its specification to quantify how much that process satisfies a given property.
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Appendix A. Proofs of Section 3

Appendix A.1. Proof of Proposition 1

Proposition 1. Assume an image finite PTS in which, for each transition s
a−→ π, π is a distribution with

finite support. Let F ∈ {Bλ,x,Rλ,x,Sλ,x} for λ ∈ (0, 1] and x ∈ {det, rand}. Then, given any d1, d2 ∈ D(S)
with d2 � d1, for all s, t ∈ S we have:

F(d1)(s, t)− F(d2)(s, t) ≤ sup
u,v∈S

(d1(u, v)− d2(u, v)).

Proof of Proposition 1. We expand only the case of Sλ,rand. The cases of the other functionals can be
obtained similarly. Hence, the proof obligation instantiates as

Sλ,rand(d1)(s, t)− Sλ,rand(d2)(s, t) ≤ sup
u,v∈S

(d1(u, v)− d2(u, v)). (A.1)

First of all, notice that since we are considering an image finite PTS in which all distributions have finite
support, we are guaranteed that also all the distributions that are target of combined transitions will have
finite support. This is fundamental to guarantee that the minimum over the matchings for such distributions
in the evaluations of the Kantorovich distance is always achieved. Then we have

Sλ,rand(d1)(s, t)− Sλ,rand(d2)(s, t)

= sup
s
a−→cπs

inf
t
a−→cπt

λ ·K(d1)(πs, πt)− sup
s
a−→cπs

inf
t
a−→cπt

λ ·K(d2)(πs, πt) (A.2)

By definition of supremum, given ε1 > 0 there is a combined transition s
a−→c π̃s such that sup

s
a−→cπs

inf
t
a−→cπt

λ·
K(d1)(πs, πt) < inf

t
a−→cπt

λ ·K(d1)(π̃s, πt) + ε1. Therefore

(A.2) < inf
t
a−→cπt

λ ·K(d1)(π̃s, πt)− sup
s
a−→cπs

inf
t
a−→cπt

λ ·K(d2)(πs, πt) + ε1 (A.3)

By substituting the supremum over combined transitions for s with respect to the lifting of d2 with the
arbitrary combined transition s

a−→c π̃s from the previous step, we get

(A.3) ≤ inf
t
a−→cπt

λ ·K(d1)(π̃s, πt)− inf
t
a−→cπt

λ ·K(d2)(π̃s, πt) + ε1 (A.4)

By definition of infimum, given ε2 > 0 there is a combined transition t
a−→c π̃t such that inf

t
a−→cπt

λ ·
K(d2)(π̃s, πt) > λ ·K(d2)(π̃s, π̃t)− ε2. Therefore

(A.4) < inf
t
a−→cπt

λ ·K(d1)(π̃s, πt)− λ ·K(d2)(π̃s, π̃t) + ε1 + ε2 (A.5)

By substituting the infimum over combined transitions for t with respect to the lifting of d1 with the arbitrary
combined transition t

a−→c π̃t from the previous step, and letting ε = ε1 + ε2, we get

(A.5) ≤ λ ·K(d1)(π̃s, π̃t)− λ ·K(d2)(π̃s, π̃t) + ε

= λ · min
w∈W(π̃s,π̃t)

∑
s′,t′∈S

w(s′, t′) · d1(s′, t′)− λ · min
w∈W(π̃s,π̃t)

∑
s′,t′∈S

w(s′, t′) · d2(s′, t′) + ε (A.6)

By choosing w̃ = arg minw∈W(π̃s,π̃t)

∑
s′,t′∈S w(s′, t′) · d2(s′, t′), we get

(A.6) = λ ·
(

min
w∈W(π̃s,π̃t)

∑
s′,t′∈S

w(s′, t′) · d1(s′, t′)−
∑

s′,t′∈S
w̃(s′, t′) · d2(s′, t′)

)
+ ε (A.7)
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By substituting the minimum over the matchings for π̃s, π̃t with respect to d1 with the matching w̃ form
the previous step, we get

(A.7) ≤ λ ·
( ∑
s′,t′∈S

w̃(s′, t′) · d1(s′, t′)−
∑

s′,t′∈S
w̃(s′, t′) · d2(s′, t′)

)
+ ε

= λ ·
∑

s′,t′∈S
w̃(s′, t′) · (d1(s′, t′)− d2(s′, t′)) + ε

≤ λ ·
∑

s′,t′∈S
w̃(s′, t′) · sup

s,t∈S
(d1(s, t)− d2(s, t)) + ε (A.8)

By noticing that λ ≤ 1 and
∑
s′,t′∈S w̃(s′, t′) = 1, we get

(A.8) ≤ sup
u,v∈S

(d1(u, v)− d2(u, v)) + ε.

Since the inequality Sλ,rand(d1)(s, t)−Sλ,rand(d2)(s, t) < supu,v∈S(d1(u, v)−d2(u, v)) +ε holds for all ε > 0,
we can conclude that Equation (A.1) holds.

Appendix A.2. Proof of Proposition 2

Proposition 2. Assume an image finite PTS in which, for each transition s
a−→ π, π is a distribution

with finite support. Let λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {b, r, s}. Then dλ,x = limk→∞ dλ,xk .

Proof of Proposition 2. We expand only the case of convex bisimulation metrics. The proofs for ready
simulation and simulation metrics are analogous.

Since Bλ,rand is monotone and its closure ordinal is ω, due to Proposition 1 and [43, Corollary 1], we can

immediately infer that limk→∞ bλ,randk = bλ,randω and that bλ,randω is a fixed point for Bλ,rand. Moreover, by an

easy induction over k ∈ N, we can prove that bλ,rand ≥ bλ,randk for all k ∈ N. In particular, bλ,rand ≥ bλ,randω .
Therefore, by uniqueness of the least fixed point, we can conclude that bλ,randω = bλ,rand.

Appendix A.3. Proof of Theorem 2

Theorem 2. Let (S,A,−→) be a PTS, x ∈ {det, rand} and λ ∈ (0, 1]. All functions bλ,x, rλ,x and sλ,x are
strictly non-expansive.

Proof of Theorem 2. We prove the thesis for rλ,x. The proof for sλ,x is analogous. First we need
to introduce the notion of precongruence closure for hemimetric rλ,x with respect to operator ‖ as the
quantitative analogue of the well-known concept of precongruence closure of a process preorder. We define
the precongruence closure of rλ,x for operator ‖ as an hemimetric d : S × S → [0, 1] defined by

d(s, t) =

min
{
d(s1, t1) + d(s2, t2)− d(s1, t1) · d(s2, t2), rλ,x(s, t)

}
if

[
s = s1 ‖ s2 ∧ t = t1 ‖ t2 ∧
rλ,x(s1, t1), rλ,x(s2, t2) < 1

rλ,x(s, t) otherwise

We notice that, by construction, d satisfies the properties d � rλ,x and d(s1 ‖ s2, t1 ‖ t2) ≤ d(s1, s2) +
d(t1, t2)− d(s1, s2) · d(t1, t2). Hence, it remains to show that rλ,x � d, thus giving rλ,x = d. Since rλ,x is the
least prefixed point of Rλ, to show rλ,x � d it is enough to prove that d is a prefixed point of Rλ.

To prove that Rλ(d) � d we need to show that d satisfies the conditions of the ready bisimulation metrics,
namely for all s, t ∈ S with d(s, t) < 1 we need to show the following two properties:

∀ s a−→ πs ∃ t
a−→ πt with λ ·K(d)(πs, πt) ≤ d(s, t) (A.9)
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if s
a−→6 then t

a−→6 . (A.10)

We prove Equations (A.9) and (A.10) by induction over the overall number k of the occurrences of
operator ‖ in s and t.

Consider the base case k = 0. By definition of d, we have that d(s, t) = rλ,x(s, t). Let us start with
Equation A.9. Since d(s, t) < 1 and d(s, t) = rλ,x(s, t), we infer rλ,x(s, t) < 1, therefore we are sure that

each transition s
a−→ πs is mimicked by some transition t

a−→ πt for some distribution πt ∈ ∆(S) such that
λ ·K(rλ,x)(πs, πt) ≤ rλ,x(s, t). Since K is monotone, from d � rλ,x we infer K(d) � K(rλ,x). Therefore we
conclude

λ ·K(d)(πs, πt) ≤ λ ·K(rλ,x)(πs, πt) ≤ rλ,x(s, t) = d(s, t)

which confirms that Equation (A.9) holds for s and t. Equation (A.10) follows by observing that if s
a−→6

and rλ,x(s, t) < 1 then we have t
a−→6 .

Consider the inductive step k > 0. If s is not of the form s = s1 ‖ s2, or t is not of the form t = t1 ‖ t2,
then by definition of d we have d(s, t) = rλ,x(s, t) and Equations (A.9) and (A.10) follow precisely as in the
base case k = 0. Otherwise, if both s = s1 ‖ s2 and t = t1 ‖ t2, then we distinguish two subcases:

• d(s, t) = rλ,x(s, t), with rλ,x(s1, t1) = 1 or rλ,x(s2, t2) = 1 or rλ,x(s, t) < d(s1, t2) +d(s2, t2)−d(s1, t2) ·
d(s2, t2).

• d(s, t) = d(s1, t1)+d(s2, t2)−d(s1, t1)·d(s2, t2), with rλ,x(s1, t1) < 1 and rλ,x(s2, t2) < 1 and rλ,x(s, t) ≥
d(s1, t1) + d(s2, t2)− d(s1, t1) · d(s2, t2).

In subcase d(s, t) = rλ,x(s, t), Equations (A.9) and (A.10) follow precisely as in the base case k = 0.
Consider the subcase d(s, t) = d(s1, t1) + d(s2, t2)− d(s1, t1) · d(s2, t2). Let us start with Equation (A.9).

We note that a transition s
a−→ π derives from transitions s1

a−→ π1
s and s2

a−→ π2
s with πs = π1

s ‖ π2
s . By

rλ,x(s1, t1) < 1, rλ,x(s2, t2) < 1 and d � rλ,x, we get d(s1, t1) < 1 and d(s2, t2) < 1. By the inductive

hypothesis we get that there are also transitions t1
a−→ π1

t and t2
a−→ π2

t with λ ·K(d)(π1
s , π

1
t ) ≤ d(s1, t1) and

λ ·K(d)(π2
s , π

2
t ) ≤ d(s2, t2). Clearly, we can infer that there is also the transition t1 ‖ t2

a−→ π1
t ‖ π2

t . For
i ∈ {1, 2}, let wi ∈W(πis, π

i
t) be the optimal matching for K(d)(πis, π

i
t). Notice that, for i ∈ {1, 2}, since by

definition we have (πis ‖ πit)(s′i ‖ t′i) = πis(s
′
i) · πit(t′i), then w1 · w2 is trivially a matching for π1

s ‖ π2
s and

π1
t ‖ π2

t . Then we have

λ ·K(d)(π1
s ‖ π2

s , π
1
t ‖ π2

t )

= λ · min
w∈W(π1

s ·π2
s ,π

1
t ·π2

t )

∑
s′i,t
′
i∈S,i∈{1,2}

w(s′1 ‖ s′2, t′1 ‖ t′2) · d(s′1 ‖ s′2, t′1 ‖ t′2) (A.11)

By construction of d, we get

(A.11) ≤ λ · min
w∈W(π1

s ·π2
s ,π

1
t ·π2

t )

∑
s′i,t
′
i∈S,i∈{1,2}

w(s′1 ‖ s′2, t′1 ‖ t′2) · (d(s′1, t
′
1) + d(s′2, t

′
2)− d(s′1, t

′
1) · d(s′2, t

′
2))

(A.12)

By choosing an arbitrary matching, namely w1 ·w2, in place of the optimal matching for π1
s ·π1

t and π2
s ·π2

t ,
we get

(A.12) ≤ λ ·
∑

s′i,t
′
i∈S,i∈{1,2}

w1(s′1, t
′
1) ·w2(s′2, t

′
2) · (d(s′1, t

′
1) + d(s′2, t

′
2)− d(s′1, t

′
1) · d(s′2, t

′
2)) (A.13)

By the independence of w1 and w2 and the fact that
∑
s′i,t
′
i
wi(s

′
i, t
′
i) = 1 for i ∈ {1, 2}, we get

(A.13) = λ ·
( ∑
s′1∈supp(π1

s),t
′
1∈supp(π1

t )

w1(s′1, t
′
1) · d(s′1, t

′
1) +

∑
s′2∈supp(π2

s),t
′
2∈supp(π2

t )

w2(s′2, t
′
2) · d(s′2, t

′
2) −
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s′1∈supp(π1

s),t
′
1∈supp(π1

t )

w1(s′1, t
′
1) · d(s′1, t

′
1)
)
·
( ∑
s′2∈supp(π2

s),t
′
2∈supp(π2

t )

w2(s′2, t
′
2) · d(s′2, t

′
2)
))
(A.14)

By the choice of w1 and w2, we get

(A.14) = λ ·
(
K(d)(π1

s , π
1
t ) + K(d)(π2

s , π
2
t )−K(d)(π1

s , π
1
t ) ·K(d)(π2

s , π
2
t )
)

≤ λ ·K(d)(π1
s , π

1
t ) + λ ·K(d)(π2

s , π
2
t )−

(
λ ·K(d)(π1

s , π
1
t )
)
·
(
λ ·K(d)(π2

s , π
2
t )
)

(A.15)

By the inductive hypothesis and the fact that both λ ·K(d) and d are bounded by 1, we get

(A.15) ≤ d(s1, t1) + d(s2, t2)− d(s1, t1) · d(s2, t2)

= d(s, t).

