
The best a monitor can do
Luca Aceto
Reykjavik University, Iceland and GSSI, Italy
luca@ru.is

Antonis Achilleos
Reykjavik University, Iceland
antonios@ru.is

Adrian Francalanza
University of Malta, Malta
afra1@um.edu.mt

Anna Ingolfsdottir
Reykjavik University, Iceland
annai@ru.is

Karoliina Lehtinen
University of Liverpool, United Kingdom
k.lehtinen@liverpool.ac.uk

Abstract

Existing notions of monitorability for branching-time properties are fairly restrictive. This, in
turn, impacts the ability to incorporate prior knowledge about the system under scrutiny—which
corresponds to a branching-time property—into the runtime analysis. We propose a definition of
optimal monitors that verify the best monitorable under- or over-approximation of a specification,
regardless of its monitorability status. Optimal monitors can be obtained for arbitrary branching-time
properties by synthesising a sound and complete monitor for their strongest monitorable consequence.
We show that the strongest monitorable consequence of specifications expressed in Hennessy-Milner
logic with recursion is itself expressible in this logic, and present a procedure to find it. Our procedure
enables prior knowledge to be optimally incorporated into runtime monitors.

2012 ACM Subject Classification Software Verification; Testing and Debugging → Monitors

Keywords and phrases monitorability, branching-time logics, runtime verification

Digital Object Identifier 10.4230/LIPIcs...

Funding Research supported by the Icelandic Research Fund projects “Theoretical Foundations
for Monitorability” (No:163406-051) and “Epistemic Logic for Distributed Runtime Monitoring”
(No:184940-051), the MIUR project PRIN 2017FTXR7S IT MATTERS, and project BehAPI, funded
by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No:778233.

1 Introduction

Branching-time properties, as described by logics such as CTL, CTL* and the modal µ-
calculus, are normally verified using well-established pre-deployment techniques like model
checking [18, 10]. However, there are cases where the system model is either unavailable (e.g.,
due to third-party intellectual property restrictions), or not fully understood (e.g., when
parts of the system logic is governed by machine-learning tools). In these cases, monitors
can be used effectively to observe the execution of a system (rather than its state space) for
verification purposes, as demonstrated in [27, 1, 4]; this technique is broadly referred to as
runtime verification (RV) [26, 11].

© Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingolfsdottir, Karoliina Lehtinen;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org
mailto:luca@ru.is
https://orcid.org
mailto:antonios@ru.is
https://orcid.org
mailto:afra1@um.edu.mt
https://orcid.org
mailto:annai@ru.is
https://orcid.org
mailto:k.lehtinen@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 The best a monitor can do

RV is a best-effort strategy since it is limited to a single finite execution. The study of
monitorability [4, 5] asks what correctness guarantees RV can provide and what properties
can be monitored adequately with these guarantees. A wide body of work [7, 45, 30, 49, 21,
27, 1, 29, 2, 4] primarily considers safety properties (“something bad never happens”) as
those worth monitoring for, as they correspond to properties for which violations can always
be identified from some finite prefix of an execution. However, limiting monitoring to this
class of properties severely restricts the utility of RV. The restriction is particularly acute for
branching-time properties, as shown by the maximality results in [27, 1], and this explains, in
part, why RV tools generally restrict themselves to linear-time properties. But there are cases
where formal specifications (a scarce resource in verification) have already been expressed in
a branching-time logic and perhaps formally verified for one of its subcomponents. In such
cases, a systematic method to incorporate such prior knowledge about the system into the
runtime analysis would be beneficial.

A number of alternatives can be used to mitigate the shortcomings of RV for branching-
time properties. One method would be to explore ways to increase the observational powers
of the monitor, such as by using augmented traces with refusal information, or by employing
multiple runs of the same system [2]. Alternatively, one can try to extend the monitorable
properties by weakening the monitor guarantees expected during RV. The latter approach
is the one explored in this paper. We propose the use of optimal monitors, which flag all
violations that can be determined from execution prefixes contradicting the property (and
ignore the violations that cannot). Although such monitors may fail to identify all violations,
they represent the best monitors can do, and do not impose any restrictions on the considered
class of properties. We show how these optimal monitors can be obtained systematically
from the strongest monitorable consequence of the property to be dynamically verified.

I Example 1. A system with two (enumerated) components, produces the events open, oi,
write, wi, and close, ci, for i ∈ {1, 2}. A specification for the first component states that:

“In all executions, w1 (write) occurs, but only after an open, o1.” (Spec 1)

According to the existing notion of branching-time monitorability [27], (Spec 1) is not
monitorable because there is no monitor which correctly identifies all violations of this
specification. In particular, a first component that never reaches w1 violates this property,
but this cannot be determined from any finite prefix of its executions. However, there are
other violations of (Spec 1) than can be detected. For instance, monitors can detect violating
executions where w1 occurs before o1. Consider the (weaker) specification

“In all executions, w1 (write) does not occur before an open, o1.” (Spec 2)

Since there is a monitor that detects all violations for (Spec 2), it is monitorable according
to [27]. More importantly, this monitor also turns out to be optimal with respect to (Spec 1)
since these violations are the only ones that can be detected in (Spec 1). Conveniently,
[27] also describes a procedure to synthesise the complete monitor from the logical formula
describing (Spec 2) which could, in turn, also be used as the optimal monitor for (Spec 1). J

I Example 2. The previous example illustrates the difficulty of monitoring for unbounded
or infinite behaviour (“In all executions, w1 occurs . . . ”) which applies equally to linear and
branching-time properties. Branching-time properties present additional challenges relating
to the branching structure of computation. Consider the following specification:

“After o2 (opening the second component), (closing it) c2 is reachable
but always via w2 (by writing to the second component beforehand).” (Spec 3)

L. Aceto et al. XX:3

This is intrinsically a branching time property as it concerns the state space of the system.
In particular, no single execution can provide information about whether c2 is reachable
from all states entered via o2. This property is therefore classified as unmonitorable. It turns
out that its strongest monitorable consequence is the following property:

“After o2, c2 is only reachable via w2.” (Spec 4)

A sound and complete monitor for this specification flags a violation when it witnesses
an execution in which o2 is followed by c2 without first seeing w2. Such a monitor is also
the optimal monitor for (Spec 3). Computing the strongest monitorable consequence of a
property allows us to extract the part of the property amenable to runtime analysis. J

Our proposed methodology allows us to address another common weakness found in
existing RV approaches. Specifically, these approaches often treat the system under scrutiny
as a black box, without leveraging any prior partial knowledge about the system.

I Example 3. Recall the system in Ex. 1 and consider the property:

“In all executions, c1 (close) is never immediately followed by a write, w1.” (Spec 5)

(Spec 5) is monitorable according to [27]: a monitor can flag a violation whenever it observes
c1w1 during an execution. On the other hand, if the monitor observes the sequence of events
c1w2w1 in an execution, it cannot determine whether the system violates (Spec 5) or not.

But, suppose we have prior knowledge that the executions of the first and second
components are completely independent. Then events such as w2 and w1—coming from
independent concurrent components—can be interleaved arbitrarily. A monitor that observes
c1w2w1 can then infer that the system can also produce the sequence of events c1w1w2,
meaning that observing c1w2w1 provides enough evidence to flag that the system violates
(Spec 5). In other words, the prior knowledge allows the monitor to infer violations from
executions which by themselves wouldn’t suffice to reach a verdict. J

When synthesising monitors from a monitorable property P , we would like to systematic-
ally incorporate any prior knowledge on the system that can be expressed as a branching-time
property K. To do this, we build a monitor based on the conjunction K ∧ P rather than
just P . Then, if an execution of a system known to satisfy K is inconsistent with K ∧ P , we
can deduce that the system violates P . However, K ∧ P can be an arbitrary branching-time
property that might not be monitorable in the sense of [27], and the known monitor synthesis
procedures might not apply. Again, we can adopt the procedure discussed earlier to obtain an
optimal monitor for K ∧P instead. Note that while P might be designed to be a monitorable
property, or even a linear-time property, K typically cannot be restricted in this way. In
particular, properties such as those in Ex. 3 describing the possible interleavings of concurrent
components, and those in Ex. 2 describing the system state-space, are inherently unmonitor-
able branching-time properties. Yet, so far, approaches to incorporate prior knowledge into
runtime monitoring, referred to as grey-box monitoring or monitoring with assumptions, has
restricted itself to knowledge representable as a linear-time property [48, 17, 39].

Our contribution is twofold. First, we propose a general procedure to obtain optimal
monitors for arbitrary branching-time properties (Sec. 3): following the intuition of Ex. 1
and 2, we find the strongest monitorable consequence, e.g., (Spec 2), of an arbitrary branching-
time property, e.g., (Spec 1), which allows us to use existing synthesis procedures (e.g., those
in [9, 8]) to produce the sound and complete monitor from this monitorable consequence.
We show that the resulting monitor is optimal for the original specification. This approach

XX:4 The best a monitor can do

allows arbitrary branching-time specifications, for instance those originally designed for model
checking, or those combining a monitorable property with prior knowledge, to be verified
at runtime. We show that this is indeed the best a monitor can do with prior knowledge.
This can be seen as the generalisation of the notion of bad prefixes [35], i.e. prefixes that
monitors can use to reach a negative verdict, to the branching-time setting. Although the
set of bad prefixes appears frequently in various works in RV, its generalisation to the
branching-time setting and the proposed disciplined methodology for obtaining optimal
monitors from non-monitorable properties via the strongest monitorable consequence is, to
the best of our knowledge, new.