Thus, Equation (A.9) is satisfied for d in this case. Consider now Equation (A.10). If s
a−→6 then s1

a−→6 or

s2
a−→6 . By the inductive hypothesis, we infer that t1

a−→6 or t2
a−→6 , from which we can immediately derive

that t
a−→6 , thus confirming that also Equation (A.10) holds.

Appendix A.4. Proof of Theorem 3

In order to prove Theorem 3 we need to recall that the Kantorovich metric is subadditive with respect
to convex combinations of distributions.

Proposition 4 ([38]). Let (X, d) be any metric space and I a finite set of indexes for which πi, π
′
i ∈ ∆(X)

and pi ∈ (0, 1] with
∑
i∈I pi = 1. Then, K(d)(

∑
i∈I

piπi,
∑
i∈I

piπ
′
i) ≤

∑
i∈I

pi K(d)(πi, π
′
i).

Theorem 3. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and d ∈ {b, r, s}. Then dλ,rand < dλ,det.

Proof of Theorem 3. We expand only the case of the similarity metrics. The proofs for ready similarity
and bisimilarity metrics can be obtained by similar arguments.

We proceed by induction on k ∈ N to show that

sλ,detk ≥ sλ,randk for all k ∈ N (A.16)

then the thesis sλ,det ≥ sλ,rand will follow by Equation (A.16), Proposition 2 and the monotonicity of the
limit.

Consider the base case k = 0. Given arbitrary processes s, t ∈ S, we have sλ,det0 = sλ,rand0 = 0, and thus
Equation (A.16) holds in this case.

Consider now the inductive step k > 0. We have

sλ,detk (s, t) = sup
a∈A

sup
s
a−→πs

inf
t
a−→πt

λ ·K(sλ,detk−1 )(πs, πt)

≥ sup
a∈A

sup
s
a−→πs

inf
t
a−→πt

λ ·K(sλ,randk−1 )(πs, πt)

≥ sup
a∈A

sup
s
a−→πs

inf
t
a−→cπt

λ ·K(sλ,randk−1 )(πs, πt)

= sup
a∈A

sup
s
a−→cπs

inf
t
a−→cπt

λ ·K(sλ,randk−1 )(πs, πt)

= sλ,randk (s, t)

where:
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• the second step follows by the inductive hypothesis and the monotonicity of K;

• the third step follows by the fact that by evaluating the infimum over a wider class of transitions we
can obtain a better matching of the transitions by s;

• by letting f(s, a, πs) = inf
t
a−→cπt

λ ·K(sλ,randk−1 )(πs, πt), the fourth step derives from

– sup
s
a−→cπs

f(s, a, πs) ≥ sup
s
a−→π′s

f(s, a, π′s). This derives directly from the fact that we are

evaluating the supremum over a wider class of transitions.

– sup
s
a−→cπs

f(s, a, πs) ≥ sup
s
a−→π′s

f(s, a, π′s). This follows since each a-combined transition from

s consists in a convex combination of the distributions reached by a-transitions from s. More
formally, for each s

a−→c πs there is a set of indexes I s.t. πs =
∑
i∈I piπ

i
s for weights pi ∈ (0, 1]

with
∑
i∈I pi = 1 and distributions πis ∈ der(s, a). Thus, given any ε > 0, by definition of

supremum and Proposition 4, we have

sup
s
a−→cπs

f(s, a, πs) < f(s, a, πε) + ε

= inf
t
a−→cπt

λ ·K(sλ,randk−1 )(πε, πt) + ε

= inf
t
a−→cπt

λ ·K(sλ,randk−1 )(
∑
i∈I

piπ
i
ε, πt) + ε

≤ inf
t
a−→cπt

λ ·
∑
i∈I

pi ·K(sλ,randk−1 )(πiε, πt) + ε

≤ inf
t
a−→cπt

λ ·max
i∈I

K(sλ,randk−1 )(πiε, πt) + ε

≤ max
i∈I

inf
t
a−→cπt

λ ·K(sλ,randk−1 )(πiε, πt) + ε

≤ sup
s
a−→π′s

f(s, a, π′s) + ε.

Since sup
s
a−→cπs

f(s, a, πs) < sup
s
a−→π′s

f(s, a, π′s) + ε holds for all ε > 0, we can conclude that

sup
s
a−→cπs

f(s, a, πs) ≥ sup
s
a−→π′s

f(s, a, π′s).

Hence, we can conclude that Equation (A.16) holds also in this case.
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Appendix B. Proofs of Section 4

Appendix B.1. Proof of Theorem 5

Theorem 5. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTr,dis is a 1-bounded hemimetric on S, with vx
Tr,dis as kernel.

2. The function mλ,x
Tr,dis is a 1-bounded pseudometric on S, with ∼x

Tr,dis as kernel.

Proof of Theorem 5. We expand only the case of hemimetrics and their kernels. The proof for metrics
and their kernels simply follows by symmetrization.

We start with proving that the function hλ,xTr,dis defined by

hλ,xTr,dis = sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|

is an hemimetric. We reason as follows:

• the function
sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|

is a pseudometric over resolutions, since the function f : R × R → R defined by f(x, y) = |x − y|
is a pseudometric over reals, a pseudometrics multiplied by a constant is a pseudometrics, and the
supremum of a set of pseudometrics is a pseudometrics;

• for any pseudometric d on resolutions, the function over processes assigning to s and t the value

sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

d(zs, zt)

is the asymmetric version of the Hausdorff distance, and thus an hemimetric.

Then, the 1-boundedness property of hλ,xTr,dis follows by λ ∈ (0, 1] and

Pr(C(zs, α)) ≤ 1 for all α ∈ A?,Zs ∈ Resx(s)

⇒ |Pr(C(zs, α))− Pr(C(zt, α))| ≤ 1 for all α ∈ A?,Zs ∈ Resx(s),Zt ∈ Resx(t)

⇒ sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))| ≤ 1.

Finally, we prove that the kernel of hλ,xTr,dis is vx
Tr,dis by

s vx
Tr,dis t

⇐⇒ ∀ Zs ∈ Resx(s) ∃Zt ∈ Resx(t) s.t. ∀α ∈ A? Pr(C(zs, α)) = Pr(C(zt, α))

⇐⇒ ∀ Zs ∈ Resx(s) ∃Zt ∈ Resx(t) s.t. sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))| = 0

⇐⇒ sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))| = 0

⇐⇒ hλ,xTr,dis(s, t) = 0.
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Appendix B.2. Proof of Theorem 6

Theorem 6. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTr,tbt is a 1-bounded hemimetric on S, with vxTr,tbt as kernel.

2. The function mλ,x
Tr,tbt is a 1-bounded pseudometric on S, with ∼xTr,tbt as kernel.

Proof of Theorem 6. We show that for x ∈ {det, rand}, the function hλ,xTr,tbt is a 1-bounded hemimetric

on S, with vxTr,tbt as kernel. From this result, directly from the definition of mλ,x
Tr,tbt and of ∼xTr,tbt, follows

that mλ,x
Tr,tbt is a 1-bounded pseudometric on S, with ∼xTr,tbt as kernel.

The proof that hλ,xTr,tbt is a 1-bounded hemimetric in analogous to the proof for hλ,xTr,dis (see Appendix
B.1) being a 1-bounded hemimetric.

For the kernel, we have

s vxTr,tbt t
⇐⇒ ∀α ∈ A? ∀ Zs ∈ Resx(s) ∃Zt ∈ Resx(t) s.t. Pr(C(zs, α)) = Pr(C(zt, α))

⇐⇒ ∀α ∈ A? ∀ Zs ∈ Resx(s) ∃Zt ∈ Resx(t) s.t. λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))| = 0

⇐⇒ ∀α ∈ A? sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))| = 0

⇐⇒ sup
α∈A?

sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))| = 0

⇐⇒ hλ,xTr,tbt(s, t) = 0.

Appendix B.3. Proof of Theorem 7

Theorem 7. All distances hλ,detTr,tbt, hλ,randTr,tbt , mλ,det
Tr,tbt, mλ,rand

Tr,tbt are strictly non-expansive.

Proof of Theorem 7. We start with hλ,xTr,tbt. Assume hλ,xTr,tbt(s1, t1) = ε1 and hλ,xTr,tbt(s2, t2) = ε2. Then,

for each trace α ∈ A?, we have hα,λ,xTr,tbt(s1, t1) ≤ ε1 and hα,λ,xTr,tbt(s2, t2) ≤ ε2, thus implying:

• supZs1∈Resx(s1) infZt1∈Resx(t1) |Pr(C(zs1 , α))− Pr(C(zt1 , α))| ≤ ε1
λ|α|−1 ,

• supZs2∈Resx(s2) infZt2∈Resx(t2) |Pr(C(zs2 , α))− Pr(C(zt2 , α))| ≤ ε2
λ|α|−1 .

Therefore, by definition of infimum, given any δ1 > 0 and δ2 > 0, we can infer that:

1. ∀Zs1 ∈ Resx(s1) ∃Zt1 ∈ Resx(t1) : |Pr(C(zs1 , α))− Pr(C(zt1 , α))| < ε1
λ|α|−1 + δ1,

2. ∀Zs2 ∈ Resx(s2) ∃Zt2 ∈ Resx(t2) : |Pr(C(zs2 , α))− Pr(C(zt2 , α))| < ε2
λ|α|−1 + δ2.

For simplicity, let us denote process s1 ‖ s2 by s and process t1 ‖ t2 by t. We have to show that

hλ,xTr,tbt(s, t) ≤ ε1 + ε2 − ε1 · ε2

and thus that for each trace α ∈ A? we have hα,λ,xTr,tbt(s, t) ≤
ε1+ε2−ε1·ε2

λ|α|−1 , namely

sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

|Pr(C(zs, α))− Pr(C(zt, α))| ≤ ε1 + ε2 − ε1 · ε2
λ|α|−1

.

This is equivalent to show that for each δ > 0 and for each resolution Zs ∈ Resx(s) there is some resolution
Zt ∈ Resx(t) satisfying

|Pr(C(zs, α))− Pr(C(zt, α))| < ε1 + ε2 − ε1 · ε2
λ|α|−1

+ δ. (B.1)
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Assume any resolution Zs ∈ Resx(s). Then, by definition of parallel composition, there are resolutions
Zs1 ∈ Resx(s1) and Zs2 ∈ Resx(s2) such that Zs = Zs1 ‖ Zs2 and Pr(C(zs, α)) = Pr(C(zs1 , α))·Pr(C(zs2 , α)).
Consider then the two resolutions Zt1 ∈ Resx(t1) and Zt2 ∈ Resx(t2) satisfying items 1 and 2 above
with respect to Zs1 and Zs2 , respectively, with δ1 = δ2 = δ

2 . By definition of parallel composition,
Zt = Zt1 ‖ Zt2 is a resolution for t. On the basis of the relations Pr(C(zs1 , α)) op1 Pr(C(zt1 , α)) and
Pr(C(zs2 , α)) op2 Pr(C(zt2 , α)) with op1 , op2 ∈ {≥,≤}, we distinguish four cases and we show that in all
cases Equation B.1 holds.