Our second contribution is technical: we show in Sec. 5 how to compute the strongest
monitorable consequence of an arbitrary property expressed in the Hennessy–Milner logic
with Recursion, a variant of the modal µ-calculus. This is a popular verification logic that
balances expressivity with reasonable algorithmic complexity. It captures all regular tree
languages, embeds other popular modal and temporal logics, such as LTL, CTL and CTL*,
and corresponds to the bisimulation invariant fragment of monadic second order logic [31].
The size of the strongest monitorable consequence that we compute is bounded by a double
exponential in the size of the original formula. This matches the bound on the size of a
deterministic automaton that recognises the bad prefixes of an LTL formula [35]. In contrast,
the transformation from an LTL formula to its strongest monitorable consequence, also
expressed in LTL, is non-elementary (see Sec. 5.5).

We discuss related work, and in particular how this work compares to monitoring in the
linear-time setting, in Sec. 6. Omitted proofs can be found in the appendix.

2 Preliminaries

Actions, Processes, Properties and Traces. Fix a finite set Act of actions where a, b ∈ Act,
a set of process states p, q, r, . . . ∈ Prc (sometimes called processes), and a transition relation,
−→ ⊆ (Prc×Act×Prc). The triple 〈Prc,Act,−→〉 forms a Labelled Transition System
(LTS) [33] where the suggestive notation p a−→ q denotes (p, a, q) ∈ −→. For simplicity, we
assume that all the processes that we refer to, or construct, in this paper can be found in the
same fixed LTS. Specifications, or properties, are subsets of Prc, ranged over by P,Q,R. A
property P is a consequence of property Q whenever Q ⊆ P . Actions may be sequenced to
form finite or infinite traces t, u ∈ (Act∗ ∪Actω); the trace prefix-ordering t ≤ u denotes
that t is a prefix of u. We say that a process p produces a trace t, or that t is a trace of p,
if there is a sequence of transitions p a−→ q

b−→ · · · , such that t = ab · · · ; the trace t is also
referred to as an execution of p. Note that if t is a trace of p, then so are all of its prefixes.
Runtime Monitoring, Verification and Monitorability. Runtime monitors are computational
entities that reach a verdict after observing a finite prefix of an execution. A verdict,
once reached, is irrevocable [5]. We only consider single-verdict monitors, namely rejection
monitors, which flag violations of a property, and acceptance monitors, which validate a
property. Although mixed-verdict monitors can be used in a linear-time setting [4], only
single-verdict monitors make sense1 in a branching-time setting [27]. Rejection and acceptance
monitors are dual to one another in this setting. Our technical development thus focuses on
rejection monitors, and obtains results for acceptance monitors by duality.

A monitor, denoted by m,n, . . ., may be abstractly described as a (possibly infinite) set

1 Multi-verdict monitors are necessarily unsound in the branching-time setting [27].

L. Aceto et al. XX:5

of finite traces, m ⊆ Act∗, that satisfies the following condition: if t ∈ m, then for any
u ∈ Act∗ where t ≤ u it holds that u ∈ m. Intuitively, the traces in m are those that witness
a violation of a property. The closure condition describes the irrevocability of verdicts. The
collection of upward-closed subsets of Act∗, denoted by Mon, is therefore the set of all
possible monitors. Often we restrict our discussion to a subset of Mon, M ⊆Mon.

I Definition 4. Monitor m rejects process p, rej(m, p), if p produces a trace t in m. J

Earlier work [24, 27, 25, 4] provides an operational interpretation of Def. 4 via an
instrumentation of the monitor m executing with process p. Soundness and completeness
relate monitors to the specifications they are expected to monitor [27, 4, 5]. Soundness
requires that a monitor give only correct verdicts, while completeness demands that a monitor
reject whenever the specification is violated.

I Definition 5 (Soundness and Completeness). A monitor m ∈Mon is:

1. sound for specification P if for all p ∈ Prc, rej(m, p) implies p /∈ P ;
2. complete for specification P if for all p ∈ Prc, p /∈ P implies rej(m, p). J

I Definition 6 (Monitorability). A specification P is monitorable in a monitor set M if there
exists some m ∈M that is sound and complete for P . J

The notion of monitorability given in Def. 6 comes from [27]; although it is one of
many possible definitions [5], it is the only one that has been extensively studied in the
branching-time setting [27, 3, 1, 2, 4]. It also turns out to be the right one to use in the
quest for optimal monitors, as argued in Sec. 3. One important consequence of Def. 6 is that
there are some properties that are not monitorable.

I Example 7. The monitor from Ex. 3 that rejects all traces containing the consecutive
events c1w1 is sound and complete for Spec 5, whereas Spec 1 in Ex. 1 is not monitorable.
In the sequel, we simplify our example and assume that there is only one component in the
system generating events o,w, c. Another property that is not monitorable is the following:

“cw never occurs and on all infinite executions, w occurs.” (Spec 4)

Indeed, a process whose only maximal trace is oω is not in this property but there is no
monitor that is sound for Spec 4 and rejects it.2 J

In practice, we often have (prior) knowledge about the type of process the monitor will
be analysing at runtime, and the definition of monitorability should take such information
into account, i.e., grey-box monitoring. For our setting, we can express this prior knowledge
as a set of processes, denoted as R ⊆ Prc, i.e., the processes satisfying that prior knowledge.