• op1 , op2 = ≥. Hence, we have Pr(C(zt1 , α)) > Pr(C(zs1 , α)) − ε1
λ|α|−1 − δ1 and Pr(C(zt2 , α)) >

Pr(C(zs2 , α))− ε2
λ|α|−1 − δ2. We derive Equation B.1 by

|Pr(C(zs, α))− Pr(C(zt, α))|
= Pr(C(zs1 , α)) · Pr(C(zs2 , α))− Pr(C(zt1 , α)) · Pr(C(zt2 , α)) (B.2)

By Pr(C(zt1 , α)),Pr(C(zt2 , α)) ≤ 1, we get

(B.2) < Pr(C(zs1 , α)) · Pr(C(zs2 , α))−
(

Pr(C(zs1 , α))− ε1
λ|α|−1

− δ

2

)
·
(

Pr(C(zs2 , α))− ε2
λ|α|−1

− δ

2

)
<

ε1
λ|α|−1

+
δ

2
+

ε2
λ|α|−1

+
δ

2
− ε1
λ|α|−1

· ε2
λ|α|−1

− δ

2
· ε1
λ|α|−1

− δ

2
· ε2
λ|α|−1

− δ

2
· δ

2

<
ε1

λ|α|−1
+

ε2
λ|α|−1

+ δ − ε1ε2
λ2(|α|−1)

(B.3)

By λ ≤ 1, we get

(B.3) <
ε1

λ|α|−1
+

ε2
λ|α|−1

+ δ − ε1ε2
λ|α|−1

=
ε1 + ε2 − ε1ε2

λ|α|−1
+ δ.

• op1 , op2 = ≤. This case is analogous to the previous one.

• op1 = ≥ and op2 = ≤. In this case, we have Pr(C(zt1 , α)) > Pr(C(zs1 , α)) − ε1
λ|α|−1 − δ1 and

Pr(C(zs2 , α)) > Pr(C(zt2 , α))− ε2
λ|α|−1 − δ2. We can distinguish two cases:

– Pr(C(zs, α)) ≥ Pr(C(zt, α)). Then we have

|Pr(C(zs, α))− Pr(C(zt, α))|
= Pr(C(zs1 , α)) · Pr(C(zs2 , α))− Pr(C(zt1 , α)) · Pr(C(zt2 , α))

≤ Pr(C(zs1 , α)) · Pr(C(zt2 , α))− Pr(C(zt1 , α)) · Pr(C(zt2 , α))

= Pr(C(zt2 , α)) · (Pr(C(zs1 , α))− Pr(C(zs2,α)))

≤ Pr(C(zs1 , α))− Pr(C(zs2,α))

<
ε1

λ|α|−1
+
δ

2

<
ε1 + ε2 − ε1ε2

λ|α|−1
+ δ.

– Pr(C(zs, α)) ≤ Pr(C(zt, α)). This case follows analogously to the previous one.

In both cases we obtained that Equation (B.1) holds.

• op1 = ≤ and op2 = ≥. This case is analogous to the previous one.



APPENDIX B PROOFS OF SECTION 4 37

Summarizing, in all four cases Equation (B.1) holds.

Consider now mλ,x
Tr,tbt, with x ∈ {det, rand}. The strict non-expansiveness of mλ,x

Tr,tbt follows by

mλ,x
Tr,tbt((s1 ‖ s2, t1 ‖ t2))

= max{hλ,xTr,tbt(s1 ‖ s2, t1 ‖ t2),hλ,xTr,tbt(t1 ‖ t2, s1 ‖ s2)} (B.4)

By the strict non-expansiveness of hλ,xTr,tbt proved above, we get

(B.4) ≤ max{hλ,xTr,tbt(s1, t1) + hλ,xTr,tbt(s2, t2)− hλ,xTr,tbt(s1, t1) · hλ,xTr,tbt(s2, t2),

hλ,xTr,tbt(t1, s1) + hλ,detTr,tbt(t2, s2)− hλ,xTr,tbt(t1, s1) · hλ,xTr,tbt(t2, s2)} (B.5)

By hλ,xTr,tbt ≤mλ,x
Tr,tbt and the 1-boundedness of hλ,xTr,tbt, we get

(B.5) ≤ max{mλ,x
Tr,tbt(s1, t1) + hλ,xTr,tbt(s2, t2)−mλ,x

Tr,tbt(s1, t1) · hλ,detTr,tbt(s2, t2),

mλ,x
Tr,tbt(t1, s1) + hλ,xTr,tbt(t2, s2)−mλ,x

Tr,tbt(t1, s1) · hλ,xTr,tbt(t2, s2)} (B.6)

By the same reasons as above, we get

(B.6) ≤ max{mλ,x
Tr,tbt(s1, t1) + mλ,x

Tr,tbt(s2, t2)−mλ,x
Tr,tbt(s1, t1) ·mλ,x

Tr,tbt(s2, t2),

mλ,x
Tr,tbt(t1, s1) + mλ,x

Tr,tbt(t2, s2)−mλ,x
Tr,tbt(t1, s1) ·mλ,x

Tr,tbt(t2, s2)} (B.7)

By the symmetry of mλ,x
Tr,tbt, we get

(B.7) = mλ,x
Tr,tbt(s1, t1) + mλ,x

Tr,tbt(s2, t2)−mλ,x
Tr,tbt(s1, t1) ·mλ,x

Tr,tbt(s2, t2).

Appendix B.4. Proof of Proposition 3

Proposition 3. Assume a PTS P = (S,A,−→) and processes s, t ∈ S. Then:

1. If P is fully-nondeterministic, then s ∼det
Tr,sup t⇔ s ∼rand

Tr,sup t⇔ s ∼N
Tr t.

2. If P is fully-probabilistic, then s ∼det
Tr,sup t⇔ s ∼rand

Tr,sup t⇔ s ∼P
Tr t.

Proof of Proposition 3.

1. In the fully nondeterministic setting the execution probability of each trace is either 0 or 1. Therefore,
for each trace α ∈ A? and for each process s, we have that supZs∈Resx(s) Pr(C(zs, α)) = 1 if and only

if s performs α; supZs∈Resx(s) Pr(C(zs, α)) = 0 otherwise. Since s ∼N
Tr t if and only if s and t perform

the same traces, it is then immediate to conclude that s ∼x
Tr,sup t⇔ s ∼N

Tr t.

2. In the fully probabilistic setting each process has a single maximal resolution, which is the process
itself, thus implying that the equality on the supremal execution probability of each trace α ∈ A?
becomes an equality on the execution probability of α on such maximal resolutions. Since s ∼P

Tr t if
and only if s and t perform the same traces with the same probability, we can immediately conclude
that s ∼x

Tr,sup t⇔ s ∼P
Tr t.
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Appendix B.5. Proof of Theorem 8

Theorem 8. Assume a PTS (S,A,−→), λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTr,sup is a 1-bounded hemimetric on S, with vx
Tr,sup as kernel.

2. The function mλ,x
Tr,sup is a 1-bounded pseudometric on S, with ∼x

Tr,sup as kernel.

Proof of Theorem 8.
We show that for x ∈ {det, rand}, the function hλ,xTr,sup is a 1-bounded hemimetric on S, with vx

Tr,sup

as kernel. Directly from definition of mλ,x
Tr,sup and of ∼x

Tr,sup, we also have that mλ,x
Tr,sup is a 1-bounded

pseudometric on S, with ∼x
Tr,sup as kernel.

To prove that hλ,xTr,sup is a 1-bounded hemimetric it is enough to show that for each trace α ∈ A?, the

function hα,λ,xTr,sup is a 1-bounded hemimetric, that is we need to show that

1. hα,λ,xTr,sup(s, s) = 0 for each s ∈ S.

2. hα,λ,xTr,sup(s1, s2) ≤ hα,λ,detTr,sup (s1, s3) + hα,λ,xTr,sup(s3, s2) for each s1, s2, s3 ∈ S.

The first item is immediate by Def. 19. Let us prove the triangular inequality. We can distinguish two cases.

• supZ1∈Resx(s1) Pr(C(z1, α)) ≤ supZ2∈Resx(s2) Pr(C(z2, α)). Hence we have

hα,λ,xTr,sup(s1, s2) = 0 ≤ hα,λ,xTr,sup(s1, s3) + hα,λ,xTr,sup(s3, s2).

• supZ1∈Resx(s1) Pr(C(z1, α)) > supZ2∈Resx(s2) Pr(C(z2, α)). Hence we have

hα,λ,xTr,sup(s1, s2)

= λ|α|−1
(

sup
Z1∈Resx(s1)

Pr(C(z1, α))− sup
Z2∈Resx(s2)

Pr(C(z2, α))
)

= λ|α|−1
(

sup
Z1∈Resx(s1)

Pr(C(z1, α))− sup
Z2∈Resx(s2)

Pr(C(z2, α))± sup
Z3∈Resx(s3)

Pr(C(z3, α))
)

= λ|α|−1
(

sup
Z1∈Resx(s1)

Pr(C(z1, α))− sup
Z3∈Resx(s3)

Pr(C(z3, α))
)

+

λ|α|−1
(

sup
Z3∈Resx(s3)

Pr(C(z3, α))− sup
Z2∈Resx(s2)

Pr(C(z2, α))
)

≤ hα,λ,xTr,sup(s1, s3) + hα,λ,xTr,sup(s3, s2).

The 1-boundedness property follows by λ ∈ (0, 1] and

Pr(C(zs, α)) ≤ 1 for all α ∈ A?

⇒ sup
Zs∈Resx(s)

Pr(C(zs, α)) ≤ 1 for all α ∈ A?,Zs ∈ Resx(s)

⇒ sup
Zs∈Resx(s)

Pr(C(zs, α))− sup
Zt∈Resx(t)

Pr(C(zt, α)) ≤ 1 for all α ∈ A?,Zs ∈ Resx(s),Zt ∈ Resx(t).

For the kernel, we have

s vx
Tr,sup t⇐⇒ ∀α ∈ A? ∀ Zs ∈ Resx(s) ∃Zt ∈ Resx(t) s.t. Pr(C(zs, α)) ≤ Pr(C(zt, α))

⇐⇒ ∀α ∈ A? sup
Zs∈Resx(s)

Pr(C(zs, α)) ≤ sup
Zt∈Resx(t)

Pr(C(zt, α))

⇐⇒ ∀α ∈ A? hαλ,xTr,sup(s, t) = 0
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⇐⇒ sup
α∈A?

hαλ,xTr,sup(s, t) = 0

⇐⇒ hλ,xTr,sup(s, t) = 0.

Appendix B.6. Proof of Theorem 9

Theorem 9. All distances hλ,detTr,sup, hλ,randTr,sup , mλ,det
Tr,sup, mλ,rand

Tr,sup are strictly non-expansive.

Proof of Theorem 9. We start with hλ,xTr,sup, with x ∈ {det, rand}. Our aim is to prove that for all
processes s1, s2, t1, t2 ∈ S it holds that

hλ,xTr,sup(s1 ‖ s2, t1 ‖ t2) ≤ hλ,xTr,sup(s1, t1) + hλ,xTr,sup(s2, t2)− hλ,xTr,sup(s1, t1) · hλ,xTr,sup(s2, t2)

Notice that if hλ,xTr,sup(s1 ‖ s2, t1 ‖ t2) = 0 then there is nothing to prove. Hence assume that hλ,xTr,sup(s1 ‖
s2, t1 ‖ t2) > 0. If suffices to prove that for all ε > 0 we have

hλ,xTr,sup(s1 ‖ s2, t1 ‖ t2) < hλ,xTr,sup(s1, t1) + hλ,xTr,sup(s2, t2)− hλ,xTr,sup(s1, t1) · hλ,xTr,sup(s2, t2) + ε (B.8)

Fixed any ε > 0, in order to prove Equation B.8, we recall that by definition of supremum there is a trace
αε with hλ,xTr,sup(s1 ‖ s2, t1 ‖ t2) < hαε,λ,xTr,sup(s1 ‖ s2, t1 ‖ t2) + ε. Let ε > 0. We have

hλ,xTr,sup(s1 ‖ s2, t1 ‖ t2)

< hαε,λ,xTr,sup(s1 ‖ s2, t1 ‖ t2) + ε

= λ|αε|−1

(
sup

Zs1‖s2∈Resx(s1‖s2)
Pr(C(zs1‖s2 , αε))− sup

Zt1‖t2∈Resx(t1‖t2)
Pr(C(zt1‖t2 , αε))

)
+ ε

= λ|αε|−1

(
sup

Zs1∈Resx(s1)

Pr(C(zs1 , αε)) · sup
Zs2∈Resx(s2)

Pr(C(zs2 , αε)) +

− sup
Zt1∈Resdet(st1)

Pr(C(zt1 , αε)) · sup
Zt2∈Resx(t2)

Pr(C(zt2 , αε))

)
+ ε. (B.9)

with the last equality follows by the definition of resolution. We can distinguish three cases:

1. supZt1∈Resx(t1) Pr(C(zt1 , αε)) ≥ supZs1∈Resx(s1) Pr(C(zs1 , αε)). In this case we have:

(B.9)

≤ λ|αε|−1
(

sup
Zt1∈Resx(t1)

Pr(C(zt1 , αε)) · sup
Zs2∈Resx(s2)

Pr(C(zs2 , αε)) +

− sup
Zt1∈Resx(t1)

Pr(C(zt1 , αε)) · sup
Zt2∈Resx(t2)

Pr(C(zt2 , αε))

)
+ ε

= sup
Zt1∈Resx(t1)

Pr(C(zt1 , αε)) · λ|αε|−1
(

sup
Zs2∈Resx(s2)

Pr(C(zs2 , αε))− sup
Zt2∈Resx(t2)

Pr(C(zt2 , αε))

)
+ ε

≤ sup
Zt1∈Resx(t1)

Pr(C(zt1 , αε)) · h
αε,λ,x
Tr,sup(s2, t2) + ε

≤ sup
Zt1∈Resx(t1)

Pr(C(zt1 , αε)) · h
λ,x
Tr,sup(s2, t2) + ε

≤ hλ,xTr,sup(s2, t2) + ε
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≤ hλ,xTr,sup(s2, t2) + hλ,xTr,sup(s1, t1)− hλ,xTr,sup(s1, t1) · hλ,xTr,sup(s2, t2) + ε.

thus giving Equation (B.8), with the first step derived by inequality supZt1∈Resx(t1) Pr(C(zt1 , αε)) ≥
supZs1∈Resx(s1) Pr(C(zs1 , αε)), the third step by the definition of hαε,λ,xTr,sup, the fourth step by the defini-

tion of hλ,xTr,sup, the fifth step by Pr(C(zt1 , αε)) ≤ 1 and the last step by the 1-boundedness of hλ,xTr,sup.