I Definition 8 (Soundness/Completeness with Knowledge). The monitor m ∈Mon is:

Sound for specification P with knowledge R if for all p∈R, rej(m, p) implies p/∈P .
Complete for specification P with knowledge R if for all p∈R, p/∈P implies rej(m, p). J

I Definition 9 (Monitorability with Knowledge). A specification P is monitorable in a monitor
set M , with prior knowledge R, if there exists a monitor m ∈ M that is both sound and
complete for P with knowledge R. J

2 Spec 4 is not satisfaction monitorable [27] either: the process whose only maximal trace is woω is in the
property, but no sound acceptance monitor accepts it.

XX:6 The best a monitor can do

3 The Strongest Monitorable Consequence

Since not all specifications have a sound and complete monitor, we are interested in computing
an optimal monitor: a monitor which is sound for the specification, and rejects all violations
that can be flagged. In this section we argue that to find the optimal monitor of a specification,
we first need to compute its strongest monitorable consequence.

Although we focus on rejection monitors, optimal acceptance monitors are dual. An
optimal monitor for a property P is the sound monitor for P that rejects each process rejected
by some sound monitor for that property. This notion can be formalised using a rejection
monitor partial order that is similar to the preorder studied by Francalanza in [24].

I Definition 10 (Rejection Partial Order). Monitor m is rejection-less-than-or-equal-to mon-
itor n, denoted as m �rej n, if for all p ∈ Prc, rej(m, p) implies rej(n, p). J

I Remark 11. It follows that m �rej n iff m ⊆ n. For the only-if implication, assume
m �rej n, and pick a trace t ∈ m. For the process p that produces exactly t (and its prefixes),
rej(m, p), and thus rej(n, p). As n rejects p, there is a trace of p in n. By the construction
of p, a prefix of t must be in n, implying that t ∈ n. The if implication is analogous.

I Definition 12 (Optimality). For a fixed monitor set M ⊆Mon, monitor m ∈M is optimal
in M for the property P whenever:

it is sound for P and
for all n ∈M , if n is sound for P then n �rej m. J

The rejection partial order of Def. 10 has a special import for sound and complete monitors
because it can be characterised in terms of property consequence. For every monitor m, we
can easily define a property for which the monitor is both sound and complete:

Pm = { p | p does not produce any trace t ∈ m }.

It is not hard to see that such a property Pm is unique for every monitor m.

I Lemma 13. Monitor m is sound and complete for P if and only if P = Pm. J

I Proposition 14. For all m,n ∈Mon, m �rej n iff Pn ⊆ Pm.

Proof. By Lem. 13, m and n are sound and complete for Pm and Pn, respectively. For the if
case, assume Pn ⊆ Pm and pick a p such that rej(m, p). By Def. 5.1 we know p /∈ Pm, which
implies p /∈ Pn from Pn ⊆ Pm. By Def. 5.2 we conclude rej(n, p), which implies m �rej n.
For the only-if case, assume m �rej n and pick a p /∈ Pm. By Def. 5.2 we have rej(m, p).
From Def. 10 we get rej(n, p) and by Def. 5.1 we deduce p /∈ Pn. J

Prop. 14 suggests that optimal monitors, Def. 12, may be characterised in terms of the
specifications for which they are sound and complete. This characterisation relies on the
notion of a strongest monitorable consequence.

I Definition 15 (Strongest Monitorable Consequence). Let M ⊆Mon. The strongest monit-
orable consequence of a specification P with respect to M is a property Q that is monitorable
in M such that:

it is a consequence of P , i.e., P ⊆ Q, and
for any R monitorable in M , P ⊆ R implies Q ⊆ R. J

L. Aceto et al. XX:7

We establish the correspondence between strongest monitorable consequences and optimal
monitors (Thm. 18) using the following two lemmas.

I Lemma 16. A sound monitor for a consequence of P is sound for P .

Proof. Pick a consequence Q of P , i.e., P ⊆ Q, and a sound monitor m for Q. If rej(m, p)
for some p, then p /∈ Q by Def. 5. By P ⊆ Q we obtain p /∈ P , so m is sound for P . J

I Lemma 17. If m is complete for P and sound for Q then Q ⊆ P .

Proof. Pick a process p 6∈ P ; for P to be a consequence of Q, i.e., Q ⊆ P , we need to show
that p 6∈ Q. By Def. 5.2 we know rej(m, p) and by Def. 5.1 we obtain p 6∈ Q. J

I Theorem 18. A monitor m is optimal for P in M iff it is sound and complete for the
strongest monitorable consequence of P .