2. supZt2∈Resx(t2) Pr(C(zt2 , αε)) ≥ supZs2∈Resx(s2) Pr(C(zs2 , αε)). This case is analogous to the previous

one and also gives Equation (B.8).

3. supZsi∈Resx(si) Pr(C(zsi , αε)) > supZti∈Resx(ti) Pr(C(zti , αε)), for i = 1, 2. In this case, since we have

hαε,λ,xTr,sup(si, ti) = λ|αε|−1(supZsi∈Resx(si) Pr(C(zsi , αε))−supZti∈Resx(ti) Pr(C(zti , αε))) and hαε,λ,xTr,sup(si, ti) ≤
hλ,detTr,sup(si, ti), we infer

sup
Zti∈Resx(ti)

Pr(C(zti , αε)) ≥ sup
Zsi∈Resdet(si)

Pr(C(zsi , αε))−
hλ,xTr,sup(si, ti)

λ|αε|−1

which allows us to derive

(B.9)

≤ ε+ λ|αε|−1

(
sup

Zs1∈Resx(s1)

Pr(C(zs1 , αε)) · sup
Zs2∈Resx(s2)

Pr(C(zs2 , αε)) +

−

(
sup

Zs1∈Resx(s1)

Pr(C(zs1 , αε))−
hλ,xTr,sup(s1, t1)

λ|αε|−1

)
·

(
sup

Zs2∈Resx(s2)

Pr(C(zs2 , αε))−
hλ,xTr,sup(s2, t2)

λ|αε|−1

))

= ε+ λ|αε|−1

(
sup

Zs1∈Resx(s1)

Pr(C(zs1 , αε)) ·
hλ,xTr,sup(s2, t2)

λ|αε|−1
+

+ sup
Zs2∈Resx(s2)

Pr(C(zs2 , αε)) ·
hλ,xTr,sup(s1, t1)

λ|αε|−1
−

hλ,xTr,sup(s1, t1)

λ|αε|−1
·
hλ,xTr,sup(s2, t2)

λ|αε|−1

)
≤ hλ,xTr,sup(s1, t1) + hλ,xTr,sup(s2, t2)− hλ,xTr,sup(s1, t1) · hλ,xTr,sup(s2, t2) + ε

thus giving Equation (B.8) also in this case.

We conclude by observing that the strict non-expansiveness of mλ,x
Tr,sup can be proved by exploiting the

strict non-expansiveness of hλ,xTr,sup exactly as the strict non-expansiveness of mλ,x
Tr,tbt was proved by exploiting

the strict non-expansiveness of hλ,xTr,tbt (see Theorem 7).

Appendix B.7. Proof of Theorem 10

Theorem 10. Let (S,A,−→) be a PTS, λ ∈ (0, 1], y ∈ {dis, tbt} and d ∈ {h,m}. Then dλ,randTr,y < dλ,detTr,y .

Proof of Theorem 10. We show that in the trace distribution approach hλ,randTr,dis ≤ hλ,detTr,dis and mλ,rand
Tr,dis ≤

mλ,det
Tr,dis. The fact that in the trace-by-trace approach we have hλ,randTr,tbt ≤ hλ,detTr,tbt and mλ,rand

Tr,tbt ≤ mλ,det
Tr,tbt

follows analogously.
We start by proving that hλ,randTr,dis ≤ hλ,detTr,dis. Given arbitrary processes s, t ∈ S, we have

hλ,detTr,dis(s, t) = sup
Zs∈Resdet(s)

inf
Zt∈Resdet(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|

≥ sup
Zs∈Resdet(s)

inf
Zt∈Resrand(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|
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= sup
Zs∈Resrand(s)

inf
Zt∈Resrand(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|

= hλ,randTr,dis (s, t)

where:

• the second step follows by Resdet(t) ⊆ Resrand(t) and the fact that by evaluating the infimum over a
wider class of resolutions we can obtain a better approximation of the resolutions in Resdet(s)

• by letting f(zs) = infZt∈Resrand(t) supα∈A? |Pr(C(zs, α)) − Pr(C(zt, α))|, the third step immediately
derives from

– supZs∈Resrand(s) f(zs) ≥ supZ′s∈Resdet(s) f(z′s). This derives directly from Resdet(s) ⊆ Resrand(s)
and the properties of suprema.

– supZs∈Resrand(c) f(zs) ≤ supZ′s∈Resdet(s) f(z′s). This follows since the randomization consists in
a convex combination of the distributions reached by equally labeled transitions. More for-
mally, for each Zs ∈ Resrand(s) there is a set of indexes I s.t. for each α ∈ A? Pr(C(zs, α)) =∑
i∈I piPr(C(zis, α)) for weights pi ∈ (0, 1] with

∑
i∈I pi = 1 and deterministic resolutions Zis ∈

Resdet(s). Thus, given any ε > 0 and by definition of supremum

sup
Zs∈Resrand(s)

f(zs) < f(zεs) + ε

= inf
Zt∈Resrand(t)

sup
α∈A?

|Pr(C(zεs , α))− Pr(C(zt, α))|+ ε

= inf
Zt∈Resrand(t)

sup
α∈A?

|
∑
i∈Iε

piPr(C(zis, α))− Pr(C(zt, α))|+ ε

≤ inf
Zt∈Resrand(t)

sup
α∈A?

∑
i∈Iε

pi|Pr(C(zis, α))− Pr(C(zt, α))|+ ε

≤ inf
Zt∈Resrand(t)

sup
α∈A?

max
i∈Iε
|Pr(C(zis, α))− Pr(C(zt, α))|+ ε

≤ max
i∈Iε

inf
Zt∈Resrand(t)

sup
α∈A?

|Pr(C(zis, α))− Pr(C(zt, α))|+ ε

≤ sup
Z′s∈Resdet(s)

f(z′s) + ε.

Then, mλ,rand
Tr,dis (s, t) = max{hλ,randTr,dis (s, t),hλ,randTr,dis (t, s)} ≤ max{hλ,detTr,dis(s, t),h

λ,det
Tr,dis(t, s)} = mλ,det

Tr,dis(s, t).

Finally, the processes s, t in Figure 7 with s ∼rand
Tr,dis t, s ∼rand

Tr,tbt t, s 6∼det
Tr,dis t, s 6∼det

Tr,tbt t witness the
strictness of all four relations.

Appendix B.8. Proof of Theorem 11

Theorem 11. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {h,m}. Then dλ,xTr,tbt < dλ,xTr,dis.

Proof of Theorem 11. Let x in {det, rand}. We start with hemimetrics and show that hλ,xTr,tbt ≤ hλ,xTr,dis.

Given any processes s, t ∈ S, consider the trace-by-trace hemimetric hλ,xTr,tbt(s, t) = supα∈A∗ hα,λ,xTr,tbt(s, t). We

recall that by definition of supremum, for each ε > 0 there is a trace αε ∈ A? such that supα∈A? hα,λ,xTr,tbt(s, t) <

hαε,λ,xTr,tbt (s, t) + ε. Hence, given any ε > 0, we have

hλ,xTr,tbt(s, t) = sup
α∈A∗

hα,λ,xTr,tbt(s, t)

< hαε,λ,xTr,tbt (s, t) + ε

= sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

λ|αε|−1|Pr(C(zs, αε))− Pr(C(zt, αε))|+ ε
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≤ sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

sup
α∈A?

λ|α|−1|Pr(C(zs, α))− Pr(C(zt, α))|+ ε

= hλ,xTr,dis(s, t) + ε.

Since the inequality hλ,xTr,tbt(s, t) < hλ,xTr,dis(s, t)+ε holds for all ε > 0 we can conclude that hλ,xTr,tbt ≤ hλ,xTr,dis as

required. For the metrics, we get mλ,x
Tr,tbt(s, t) = max{hλ,xTr,tbt(s, t),h

λ,x
Tr,tbt(t, s)} ≤ max{hλ,xTr,dis(s, t),h

λ,x
Tr,dis(t, s)} =

mλ,x
Tr,dis(s, t).
Finally, we note that the processes in Figure 6 witness the strictness of all four relations.

Appendix B.9. Proof of Theorem 12

Theorem 12. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and d ∈ {h,m}. Then dλ,randTr,tbt = dλ,detTr,sup = dλ,randTr,sup .

Proof of Theorem 12. We expand only the proof of the first item, namely for the case of hemimetrics.
The results on pseudometrics can be obtained as a direct consequence.

We start by showing that hλ,detTr,sup = hλ,randTr,sup . To this aim it is enough to prove that for each trace α ∈ A?
we have

sup
Zs∈Resdet(s)

Pr(C(zs, α)) = sup
Z′s∈Resrand(s)

Pr(C(z′s, α)). (B.10)

First of all we notice that Resrand(s) = Resdet(s) ∪ (Resrand(s) \ Resdet(s)), that is the set of randomized
resolutions for a process is given by the disjoint union of the set of the deterministic resolutions for that
process with the set of resolutions which are not deterministic. Thus,

sup
Z′s∈Resrand(s)

Pr(C(z′s, α)) = max
{

sup
Zs∈Resdet(s)

Pr(C(zs, α)), sup
Z′′s ∈Resrand(s)\Resdet(s)

Pr(C(z′′s , α))
}
.

As a consequence, to prove Equation (B.10) it is enough to prove that

sup
Z′′s ∈Resrand(s)\Resdet(s)

Pr(C(z′′s , α)) ≤ sup
Zs∈Resdet(s)

Pr(C(zs, α)). (B.11)

By definition of supremum, for each ε > 0 there is a Zε ∈ Resrand(s) \ Resdet(s) such that

sup
Z′′s ∈Resrand(s)\Resdet(s)

Pr(C(z′′s , α)) < Pr(C(zε, α)) + ε.

Then, given any ε > 0, we have

sup
Z′′s ∈Resrand(s)\Resdet(s)

Pr(C(z′′s , α)) < Pr(C(zε, α)) + ε

= ε+
∑
i∈Iε

piPr(C(zi, α))

≤ ε+
∑
i∈Iε

pi sup
Zs∈Resdet(s)

Pr(C(zs, α))

= sup
Zs∈Resdet(s)

Pr(C(zs, α)) + ε

where the zi in the second step are the deterministic schedulers combined in the randomization by Zε. Since
the inequality holds for all ε > 0, this concludes the proof of Equation (B.11).