Proof. For the if case, let Q be the strongest monitorable consequence of P . Pick a monitor
mQ that is sound and complete for Q in M . By Lem. 16, mQ is sound for P . Pick any other
monitor n ∈ M that is also sound for P . From Lem. 13, Pn is monitorable in M , and by
Lem. 17 we know P ⊆ Pn. Since Q is the strongest monitorable consequence of P , we also
know Q ⊆ Pn, and by Prop. 14 we obtain n �rej mQ as required.

For the only-if case, let m be an optimal monitor for P . By Lem. 13 and the soundness
of m for P , it follows that Pm is a consequence of P , i.e., P ⊆ Pm. Next, we show that Pm
is the strongest monitorable consequence of P , from which the claim follows because m is
sound and complete for Pm. Let Q be a monitorable consequence of P and let mQ be a
monitor for it. Since m is optimal (Def. 12), we know that mQ �rej m. Thus by Prop. 14 we
obtain Pm ⊆ Q. This implies that Pm is the strongest monitorable consequence of P . J

To find the optimal monitor of an arbitrary property, it therefore suffices to compute the
sound and complete monitor of its strongest monitorable consequence. We can also extend
this result for the cases with prior knowledge about the process to be monitored, Thm. 21.

I Definition 19 (Optimality with Knowledge). For a fixed monitor set M ⊆Mon, monitor
m ∈M is optimal in M for property P with knowledge R whenever:

it is sound for P with knowledge R and
for all n ∈M , if n is sound for P with knowledge R then n �rej m. J

Soundness and completeness with prior knowledge can be characterised with respect to
soundness and completeness in the setting with no prior knowledge, Prc.

I Proposition 20. Monitor m is sound with knowledge R for P iff it is sound for P ∩R.

I Theorem 21. For a fixed monitor set M ⊆Mon, a monitor m ∈M is optimal in M for
the property P with knowledge R iff m is optimal in M for property P ∩R.

Proof. For the only-if case, assume that m is optimal for P with knowledge R. From Def. 19,
we know that m is sound for P with knowledge R, and therefore, by Prop. 20, m is sound
for P ∩R. From Def. 19, we also know that if some n is sound for P with R, then n �rej m;
again, by Prop. 20, if n is sound for P ∩R, then n �rej m. Therefore, m is also optimal for
P ∩R. The if case is symmetric. J

XX:8 The best a monitor can do

Syntax

ϕ,ψ ∈ recHML ::= tt (truth) | ff (falsehood)
| ϕ∨ψ (disjunction) | ϕ∧ψ (conjunction)
| 〈a〉ϕ (existential modality) | [a]ϕ (universal modality)
| minX.ϕ (least fixpoint) | maxX.ϕ (greatest fixpoint)
| X (recursion variable)

Branching-Time Semantics

Jtt, ρK def= Prc Jff, ρK def= ∅

Jϕ1∨ϕ2, ρK
def= Jϕ1, ρK ∪ Jϕ2, ρK Jϕ1∧ϕ2, ρK

def= Jϕ1, ρK ∩ Jϕ2, ρK

J〈a〉ϕ, ρK def=
{
p | ∃q · p a−→ q and q ∈ Jϕ, ρK

}
JX, ρK def= ρ(X)

J[a]ϕ, ρK def=
{
p | ∀q · p α−−→ q implies q ∈ Jϕ, ρK

}
JminX.ϕ, ρK def=

⋂
{P | Jϕ, ρ[X 7→ P]K ⊆ P} JmaxX.ϕ, ρK def=

⋃
{P |P ⊆ Jϕ, ρ[X 7→ P]K}

Figure 1 recHML Syntax and Branching-Time Semantics

4 Monitorability in recHML

Following Thms. 18 and 21, we investigate how to compute the strongest monitorable con-
sequence for properties expressible in the Hennessy–Milner logic with recursion, recHML [37],
as a means to obtain optimal monitors for such properties. recHML is a specification
logic describing regular properties of processes, and can be seen as a reformulation of the
well-studied modal µ-calculus [13, 14]. Since there are standard translations from CTL and
CTL* [34] into recHML, our investigation extends to these logics as well. The appeal of
recHML comes from its generality, the pre-existence of procedures to compute sound and
complete monitors for its monitorable fragment and its good closure properties. Indeed, we
show that the strongest monitorable consequence of recHML formulae is itself expressible in
recHML. It is unclear whether this is also the case for other branching-time logics, although
in the linear time setting, this question is settled positively for LTL in [40].

recHML formulae are generated from the syntax given in Fig. 1, according to the
following order of precedence: the existential and universal modal operators (〈a〉ϕ and [a]ϕ),
conjunctions, disjunctions, and fixpoint operators (minX.ϕ and maxX.ϕ). The negation of
a formula ϕ can be constructed with the duality rules in the usual way, and we use ¬ϕ as
a shorthand for it. In a formula minX.ϕ or maxX.ϕ, the fixpoint operator binds all free
occurrences of X in ϕ. The subformula ϕ is then said to be the binding formula of X. We
assume that for each variable X, there is exactly one formula minX.ϕ or maxX.ϕ that binds
X, denoted ϕX . Furthermore, without loss of generality, all formulas are assumed to be
guarded [36]: every occurrence of a fixpoint variable within its binding is within the scope of
a modal operator. We extend the notion of subformula and say that ϕX is the immediate
subformula of X. We write sf (ϕ) for the set of subformulas of ϕ. We take the size of a
formula to be the number of its distinct subformulae, up to α-conversion.