Next we prove that hλ,randTr,tbt ≥ hλ,randTr,sup . The property hλ,randTr,tbt (s, t) ≥ hλ,randTr,sup(s, t) is immediate if hλ,randTr,sup(s, t) =

0. Assume that hλ,randTr,sup(s, t) > 0. Given any 0 < ε < hλ,randTr,sup(s, t), by the definition of supremum
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and by hλ,randTr,tbt (s, t) = supα∈A∗ hα,λ,randTr,tbt (s, t) we infer that there exists a trace αε with hλ,randTr,sup(s, t) <

hαε,λ,randTr,sup (s, t) + ε. This allows us to derive

hλ,randTr,sup(s, t) < hαε,λ,randTr,sup (s, t) + ε

= max

{
0, λ|αε|−1

(
sup

Zs∈Resrand(c)

Pr(C(zs, αε))− sup
Zt∈Resrand(t)

Pr(C(zt, αε))

)}
+ ε

= λ|αε|−1

(
sup

Zs∈Resrand(c)

Pr(C(zs, αε))− sup
Zt∈Resrand(t)

Pr(C(zt, αε))

)
+ ε

= inf
Zt∈Resrand(t)

λ|αε|−1

(
sup

Zs∈Resrand(s)

Pr(C(zs, αε))− Pr(C(zt, αε))

)
+ ε

≤ sup
Zs∈Resrand(s)

inf
Zt∈Resrand(t)

λ|αε|−1 |Pr(C(zs, αε))− Pr(C(zt, αε))|+ ε

≤ sup
α∈A?

sup
Zs∈Resrand(s)

inf
Zt∈Resrand(t)

λ|αε|−1 |Pr(C(zs, α))− Pr(C(zt, α))|+ ε

= hλ,randTr,tbt (s, t) + ε

with the third step by hαε,λ,randTr,sup (s, t) > 0. Then, since the inequality holds for all ε > 0 we can infer that

hλ,randTr,tbt ≥ hλ,randTr,sup as required.

Finally, we prove that hλ,detTr,sup ≥ hλ,randTr,tbt . Notice that since in hλ,randTr,tbt we consider the difference in the
execution probabilities of the processes on one trace per time, the action of randomized schedulers for a
process s can be subsumed by saying that they can assign to each trace α any probability that can be
expressed as p · supZs∈Resdet(s) Pr(C(zs, α)) with p ∈ (0, 1]. Thus, for a given ε > 0, we have

hλ,randTr,tbt (s, t)

< hαε,λ,randTr,tbt (s, t) + ε

= sup
Z′s∈Resrand(s)

inf
Z′t∈Resrand(t)

λ|αε|−1|Pr(C(z′s, αε))− Pr(C(z′t, αε))|+ ε

= sup
p∈(0,1]

inf
q∈(0,1]

λ|αε|−1|p · sup
Zs∈Resdet(s)

Pr(C(zs, αε))− q · sup
Zt∈Resdet(t)

Pr(C(zt, αε))|+ ε. (B.12)

We can distinguish two cases:

• supZs∈Resdet(s) Pr(C(zs, αε)) ≤ supZt∈Resdet(t) Pr(C(zt, αε)). In this case, for each p ∈ (0, 1], q =

p ·
supZs∈Resdet(s)

Pr(C(zs,αε))
supZt∈Resdet(t)

Pr(C(zt,αε)) gives (B.12) = 0 and thus hλ,randTr,tbt ≤ hλ,detTr,sup immediately follows.

• supZs∈Resdet(s) Pr(C(zs, αε)) > supZt∈Resdet(t) Pr(C(zt, αε)). Then the sup-inf distance in (B.12) is
obtained by choosing p = q = 1 as p has to maximize the difference, whereas q has to minimize it.
Thus we get

(B.12) = λ|αε|−1| sup
Zs∈Resdet(s)

Pr(C(zs, αε))− sup
Zt∈Resdet(t)

Pr(C(zt, αε))|+ ε

= λ|αε|−1

(
sup

Zs∈Resdet(s)

Pr(C(zs, αε))− sup
Zt∈Resdet(t)

Pr(C(zt, αε))

)
+ ε

≤ sup
α∈A?

λ|α|−1

(
sup

Zs∈Resdet(s)

Pr(C(zs, α))− sup
Zt∈Resdet(t)

Pr(C(zt, α))

)
+ ε
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= hλ,detTr,sup(s, t) + ε

and since the inequality holds for all ε > 0 we can infer that hλ,randTr,tbt ≤ hλ,detTr,sup as required.



APPENDIX C PROOFS OF SECTION 5 45

Appendix C. Proofs of Section 5

Appendix C.1. Proof of Theorem 13

Theorem 13. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and y ∈ {may,must,mM}:

1. The function hλ,xTe,y is a 1-bounded hemimetric on S, with vx
Te,y as kernel.

2. The function mλ,x
Te,y is a 1-bounded pseudometric on S, with ∼x

Te,y as kernel.

Proof of Theorem 13. The proof is analogous to that of Theorem 8.

Appendix C.2. Proof of Theorem 14

Theorem 14. Let y ∈ {may,must,mM}. All distances hω,detTe,y , hω,randTe,y , mω,det
Te,y , mω,rand

Te,y are non-expansive.

Proof of Theorem 14. Assume x ∈ {det, rand}. We expand only the case of hλ,xTe,may, since the case for

hλ,xTe,must can be obtained analogously, the cases of mλ,x
Te,may,m

λ,x
Te,must follow as direct consequences of the

result on the respective hemimetrics and the cases of hλ,xTe,mM and mλ,x
Te,mM follow from the previous ones.

First of all, we notice that since we are considering fully synchronous parallel compositions, for any
s, t ∈ S and o ∈ O, we have

sup
Zs‖t,o∈Resx(s‖t,o)

∞∑
n=1

λn−1Prn(SC(zs‖t,o)) = sup
Zs,t‖o∈Resx(s,t‖o)

∞∑
n=1

λn−1Prn(SC(zs,t‖o))

= sup
Zt,s‖o∈Resx(t,s‖o)

∞∑
n=1

λn−1Prn(SC(zt,s‖o)). (C.1)

We can proceed now to prove that for any s1, s2, t1, t2 ∈ S and o ∈ O

hλ,xTe,may(s1 ‖ s2, t1 ‖ t2) ≤ hλ,xTe,may(s1, t1) + hλ,xTe,may(s2, t2). (C.2)

We recall that by definition of supremum, given ε > 0 there is a test oε ∈ O such that hλ,xTe,may(s1 ‖ s2, t1 ‖
t2) < hoε,λ,xTe,may(s1 ‖ s2, t1 ‖ t2) + ε. Hence, to prove Equation (C.2) it is enough to prove that, for all ε > 0 it
holds

hoε,λ,xTe,may(s1 ‖ s2, t1 ‖ t2) ≤ hλ,xTe,may(s1, t1) + hλ,xTe,may(s2, t2). (C.3)

For simplicity of notation, let oε = o. Clearly if ho,λ,xTe,may(s1 ‖ s2, t1 ‖ t2) = 0, then there is nothing to prove.

Hence, assume that ho,λ,xTe,may(s1 ‖ s2, t1 ‖ t2) > 0. We have

ho,λ,xTe,may(s1 ‖ s2, t1 ‖ t2)

= sup
Zs1‖s2,o∈Resx(s1‖s2,o)

∞∑
n=1

λn−1Prn(SC(zs1‖s2,o))− sup
Zt1‖t2,o∈Resx(t1‖t2,o)

∞∑
n=1

λn−1Prn(SC(zt1‖t2,o))

=

(
sup

Zs1‖s2,o∈Resx(s1‖s2,o)

∞∑
n=1

λn−1Prn(SC(zs1‖s2,o))− sup
Zs2‖t1,o∈Resx(s2‖t1,o)

∞∑
n=1

λn−1Prn(SC(zs2‖t1,o))

)
+(

sup
Zs2‖t1,o∈Resx(s2‖t1,o)

∞∑
n=1

λn−1Prn(SC(zs2‖t1,o))− sup
Zt1‖t2,o∈Resx(t1‖t2,o)

∞∑
n=1

λn−1Prn(SC(zt1‖t2,o))

)
(C.4)

By Equation (C.1), we get

(C.4) =

(
sup

Zs1,s2‖o∈Resx(s1,s2‖o)

∞∑
n=1

λn−1Prn(SC(zs1,s2‖o))− sup
Zt1,s2‖o∈Resx(t1,s2‖o)

∞∑
n=1

λn−1Prn(SC(zt1,s2‖o))

)
+



APPENDIX C PROOFS OF SECTION 5 46(
sup

Zs2,t1‖o∈Resx(s2,t1‖o)

∞∑
n=1

λn−1Prn(SC(zs2,t1‖o))− sup
Zt2,t1‖o∈Resx(t2,t1‖o)

∞∑
n=1

λn−1Prn(SC(zt2,t1‖o))

)
= h

s2‖o,λ,x
Te,may (s1, t1) + h

t1‖o,λ,x
Te,may (s2, t2)

≤ hλ,xTe,may(s1, t1) + hλ,xTe,may(s2, t2).

Appendix C.3. Proof of Theorem 15

Theorem 15. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTe,tbt is a 1-bounded hemimetric on S, with vxTe,tbt as kernel.

2. The function mλ,x
Te,tbt is a 1-bounded pseudometric on S, with ∼xTe,tbt as kernel.

Proof of Theorem 15. The proof is analogous to that of Theorem 6.

Appendix C.4. Proof of Theorem 16

Theorem 16. All distances hλ,detTe,tbt, hλ,randTe,tbt , mλ,det
Te,tbt, mλ,rand

Te,tbt are strictly non-expansive.

Proof of Theorem 16. We expand only the case of the hemimetrics hλ,xTe,tbt, with x ∈ {det, rand}. The

cases of pseudometrics mλ,x
Te,tbt are an immediate consequence of the same property for their asymmetric

versions.
We have to prove that for all s1, s2, t1, t2 ∈ S we have:

hλ,xTe,tbt(s1 ‖ s2, t1 ‖ t2) ≤ hλ,xTe,tbt(s1, t1) + hλ,xTe,tbt(s2, t2)− hλ,xTe,tbt(s1, t1) · hλ,xTe,tbt(s2, t2).

Let s1, s2, t1, t2 ∈ S. Indeed hλ,xTe,tbt(s1 ‖ s2, t1 ‖ t2) = supo∈O supα∈A? ho,α,λ,xTe,tbt (s1 ‖ s2, t1 ‖ t2). Hence, by
definition of supremum, for each ε > 0 there are a test oε ∈ O and a trace αε ∈ A? such that

hλ,xTe,tbt(s1 ‖ s2, t1 ‖ t2) < hoε,αε,λ,xTe,tbt (s1 ‖ s2, t1 ‖ t2) + ε.

We will then show that:

hoε,αε,λ,xTe,tbt (s1 ‖ s2, t1 ‖ t2) ≤ hλ,xTe,tbt(s1, t1) + hλ,xTe,tbt(s2, t2)− hλ,xTe,tbt(s1, t1) · hλ,xTe,tbt(s2, t2). (C.5)

The thesis will then follow by the fact that the inequality hλ,xTe,tbt(s1 ‖ s2, t1 ‖ t2) ≤ hλ,xTe,tbt(s1, t1) +

hλ,xTe,tbt(s2, t2)− hλ,xTe,tbt(s1, t1) · hλ,xTe,tbt(s2, t2) + ε holds for any ε > 0.
For simplicity we denote oε by o and αε by α. We have that:

ho,α,λ,xTe,tbt (s1 ‖ s2, t1 ‖ t2)

= λ|α|−1 sup
Zs1‖s2,o∈Resxmax(s1‖s2,o)

inf
Zt1‖t2,o∈Resxmax(t1‖t2,o)

|Pr(SC(zs1‖s2,o, α))− Pr(SC(zt1‖t2,o, α))|. (C.6)

We can observe that for any Zs1‖s2,o ∈ Resxmax(s1 ‖ s2, o) there exist Zs1,oα ∈ Resxmax(s1, oα) and Zs2,o ∈
Resxmax(s2, o) such that Pr(SC(zs1‖s2,o, α)) = Pr(SC(zs1,oα , α)) ·Pr(SC(zs2,o, α)), where oα is the determin-
istic test reaching the successful state just after the trace α. Considering t1 and t2 in place of, respectively,
s1 and s2, we obtain an analogous result. Hence:

(C.6) = λ|α|−1 sup
Zs1,oα∈Resxmax(s1,oα)

sup
Zs2,o∈Resxmax(s2,o)

inf
Zt1,oα∈Resxmax(t1,oα)

inf
Zt2,o∈Resxmax(t2,o)

|Pr(SC(zs1,oα , α)) · Pr(SC(zs2,o, α))− Pr(SC(zt1,oα , α)) · Pr(SC(zt2,o, α))|
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< λ|α|−1 inf
Zt1,oα∈Resxmax(t1,oα)

inf
Zt2,o∈Resxmax(t2,o)

|Pr(SC(zε
′

s1,oα , α)) · Pr(SC(zε
′

s2,o, α))− Pr(SC(zt1,oα , α)) · Pr(SC(zt2,o, α))|+ ε′

≤ λ|α|−1 · |Pr(SC(zε
′

s1,oα , α)) · Pr(SC(zε
′

s2,o, α))− Pr(SC(zδt1,oα , α)) · Pr(SC(zδt2,o, α))|+ ε′ (C.7)

where

• the second step follows by definition of supremum with respect to a chosen ε′;

• the third step follows by noticing that by definition of infimum, for each δ > 0

– for the chosen resolution Zε′s1,oα ∈ Resxmax(s1, oα) there is a resolution Zδt1,oα ∈ Resxmax(t1, oα)

such that |Pr(C(zε′s1,oα , α))− Pr(C(zδt1,oα , α))| < hλ,xTe,tbt(s1,t1)

λ|α|−1 + δ,

– for the chosen resolution Zε′s2,o ∈ Resxmax(s2, o) there is a resolution Zδt2,o ∈ Resxmax(t2, o) such

that |Pr(C(zε′s2,o, α))− Pr(C(zδt2,o, α))| < hλ,xTe,tbt(s2,t2)

λ|α|−1 + δ.

We can then distinguish four cases:

• Pr(SC(zε
′

s1,oα , α)) ≥ Pr(SC(zδt1,oα , α)) and Pr(SC(zε
′

s2,o, α)) ≥ Pr(SC(zδt2,o, α)). Hence:

(C.7) ≤λ|α|−1 ·
(

Pr(SC(zε
′

s1,oα , α)) · Pr(SC(zε
′

s2,o, α))−(
Pr(SC(zε

′

s1,oα , α))−
hλ,xTe,tbt(s1, t1)

λ|α|−1
− δ
)
·
(

Pr(SC(zε
′

s2,o, α))−
hλ,xTe,tbt(s2, t2)

λ|α|−1
− δ
))

+ ε′

= λ|α|−1 ·

((hλ,xTe,tbt(s1, t1)

λ|α|−1
+ δ
)
· Pr(SC(zε

′

s2,o, α)) +
(hλ,xTe,tbt(s2, t2)

λ|α|−1
+ δ
)
· Pr(SC(zε

′

s1,oα , α))−

(hλ,xTe,tbt(s1, t1)

λ|α|−1
+ δ
)
·
(hλ,xTe,tbt(s2, t2)

λ|α|−1
+ δ
))

+ ε′

≤ λ|α|−1 ·

(
hλ,xTe,tbt(s1, t1)

λ|α|−1
+

hλ,xTe,tbt(s2, t2)

λ|α|−1
−

hλ,xTe,tbt(s1, t1)

λ|α|−1
·
hλ,xTe,tbt(s2, t2)

λ|α|−1
+ 2 · δ

)
+ ε′

≤ hλ,xTe,tbt(s1, t1) + hλ,xTe,tbt(s2, t2)− hλ,xTe,tbt(s1, t1) · hλ,xTe,tbt(s2, t2) + ε′ + 2 · δ

and since the inequality holds for any ε′, δ > 0, we can conclude that Equation C.5 holds in this case.

• The case of Pr(SC(zε
′

s1,oα , α)) ≤ Pr(SC(zδt1,oα , α)) and Pr(SC(zε
′

s2,o, α)) ≤ Pr(SC(zδt2,o, α)) is analo-
gous to the previous one.

• Pr(SC(zε
′

s1,oα , α)) ≥ Pr(SC(zδt1,oα , α)) and Pr(SC(zε
′

s2,o, α)) ≤ Pr(SC(zδt2,o, α)). Hence:

(C.7) ≤λ|α|−1 · Pr(SC(zδt2,o, α)) ·
(

Pr(SC(zε
′

s1,oα , α))− Pr(SC(zδt1,oα , α))
)

+ ε′

≤ λ|α|−1 ·

(
hλ,xTe,tbt(s1, t1)

λ|α|−1
+ δ

)
+ ε′

≤ hλ,xTe,tbt(s1, t1) + hλ,xTe,tbt(s2, t2)− hλ,xTe,tbt(s1, t1) · hλ,xTe,tbt(s2, t2) + ε′ + δ

and since the inequality holds for any ε′, δ > 0, we can conclude that Equation C.5 holds also in this
case.

• The case of Pr(SC(zε
′

s1,oα , α)) ≤ Pr(SC(zδt1,oα , α)) and Pr(SC(zε
′

s2,o, α)) ≥ Pr(SC(zδt2,o, α)) is analo-
gous to the previous one.
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Appendix C.5. Proof of Theorem 17

Theorem 17. Let (S,A,−→) be a PTS, λ ∈ (0, 1] and x ∈ {det, rand}. Then:

1. The function hλ,xTe,sup is a 1-bounded hemimetric on S, with vx
Te,sup as kernel.

2. The function mλ,x
Te,sup is a 1-bounded pseudometric on S, with ∼x

Te,sup as kernel.

Proof of Theorem 17. The proof is analogous to that of Theorem 8.

Appendix C.6. Proof of Theorem 18

Theorem 18. All distances hλ,detTe,sup, hλ,randTe,sup, mλ,det
Te,sup, mλ,rand

Te,sup are strictly non-expansive.

Proof of Theorem 18. Similarly to the other theorems above we prove only the case for hλ,xTe,sup with

x ∈ {det, rand}, since the other is a direct consequence of the definition of mλ,x
Te,sup.

This case can be proved by following the same reasoning as for the proof of Theorem 16 and by observing
that for each s1, s2 ∈ S, o ∈ O and α ∈ A?:

sup
Zs1‖s2,o∈Resxmax(s1‖s2,o)

Pr(SC(zs1‖s2,o, α))

= sup
Zs1,oα∈Resxmax(s1,oα)

Pr(SC(zs1,oα , α)) · sup
Zs2,o∈Resxmax(s2,o)

Pr(SC(zs2,o, α))

Appendix C.7. Proof of Theorem 19

Theorem 19. Let (S,A,−→) be a PTS, λ ∈ (0, 1], ω : O→ (0, 1], y ∈ {may,must,mM} and d ∈ {h,m}:

1. dω,randTe,y = dω,detTe,y .

2. dλ,randTe,tbt < dλ,detTe,tbt.

3. dλ,randTe,sup = dλ,detTe,sup.

Proof of Theorem 19.1. We expand only the case of must hemimetrics. The proofs for the other cases
follow by applying an analogous reasoning.

To prove that hλ,detTe,must = hλ,randTe,must, it is enough to prove that for any process s ∈ S and for each test o ∈ O
it holds that infZs,o∈Resdet

max(s,o)
Pr(SC(zs,o)) = infZs,o∈Resrandmax (s,o) Pr(SC(zs,o)). Let s ∈ S be an arbitrary

process and o ∈ O an arbitrary test.
First of all we notice that, by the properties of infima, Resdetmax(s, o) ⊆ Resrandmax (s, o) implies

inf
Zs,o∈Resdet

max(s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o)) ≥ inf
Zs,o∈Resrandmax (s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o)).

Next we prove that also the opposite inequality holds, namely that

inf
Zs,o∈Resdet

max(s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o)) ≤ inf
Zs,o∈Resrandmax (s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o)).

We have

inf
Zs,o∈Resrand

max (s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o))
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= inf∑
i∈I piZis,o

Zis,o∈Resdet
max(s,o)

∞∑
n=1

λn−1 · Prn(SC(
∑
i∈I

piz
i
s,o))

= inf∑
i∈I piZis,o

Zis,o∈Resdet
max(s,o)

∑
i∈I

pi

∞∑
n=1

λn−1 · Prn(SC(zis,o))

≥ inf
pi∈(0,1],

∑
i∈I pi=1

∑
i∈I

pi inf
Zs,o∈Resdetmax(s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o))

= inf
Zs,o∈Resdet

max(s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o)).

Proof of Theorem 19.2. The proof is similar to that of Theorem 10 in Appendix B.7.

Proof of Theorem 19.3. The proof is similar to that of Theorem 19.1.

Appendix C.8. Proof of Theorem 20

Theorem 20. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {h,m}:

1. dλ,xTe,may < dλ,xTe,mM and dλ,xTe,must < dλ,xTe,mM.

2. dλ,xTe,sup < dλ,xTe,may.

3. dλ,xTe,sup < dλ,xTe,tbt.

Proof of Theorem 20.1. The thesis follows directly from definition of hλ,xTe,mM and mλ,x
Te,mM:

hλ,xTe,mM(s, t) = max{hλ,xTe,may(s, t),hλ,xTe,must(s, t)}

mλ,x
Te,mM(s, t) = max{mλ,x

Te,may(s, t),mλ,x
Te,must(s, t)}.

Proof of Theorem 20.2. We show that hλ,xTe,sup < hλ,xTe,may. The proof for the case of the metrics is similar.
Given a test o ∈ O, we can consider the test o ↓ α where all the states that in o that are not reachable via
α are made unsuccessful. We have that:

hλ,xTe,may(s, t)

= sup
o∈O

max
{

0,
(

sup
Zs,o∈Resxmax(s,o)

∞∑
n=1

λn−1 · Prn(SC(zs,o)− sup
Zt,o∈Resxmax(t,o)

∞∑
n=1

λn−1 · Prn(SC(zt,o)
)}

> sup
o∈O

sup
α∈A?

max
{

0,
(

sup
Zs,o↓α∈Resxmax(s,o↓α)

λ|α|−1Pr|α|(SC(zs,o↓α)− sup
Zt,o↓α∈Resxmax(t,o↓α)

λ|α|−1Pr|α|(SC(zt,o↓α)
)}

= sup
o∈O

sup
α∈A?

max
{

0,
(

sup
Zs,o↓α∈Resxmax(s,o↓α)

λ|α|−1Pr(SC(zs,o↓α, α)− sup
Zt,o↓α∈Resxmax(t,o↓α)

λ|α|−1Pr(SC(zt,o↓α, α)
)}

= sup
o∈O

sup
α∈A?

max
{

0, λ|α|−1
(

sup
Zs,o∈Resxmax(s,o)

Pr(SC(zs,o, α)− sup
Zt,o∈Resxmax(t,o)

Pr(SC(zt,o, α)
)}

= hλ,xTe,sup(s, t).
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Proof of Theorem 20.3. We show that hλ,xTe,sup < hλ,xTe,tbt. The proof for the case of the metrics is similar.

hλ,xTe,sup(s, t)

= sup
o∈O

sup
α∈A?

max
{

0, λ|α|−1
(

sup
Zs,o∈Resxmax(s,o)

Pr(SC(zs,o, α))− sup
Zt,o∈Resxmax(t,o)

Pr(SC(zt,o, α))
)}

< sup
o∈O

sup
α∈A?

sup
Zs,o∈Resxmax(s,o)

inf
Zt,o∈Resxmax(t,o)

max
{

0, λ|α|−1
(

Pr(SC(zs,o, α))− Pr(SC(zt,o, α))
)}

< sup
o∈O

sup
α∈A?

sup
Zs,o∈Resxmax(s,o)

inf
Zt,o∈Resxmax(t,o)

λ|α|−1
∣∣∣Pr(SC(zs,o, α))− Pr(SC(zt,o, α))

∣∣∣
= hλ,xTe,tbt(s, t).
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Appendix D. Proofs of Section 6

Appendix D.1. Proof of Theorem 21

Theorem 21. Let (S,A,−→) be a PTS, λ ∈ (0, 1], x ∈ {det, rand} and d ∈ {h,m}:

1. hλ,xTe,may < sλ,rand.

2. For all s, t ∈ S it holds hλ,xTe,must(t, s) ≤ rλ,rand(s, t), and there are u, v ∈ S such that hλ,xTe,must(u, v) <

rλ,rand(v, u).

3. mλ,x
Te,mM < bλ,rand.

4. hλ,randTe,tbt < rλ,rand and mλ,rand
Te,tbt < bλ,rand.

5. dλ,xTr,tbt < dλ,xTe,tbt.

6. dλ,xTe,sup = dλ,xTr,sup.

Proof of Theorem 21.1. Since in Theorem 19 we proved that hλ,detTe,may = hλ,randTe,may, to prove the thesis it is

enough to show that sλ,rand ≥ hλ,randTe,may.
With abuse of notation, given k ∈ N, we write

hk,λ,randTe,may (s, t)

= sup
o∈O

max

{
0,
(

sup
Zs,o∈Resrand

max (s,o)

k∑
n=1

λn−1 · Prn(SC(zs,o))− sup
Zt,o∈Resrandmax (t,o)

k∑
n=1

λn−1 · Prn(SC(zt,o))
)}

so that hk,λ,randTe,may (s, t) takes into account only the differences of s, t that can be tested in the first k steps.