A formula ϕ from recHML is evaluated on an (implicit) LTS. In addition to true, false and
boolean connectives—which have their usual semantics—recHML has modal and fixpoints

L. Aceto et al. XX:9

operators. The existential modality 〈a〉ϕ holds at a state if there is an a-successor in which
ϕ holds, whereas the universal modality [a]ϕ holds if ϕ holds in all the a-successors of that
state. The least fixpoint minX.ϕ and its dual maxX.ϕ add recursion to the logic, allowing
for the description of temporal properties such as reachability and invariance. Formally, the
semantics is defined with respect to an interpretation ρ of the free variables of the formula.
We write Jϕ, ρK for the set of process states in an LTS which satisfy ϕ according to ρ. This
set is defined by induction on the structure of the formula ϕ, following the semantics given in
Fig. 1. Two formulas are equivalent if they agree on all processes. We often consider closed
formulas—namely those without free variables. In these cases, we can ignore the environment
from the semantics and simply write JϕK instead of Jϕ, ρK.
I Remark 22. A system state p trivially satisfies a specification [a]ϕ if it cannot transition
with action a. Consequently the basic formula [a]ff describes states that cannot perform
a-transitions; the dual basic formula 〈a〉tt denotes states that can perform a-transitions.

I Example 23. Property Spec 4 from Ex. 7 for Act = {o,w, c} can be expressed as:

ϕ1 = maxX.([o]X ∧ [c]X ∧ [w]X ∧ [c][w]ff) ∧ minY.([o]Y ∧ [c]Y).

The first conjunct in ϕ1 prohibits the occurrence of cw while the second conjunct requires w
to eventually occur on infinite traces (the sub-formula 〈w〉tt disjuncted with [o]Y ∧ [c]Y can
be left implicit since Act = {o,w, c}). A variation of Spec 1 from Ex. 1 on one component
(for Act = {o,w, c}) is Spec 5, described below and formalised as the formula ϕ2:

“On all infinite executions, w occurs, but w only occurs after o.” (Spec 5)

Whereas the outermost fixpoint formula in ϕ2 below prohibits w from occurring before o,
the innermost fixpoint formula requires w to occur eventually in any infinite execution.

ϕ2 = minX.([w]ff ∧ [c]X ∧ [o](minY.[c]Y ∧ [o]Y)). J

Monitorability for recHML was investigated in [27, 1], where monitors are specified as
regular processes and monitorable properties have a syntactic characterisation, as captured
by Thm. 24.

I Theorem 24. [27, Theorems 1 and 4] A formula of recHML is (violation) monitorable
iff it is equivalent to a formula in the fragment sHML defined as follows:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ ∧ ψ | maxX.ϕ | X J

A synthesis function that generates a regular (sound and complete) monitor from a sHML
formula is also presented; such monitors are also shown to be finite state [4].

I Example 25. Since ϕ1 and ϕ2 are not sHML formulas, we cannot use the synthesis
function from [27] to obtain runtime monitors for them. In fact, neither formula is monitorable
according to [27]. Although Spec 5 from Ex. 3, with Acti={oi,wi, ci} and Act=Act1∪Act2,
can be expressed as the sHML formula ϕ3, the knowledge (component independence) can
be only expressed using formulas like ϕ4, which are neither in sHML nor monitorable [27].

ϕ3 = maxX.
(

[c1][w1]ff ∧
∧

a∈Act
[a]X

)
ϕ4 = maxX.

∧
a∈Act1
b∈Act2

([a][b]ff ∨ 〈b〉〈a〉tt) ∧
∧

a∈Act2
b∈Act1

([a][b]ff ∨ 〈b〉〈a〉tt) ∧
∧

a∈Act
[a]X

The sub-formula ([a][b]ff ∨ 〈b〉〈a〉tt) in ϕ4 encodes the implication (〈a〉〈b〉tt⇒ 〈b〉〈a〉tt). J

XX:10 The best a monitor can do

In cases such as Ex. 25, we can obtain the optimal monitor of an arbitrary recHML
specification ϕ by: (i) computing the strongest monitorable consequence ψ ∈ sHML of ϕ;
(ii) synthesising a sound and complete monitor for ψ using the synthesis function from [27].