Notice that hλ,randTe,may(s, t) = limk→∞ hk,λ,randTe,may (s, t). Therefore, to prove the thesis, we prove the stronger
property that

for each k ∈ N, sλ,randk (s, t) ≥ hk,λ,randTe,may (s, t). (D.1)

The thesis will then follow by Proposition 2 and the monotonicity of the limit.
We proceed by induction over k ∈ N.

Consider the base case k = 1. It is easy to check that

sλ,rand1 (s, t) = h1,λ,rand
Te,may (s, t) =

{
1 if init(s) 6⊆ init(t)

0 otherwise

and thus Equation (D.1) directly follows.

Consider now the inductive step k > 1. If hk,λ,randTe,may (s, t) = 0, then there is nothing to prove. Moreover,

notice that hk,λ,randTe,may (s, t) = 1 iff s and t are distinguished by a test of depth 1, namely iff init(s) 6⊆ init(t)

and thus iff sλ,randk (s, t) = 1. Hence assume that 0 < hk,λ,randTe,may (s, t) < 1. We have

hk,λ,randTe,may (s, t)

= sup
o∈O

(
sup

Zs,o∈Resrand
max (s,o)

k∑
n=1

λn−1 · Prn(SC(zs,o))− sup
Zt,o∈Resrandmax (t,o)

k∑
n=1

λn−1 · Prn(SC(zt,o))

)
(D.2)
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By definition of supremum, given ε > 0 there is a test oε ∈ O such that supo∈O hk,o,λ,randTe,may (s, t) <

hk,oε,λ,randTe,may (s, t) + ε. Therefore

(D.2) < sup
Zs,oε∈Resrand

max (s,oε)

k∑
n=1

λn−1 · Prn(SC(zs,oε))− sup
Zt,oε∈Resrandmax (t,oε)

k∑
n=1

λn−1 · Prn(SC(zt,oε)) + ε(D.3)

By rewriting the first transition step of each resolutions explicitly in terms of the probability distribution
that is reached, we get

(D.3) = sup
a∈A

sup
πs,oε∈derct(s,oε,a)

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · πs,oε(s′, o′) · sup

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+

+
∑
s′∈S

λ · πs,oε(s′,
√

)

}
+

− sup
a∈A

sup
πt,oε∈derct(t,oε,a)

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · πt,oε(t′, o′) · sup

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+

+
∑
t′∈S

λ · πt,oε(t′,
√

)

}
+ ε (D.4)

By definition of supremum, given any ε1 > 0 we let π̃s and π̃oε be such that

sup
πs,oε∈derct(s,oε,a)

 ∑
s′∈S,o′ 6=

√
∈O

(
λπs,oε(s

′, o′) sup
Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1Prn(SC(zs′,o′))

)
+
∑
s′∈S

λπs,oε(s
′,
√

)


<

∑
s′∈S,o′ 6=

√
∈O

(
λπ̃s(s

′)π̃oε(o
′) sup
Zs′,o′∈Resrand

max (s′,o′)

k−1∑
n=1

λn−1Prn(SC(zs′,o′))

)
+
∑
s′∈S

λπ̃s(s
′)π̃oε(

√
) + ε1

Then we let ε′ = ε+ ε1, and we get

(D.4) < sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · π̃s(s′) · π̃oε(o′) · sup

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+

+
∑
s′∈S

λ · π̃s(s′) · π̃oε(
√

)

}
+

− sup
a∈A

sup
πt,oε∈derct(t,oε,a)

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · πt,oε(t′, o′) · sup

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+

+
∑
t′∈S

λ · πt,oε(t′,
√

)

}
+ ε′ (D.5)

We choose an arbitrary distribution π̃t,oε to substitute the supremum. To choose such a distribution we
exploit the distribution π̃oε selected at the previous step and then we exploit the definition of infimum

which guarantees that for each ε2 > 0 there is a distribution π̃t such that infπt∈derct(t,a) K(sλ,randk−1 )(π̃s, πt) >

K(sλ,randk−1 )(π̃s, π̃t)− ε2. Then we let ε′′ = ε′ − ε2, and we get

(D.5) < sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · π̃s(s′) · π̃oε(o′) · sup

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+
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+
∑
s′∈S

λ · π̃s(s′) · π̃oε(
√

)

}
+

− sup
a∈A

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · π̃t(t′) · π̃oε(o′) · sup

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+

+
∑
t′∈S

λ · π̃t(t′) · π̃oε(
√

)

}
+ ε′′ (D.6)

By noticing that since hk,λ,randTe,may (s, t) < 1, we are guaranteed that
∑
s′∈S λπ̃s(s

′)π̃oε(
√

) = λπ̃oε(
√

) =∑
t′∈S λπ̃t(t

′)π̃oε(
√

), we get

(D.6) = sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · π̃s(s′) · π̃oε(o′) · sup

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)+

− sup
a∈A

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · π̃t(t′) · π̃oε(o′) · sup

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)+ ε′′ (D.7)

By choosing w = argminw∈W(π̃s,π̃t) K(sλ,randk−1 )(π̃s, π̃t), we get

(D.7) = sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ ·
(∑
t′∈S

w(s′, t′)
)
· π̃oε(o′) · sup

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)+

− sup
a∈A

 ∑
t′∈S,o′ 6=

√
∈O

(
λ ·
( ∑
s′∈S

w(s′, t′)
)
· π̃oε(o′) · sup

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)+ ε′′

= sup
a∈A

∑
s′,t′∈S,o′ 6=

√
∈O

λ ·w(s′, t′) · π̃oε(o′) ·

(
sup

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))+

− sup
Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+ ε′′

≤ sup
a∈A

∑
s′,t′∈S

λ ·w(s′, t′) · sup
o∈O
·

(
sup

Zs′,o∈Resrandmax (s′,o)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o))+

− sup
Zt′,o∈Resrandmax (t′,o)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o))

)
+ ε′′

= sup
a∈A

∑
s′,t′∈S

λ ·w(s′, t′) · hk−1,λ,randTe,may (s′, t′) + ε′′ (D.8)

By induction over k − 1 we get

(D.8) ≤ sup
a∈A

∑
s′,t′∈S

λ ·w(s′, t′) · sλ,randk−1 (s′, t′) + ε′′ (D.9)

By the choice of w we get

(D.9) = sup
a∈A

λ ·K(sλ,randk−1 )(π̃s, π̃t) + ε′′ (D.10)
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By the choice of π̃t and π̃s we get

(D.10) ≤ sup
a∈A

sup
πs∈derct(s,a)

inf
πt∈derct(t,a)

λ ·K(sλ,randk−1 )(π̃s, π̃t) + ε′′

= sλ,randk (s, t) + ε′′.

Since hk,λ,randTe,may (s, t) < sλ,randk (s, t) + ε holds for all ε > 0, we can conclude that Equation (D.1) holds.

Proof of Theorem 21.2. Since in Theorem 19 we proved that hλ,detTe,must = hλ,randTe,must, to prove the thesis it

is enough to show that rλ,rand(s, t) ≥ hλ,randTe,must(t, s).
With abuse of notation, given k ∈ N, we write

hk,λ,randTe,must (t, s)

= sup
o∈O

max

{
0,
(

inf
Zt,o∈Resrand

max (t,o)

k∑
n=1

λn−1 · Prn(SC(zt,o))− inf
Zs,o∈Resrandmax (s,o)

k∑
n=1

λn−1 · Prn(SC(zs,o))
)}

so that hk,λ,randTe,must (t, s) takes into account only the differences of t, s that can be tested in the first k steps.

Notice that hλ,randTe,must(t, s) = limk→∞ hk,λ,randTe,must (t, s). Therefore, to prove the thesis, we prove the stronger
property that

for each k ∈ N, rλ,randk (s, t) ≥ hk,λ,randTe,must (t, s). (D.11)

The thesis will then follow by Proposition 2 and the monotonicity of the limit.
We proceed by induction over k ∈ N.

Consider the base case k = 1. It is easy to check that

rλ,rand1 (s, t) = h1,λ,rand
Te,must (t, s) =

{
1 if init(s) 6= init(t)

0 otherwise

and thus Equation (D.11) directly follows.

Consider now the inductive step k > 1. If hk,λ,randTe,must (t, s) = 0, then there is nothing to prove. Moreover,

notice that hk,λ,randTe,must (t, s) = 1 iff t and s are distinguished by a test of depth 1, namely iff init(s) 6= init(t)

and thus iff rλ,randk (s, t) = 1. Hence assume that 0 < hk,λ,randTe,must (t, s) < 1. We have

hk,λ,randTe,must (t, s)

= sup
o∈O

(
inf

Zt,o∈Resrand
max (t,o)

k∑
n=1

λn−1 · Prn(SC(zt,o))− inf
Zs,o∈Resrandmax (s,o)

k∑
n=1

λn−1 · Prn(SC(zs,o))

)
(D.12)

By definition of supremum, for each ε > 0 there is a test oε ∈ O, such that supo∈O hk,o,λ,randTe,must (s, t) <

hk,oε,λ,randTe,must (s, t) + ε. Therefore

(D.12) < inf
Zt,oε∈Resrand

max (t,oε)

k∑
n=1

λn−1 · Prn(SC(zt,oε))− inf
Zs,oε∈Resrandmax (s,oε)

k∑
n=1

λn−1 · Prn(SC(zs,oε)) + ε(D.13)

By rewriting the first transition step of each resolutions explicitly in terms of the probability distribution
that is reached, we get

(D.13) = sup
a∈A

inf
πt,oε∈derct(t,oε,a)

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · πt,oε(t′, o′) · inf

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+
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+
∑
t′∈S

λ · πt,oε(t′,
√

)

}
+

− sup
a∈A

inf
πs,oε∈derct(s,oε,a)

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · πs,oε(s′, o′) · inf

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+

+
∑
s′∈S

λ · πs,oε(s′,
√

)

}
+ ε (D.14)

By definition of infimum, given any ε1 > 0 we let π̃s and π̃oε be such that

inf
πs,oε∈derct(s,oε,a)

 ∑
s′∈S,o′ 6=

√
∈O

(
λπs,oε(s

′, o′) sup
Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1Prn(SC(zs′,o′))

)
+
∑
s′∈S

λπs,oε(s
′,
√

)


>

∑
s′∈S,o′ 6=

√
∈O

(
λπ̃s(s

′)π̃oε(o
′) sup
Zs′,o′∈Resrand

max (s′,o′)

k−1∑
n=1

λn−1Prn(SC(zs′,o′))

)
+
∑
s′∈S

λπ̃s(s
′)π̃oε(

√
)− ε1

Then we let ε′ = ε− ε1, we get

(D.14) < sup
a∈A

inf
πt,oε∈derct(t,oε,a)

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · πt,oε(t′, o′) · inf

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+

+
∑
t′∈S

λ · πt,oε(t′,
√

)

}

− sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · π̃s(s′) · π̃oε(o′) · inf

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+

+
∑
s′∈S

λ · π̃s(s′) · π̃oε(
√

)

}
+ ε′ (D.15)

We choose an arbitrary distribution π̃t,oε to substitute the infimum. To choose such a distribution we
exploit the distribution π̃oε selected at the previous step and then we exploit the definition of infimum

which guarantees that for each ε2 > 0 there is a distribution π̃t such that infπt∈derct(t,a) K(rλ,randk−1 )(π̃s, πt) >

K(rλ,randk−1 )(π̃s, π̃t)− ε2. Then we let ε′′ = ε′ − ε2, and we get

(D.15) < sup
a∈A

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · π̃t(t′) · π̃oε(o′) · inf

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)
+

+
∑
t′∈S

λ · π̃t(t′) · π̃oε(
√

)

}
+

− sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · π̃s(s′) · π̃oε(o′) · inf

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+

+
∑
s′∈S

λ · π̃s(s′) · π̃oε(
√

)

}
+ ε′′ (D.16)
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By noticing that since hk,λ,randTe,must (s, t) < 1, we are guaranteed that
∑
s′∈S λπ̃s(s

′)π̃oε(
√

) = λπ̃oε(
√

) =∑
t′∈S λπ̃t(t

′)π̃oε(
√

), we get

(D.16) = sup
a∈A

 ∑
t′∈S,o′ 6=

√
∈O

(
λ · π̃t(t′) · π̃oε(o′) · inf

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)+

− sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ · π̃s(s′) · π̃oε(o′) · inf