5 Computing Strongest Monitorable Consequences in recHML

In this section, we describe a method for computing the strongest monitorable consequence
of a recHML formula. The full proofs for this section can be found in the appendix. Our
constructions rely on a disjunctive representation of formulas, as given in Def. 26.

I Definition 26 (Disjunctive Form [50]). The set of disjunctive formulas of recHML is
given by the following grammar:

ϕ,ψ ∈ disHML ::= tt | ff | ϕ ∨ ψ |
∧
a∈A

(
(
∧
ϕ∈Ba

〈a〉ϕ) ∧ [a]
∨
ϕ∈Ba

ϕ
)

| maxX.ϕ | minX.ϕ | X,

where A ⊆ Act and, for each action a in A, the set Ba ⊆ F is a finite set of formulas. J

In disjunctive formulas, conjunctions occur to express that for each a∈A, every a-successor
satisfies a formula in some set Ba and every formula in Ba is satisfied by some a-successor.

I Lemma 27 ([50]). Every recHML formula is equivalent to a disjunctive one. J

In [50], Walukiewicz provides a way to construct an equivalent disjunctive formula from a
recHML one, based on a tableau method. He also shows that the satisfiability of disjunctive
recHML formulas is decidable in linear time. Thus, we assume that, with the exception of
ff, all subformulas of disjunctive formulas are satisfiable. This pre-processing accounts for
one exponential in the complexity of our transformaiton.

We now establish a fundamental property of sHML formulas: if a process p does not
satisfy ψ ∈ sHML, then no process q that can produce all traces of p satisfies ψ.

I Definition 28. Process p covers process q when all traces of q are traces of p. J

I Lemma 29. If process p covers process q, then for closed θ∈sHML, q /∈JθK implies p/∈JθK.

Proof. From [27] there is a sound and complete m for θ. By p /∈ JθK and the completeness
of m, there is a trace of p (and of q), rejected by m. By the soundness of m, q /∈ JθK. J

We present the construction of the strongest monitorable consequence of a given formula ϕ
in three stages. We first eliminate the existential modalities in a formula. Then we eliminate
least fixpoints. Finally, we use a more involved tableau method to remove all disjunctions.

5.1 Eliminating Existential Modalities
I Definition 30. The operator f1 : recHML→ recHML is defined such that f1(〈a〉ϕ) = tt,
while commuting with all other logical connectives. J

That is, f1(ϕ) results from ϕ by replacing every occurrence of a subformula 〈a〉ϕ by tt.

I Lemma 31. For every ϕ ∈ disHML, f1(ϕ) has the same sHML consequences as ϕ.

L. Aceto et al. XX:11

Γ ∪ {ψ ∨ ϕ}
(∨)

Γ ∪ {ϕ,ψ}
Γ ∪ {ψ ∧ ϕ}

(∧)
Γ ∪ {ϕ} Γ ∪ {ψ}

Γ ∪ {maxX.ϕ}
(max)

Γ ∪ {ϕ}
Γ ([a])

{ψ | [a]ψ ∈ Γ}

Γ ∪ {X}
(X)

Γ ∪ {ϕX}
Γ ∪ {tt}

(tt)
{tt}

Γ ∪ {ff}
(ff)Γ

Γ ∪ {[a]ψ, [b]ϕ} a 6= b
([a, b])tt

Figure 2 Tableau rules where Γ is a set of formulas.

(Proof outline). We show that every sHML formula is a consequence of ϕ iff it is a con-
sequence of f1(ϕ). For the if direction, it suffices to prove JϕK ⊆ Jf1(ϕ)K using the monoton-
icity of recHML operators resulting from the absence of negation.

For the only-if direction, the intuition is as follows (see App. A). Let θ be a sHML
formula such that JϕK ⊆ JθK. To show Jf1(ϕ)K ⊆ JθK, we proceed by contradiction: starting
from a process p ∈ Jf1(ϕ) ∧ ¬θK we build a cover q of p such that q ∈ JθK, which contradicts
Lem. 29. Intuitively, this cover is obtained by finding the states r that are reachable from p

in which conjunctions of the form
∧
a∈A [a]

∨
Ba must be true, and adding an a-successor

sϕ to r for each ϕ ∈ Ba and a ∈ A. This is possible, because all subformulae of disjunctive
formulas are assumed to be satisfiable. Then

∧
a∈A

((
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba) is true in the

corresponding state r of q, which allows us to argue that q ∈ JϕK ⊆ JθK. J

I Remark 32. Disjunctive form is key here: Applying f1 to formula ϕ4 from Ex. 25, which
is not disjunctive, yields

(∧
a∈Act1

∧
b∈Act2

([a][b]ff ∨ tt)
)
∧
(∧

a∈Act2

∧
b∈Act1

([a][b]ff ∨ tt)
)

which can be simplified to tt and does not provide any useful information for monitoring.