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)+ ε′′(D.17)

By choosing w = argminw∈W(π̃s,π̃t) K(rλ,randk−1 )(π̃s, π̃t), we get

(D.17) = sup
a∈A

 ∑
t′∈S,o′ 6=

√
∈O

(
λ ·
( ∑
s′∈S

w(s′, t′)
)
· π̃oε(o′) · inf

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))

)+

− sup
a∈A

 ∑
s′∈S,o′ 6=

√
∈O

(
λ ·
(∑
t′∈S

w(s′, t′)
)
· π̃oε(o′) · inf

Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)+ ε′′

= sup
a∈A

∑
s′,t′∈S,o′ 6=

√
∈O

λ ·w(s′, t′) · π̃oε(o′) ·

(
inf

Zt′,o′∈Resrandmax (t′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o′))+

− inf
Zs′,o′∈Resrandmax (s′,o′)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o′))

)
+ ε′′

≤ sup
a∈A

∑
s′,t′∈S

λ ·w(s′, t′) · sup
o∈O
·

(
inf

Zt′,o∈Resrandmax (t′,o)

k−1∑
n=1

λn−1 · Prn(SC(zt′,o))+

− inf
Zs′,o∈Resrandmax (s′,o)

k−1∑
n=1

λn−1 · Prn(SC(zs′,o))

)
+ ε′′

= sup
a∈A

∑
s′,t′∈S

λ ·w(s′, t′) · hk−1,λ,randTe,must (t′, s′) + ε′′ (D.18)

By induction over k − 1 we get

(D.18) ≤ sup
a∈A

∑
s′,t′∈S

λ ·w(s′, t′) · rλ,randk−1 (s′, t′) + ε′′ (D.19)

By the choice of w we get

(D.19) = sup
a∈A

λ ·K(rλ,randk−1 )(π̃s, π̃t) + ε′′ (D.20)

By the choice of π̃t and π̃s, we get

(D.20) ≤ sup
a∈A

sup
πs∈derct(s,a)

inf
πt∈derct(t,a)

λ ·K(rλ,randk−1 )(π̃s, π̃t) + ε′′

= rλ,randk (s, t) + ε′′.

Since hk,λ,randTe,must (t, s) < rλ,randk (s, t) + ε holds for all ε > 0, we can conclude that Equation (D.11) holds.

Proof of Theorem 21.3. The relation bλ,rand ≥ mλ,x
Te,mM is an immediate consequence of Theorem 4,

Theorem 21.1, Theorem 21.2 and Definition 23.
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Proof of Theorem 21.4. We expand only the case of hemimetrics. The case of metrics will then follow
by symmetrization.

With abuse of notation, given k ∈ N, we write

hk,λ,randTe,tbt (s, t)

= sup
o∈O

sup
α∈A?
|α|≤k

sup
Zs,o∈Resrand

max (s,o)

inf
Zt,o∈Resrandmax (t,o)

λ|α|−1|Pr(SC(zs,o, α))− Pr(SC(zt,o, α))|

so that hk,λ,randTe,tbt (s, t) takes into account only the differences of s, t that can be tested in the first k steps.

Notice that hλ,randTe,tbt (s, t) = limk→∞ hk,λ,randTe,tbt (s, t). Therefore, to prove the thesis, we prove the stronger
property that

for each k ∈ N, rλ,randk (s, t) ≥ hk,λ,randTe,tbt (s, t). (D.21)

The thesis will then follow by Proposition 2 and the monotonicity of the limit.
We proceed by induction over k ∈ N.

Consider the base case k = 1. It is easy to check that

rλ,rand1 (s, t) = h1,λ,rand
Te,tbt (s, t) =

{
1 if init(s) 6= init(t)

0 otherwise

and thus Equation (D.21) directly follows.

Consider now the inductive step k > 1. If hk,λ,randTe,tbt (s, t) = 0, then there is nothing to prove. Hence

assume that hk,λ,randTe,tbt (s, t) > 0. We have

hk,λ,randTe,tbt (t, s)

= sup
o∈O

sup
α∈A?,|α|≤k

sup
Zs,o∈Resrand

max (s,o)

inf
Zt,o∈Resrandmax (t,o)

λ|α|−1 · |Pr(SC(zs,o, α))− Pr(SC(zt,o, α))| (D.22)

By definition of supremum, for each ε > 0 there are oε ∈ O, αε ∈ A? and Zεs,oε ∈ Resrandmax (s, oε) such that

sup
o∈O

sup
α∈A?,|α|≤k

sup
Zs,o∈Resrand

max (s,o)

inf
Zt,o∈Resrandmax (t,o)

λ|α|−1 · |Pr(SC(zs,o, α))− Pr(SC(zt,o, α))|

< inf
Zt,oε∈Resrand

max (t,oε)
λ|αε|−1 · |Pr(SC(zεs,oε , αε))− Pr(SC(zt,oε , αε))|+ ε.

We can assume wlog. that αε = aα′ for some α′ ∈ A? s.t. |α′| ≤ k − 1. We remark that zεs,oε is of the form

z̃s ‖ z̃oε for some Z̃s ∈ Resrand(s), Z̃oε ∈ Resrand(oε). We denote by π̃s ∈ derct(s, a) the distribution reached
by z̃s via the execution of a, and by π̃oε the analogous for zoε . Therefore

(D.22) < inf
Zt,oε∈Resrand

max (t,oε)
λ|αε|−1 · |Pr(SC(zεs,oε , αε))− Pr(SC(zt,oε , αε))|+ ε (D.23)
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We choose an arbitrary resolution Zεt,oε ∈ Resrandmax (t, oε) to substitute the infimum. We construct Zεt,oε as
follows. We exploit the distribution π̃s from the previous step and then we exploit the definition of infimum
which guarantees that for each ε1 > 0 there is a distribution π̃t such that infπt∈derct(t,a) K(rλ,randk−1 )(π̃s, πt) >

K(rλ,randk−1 )(π̃s, π̃t) − ε1. Then we let w = argminw∈W(π̃s,π̃t) K(rλ,randk−1 )(π̃s, π̃t). Choose ε2 > 0. For each

s′ ∈ supp(π̃s), t
′ ∈ supp(π̃t), o

′ ∈ supp(πoε), we let Zε2t′,o′ ∈ Resrandmax (t′, o′) be such that

inf
Zt′,o′∈Resrand

max (t′,o′)
λ|α
′|−1 · |Pr(SC(zεs′,o′ , α

′))− Pr(SC(zt′,o′ , α
′))|

> |Pr(SC(zεs′,o′ , α
′))− Pr(SC(zε2t′,o′ , α

′))| − ε2.

Then we let zεt,oε
a−→ π with π =

∑
t′∈S,o′∈O π̃t(t

′)π̃oε(o
′)δzε2

t′,o′
. Therefore

(D.23) ≤ λ|αε|−1 · |Pr(SC(zεs,oε , αε))− Pr(SC(zεt,oε , αε))|+ ε

= λ|αε|−1 ·

∣∣∣∣∣∣
∑

s′∈S,o′∈O

π̃s(s
′) · π̃oε(o′) · Pr(SC(zεs′,o′ , α

′))−
∑

t′∈S,o′∈O

π̃t(t
′) · π̃oε(o′) · Pr(SC(zε2t′,o′ , α

′))

∣∣∣∣∣∣+ ε(D.24)

By the choice of w, we get

(D.24) = λ|αε|−1 ·

∣∣∣∣∣∣
∑

s′∈S,o′∈O

(
∑
t′∈S

w(s′, t′)) · π̃oε(o′) · Pr(SC(zεs′,o′ , α
′)) +

−
∑

t′∈S,o′∈O

(
∑
s′∈S

w(s′, t′)) · π̃oε(o′) · Pr(SC(zε2t′,o′ , α
′))

∣∣∣∣∣∣+ ε

≤ λ ·
∑

s′,t′∈S,o′∈O

w(s′, t′) · π̃oε(o′) · λ|α
′|−1 · |Pr(SC(zεs′,o′ , α

′))− Pr(SC(zε2t′,o′ , α
′))|+ ε (D.25)

By the choice of each zε2t′,o′ , by letting ε′ = ε+ ε2, we get

(D.25) < λ ·
∑

s′,t′∈S,o′∈O

w(s′, t′) · π̃oε(o′) inf
Zt′,o′∈Resrandmax (t′,o′)

λ|α
′|−1 · |Pr(SC(zεs′,o′ , α

′))− Pr(SC(zt′,o′ , α
′))|+ ε′

≤ λ ·
∑

s′,t′∈S,o′∈O

w(s′, t′) · sup
o∈O

sup
α∈A?,|α|≤k−1

sup
Zs′,o∈Resrand

max (s′,o)

inf
Zt′,o∈Resrandmax (t′,o)

λ|α|−1 · |Pr(SC(zs′,o, α))− Pr(SC(zt′,o, α))|+ ε′

=
∑

s′,t′∈S
λ ·w(s′, t′) · hk−1,λ,randTe,tbt (t′, s′) + ε′ (D.26)

By induction over k − 1, we get

(D.26) ≤
∑

s′,t′∈S
λ ·w(s′, t′) · rλ,randk−1 (s′, t′) + ε′ (D.27)

By the choice of w, we get

(D.27) = λ ·K(rλ,randk−1 )(π̃s, π̃t) + ε′ (D.28)

By the choice of π̃t and π̃s, by letting ε′′ = ε′ + ε1, we get

(D.28) < sup
a∈A

sup
πs∈derct(s,a)

inf
πt∈derct(t,a)

λ ·K(rλ,randk−1 )(π̃s, π̃t) + ε′′
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= rλ,randk (s, t) + ε′′.

Since hk,λ,randTe,tbt (s, t) < rλ,randk (s, t) + ε holds for all ε > 0, we can conclude that Equation (D.21) holds.

Proof of Theorem 21.5. The thesis follows by noticing that each trace α ∈ A? corresponds to a particular
test, oα, that has only one α-compatible maximal computation. For completeness, in the case of hemimetrics,
we have

hλ,xTr,tbt(s, t)

= sup
α∈A?

λ|α|−1 sup
Zs∈Resx(s)

inf
Zt∈Resx(t)

|Pr(C(zs, α))− Pr(C(zt, α))|

= sup
α∈A?

λ|α|−1 sup
Zs,oα∈Resxmax(s,oα)

inf
Zt,oα∈Resx(t,oα)

|Pr(SC(zs,oα , α))− Pr(SC(zt,oα , α))|

≤ sup
o∈O

sup
α∈A?

λ|α|−1 sup
Zs,o∈Resxmax(s,o)

inf
Zt,o∈Resx(t,o)

|Pr(SC(zs,o, α))− Pr(SC(zt,o, α))|

= hλ,xTe,tbt(s, t).

Proof of Theorem 21.6. We expand only the case of hemimetrics. The case of metrics can be obtain by
symmetrization.

Firstly we notice that hλ,xTr,sup(s, t) ≤ hλ,xTe,sup(s, t) immediately follows by noticing that each trace α ∈ A?
corresponds to a particular test.

Hence, to prove the thesis, it is enough to show that hλ,xTe,sup(s, t) ≤ hλ,xTr,sup(s, t). Clearly, if hλ,xTe,sup(s, t) =

0, then there is nothing to prove. So, assume hλ,xTe,sup(s, t) > 0. We have

hλ,xTe,sup(s, t)

= sup
o∈O

sup
α∈A?

λ|α|−1

(
sup

Zs,o∈Resxmax(s,o)

Pr(SC(zs,o, α))− sup
Zt,o∈Resxmax(t,o)

Pr(SC(zt,o, α))

)

= sup
o∈O

sup
α∈A?

λ|α|−1

(
sup

Zs∈Resx(s)

sup
Zo∈Resxmax(o)

Pr(C(zs, α))Pr(SC(zo, α))+

− sup
Zt∈Resx(t)

sup
Zo∈Resxmax(o)

Pr(C(zt, α))Pr(SC(zo, α))

)

= sup
o∈O

sup
α∈A?

sup
Zo∈Resxmax(o)

Pr(SC(zo, α))λ|α|−1

(
sup

Zs∈Resx(s)

Pr(C(zs, α))− sup
Zt∈Resx(t)

Pr(C(zt, α))

)

= sup
α∈A?

λ|α|−1

(
sup

Zs∈Resx(s)

Pr(C(zs, α))− sup
Zt∈Resx(t)

Pr(C(zt, α))

)
= hλ,xTr,sup(s, t).
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