5.2 Eliminating Least Fixpoints

IDefinition 33. The operator f2 : recHML→ recHML is defined such that f2(minX.ϕ) =
maxX.ϕ, while commuting with all other logical connectives. J

I Lemma 34. For every closed formula ϕ ∈ recHML without existential modalities, f2(ϕ)
has the same sHML consequences as ϕ.

(Proof outline). One direction follows from JminX.ϕK ⊆ JmaxX.ϕK: since recHML is
negation-free, it behaves in a monotone way, and therefore f2(ϕ) is a consequence of ϕ.

The intuition of the proof for the other direction is as follows (see App. A). If a process p
violates a formula θ ∈ sHML but satisfies f2(ϕ), then, due to the monitorability of θ, there
is a finite trace t of p, where every process producing t must also violate θ. Thus, there is
a finite process q that violates θ, but also satisfies f2(ϕ) due to the absence of existential
modalities in f2(ϕ). Since f2(ϕ) and ϕ only differ with respect to their fixpoint operators,
they agree on all finite processes, and therefore q also satisfies ϕ. J

I Remark 35. Lem. 34 does not hold for formulas with existential modalities. For instance, the
formula minX.〈a〉X is equivalent to, and thus implies, ff; yet f2(minX.〈a〉X) = maxX.〈a〉X,
which is satisfiable by a system producing the infinite trace aω.

I Example 36. Formula ϕ2 from Ex. 23 becomes maxX.([w]ff∧ [c]X∧ [o](max Y.[c]Y ∧ [o]Y))
under f2(−), which simplifies to maxX.([w]ff ∧ [c]X) as max Y.[c]Y ∧ [o]Y simplifies to tt.
Since Act={o, c,w} this formula expresses the property that “w does not occur before o.” J

XX:12 The best a monitor can do

5.3 Eliminating Disjunctions
The final and hardest step turns a formula without existential modalities and least fixpoints
into its strongest sHML consequence. The intuition is that a violation of a specification of
the form [a]ψ ∨ [a]ϕ can only be monitored if there is an a-successor in which violations for
both ψ and ϕ can be detected. Hence, we turn [a]ψ ∨ [a]ϕ into [a](ψ ∨ ϕ). In contrast, no
violation of [a]ψ ∨ [b]ϕ can be identified from a single branch, so we rewrite it to tt.

To transform fixpoint-free formulas, it suffices to recursively push disjunctions through
the formula. The transformation in the presence of fixpoints is roughly dual to that for
disjunctive form presented by Janin and Walukiewicz in [32] and, like theirs, uses a set of
tableau rules, but this time to eliminate disjunctions rather than conjunctions. Our rules
differ significantly from those in [32] in how they deal with modalities; in particular, our
transformation does not preserve the semantics of formulae, but only sHML consequences.

I Definition 37 (Tableau elimination of disjunctions). Given a closed formula ϕ with neither
min operators nor existential modalities, we build a tableau T (ϕ) consisting of a tree with
back edges, where each node n is labelled with a set Lϕ(n) of subformulae of ϕ, such that:

The root is labelled {ϕ},
For each node n and its children, there is a tableau rule (Fig. 2) such that n is labelled
with the premise and its children are labelled with its conclusions,
This tableau rule is the rule [a] only if Lϕ(n) matches the premise of no other tableau-rule.

The disjunction-free formula equivalent to ϕ is then retrieved from T (ϕ) by defining the
labelling L′ as follows and applying it to each node. For each leaf node n:

If it has a back-edge to an inner node m, it is labelled Xm;
If it does not have a back-edge, it is labelled with tt, if it contains tt, and ff, otherwise.

For each inner node n that is not the target of a back-edge:

If n has a child m via the rules ∨, tt, [a, b], X,max, then l has the label L′(m);
If n has children m,m′ via rule ∧, then l is label L′(m) ∧ L′(m′);
If n has a child m via [a], then l is label [a]L′(m).

In a second pass, if n is the target of back-edges, then its label is maxXn.l, and otherwise it
is l, where l = L′(n) as defined above. Let f3(ϕ) be the L′-label of the root of T (ϕ).

I Example 38. Consider the bespoke formula maxX.[a]([a]X ∧ [b]ff)∨ [a]([a]ff ∧ [b]X). The
tableau for this formula labelled with subsets of subformulas using Def. 37 is given below.

maxX.[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X)
(max)

[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X)
(∨)

[a]([a]X ∧ [b]ff), [a]([a]ff ∧ [b]X)
([a])

[a]X ∧ [b]ff, [a]ff ∧ [b]X
(∧)

[a]X, [a]ff ∧ [b]X
(∧)

[a]X, [a]ff
([a])

X,ff (ff)
X

[a]X, [b]X
([a, b])tt

[b]ff, [a]ff ∧ [b]X
(∧)

[b]ff, [a]ff
([a, b])tt

[b]ff, [b]X
([b])ff, X (ff)

X

L. Aceto et al. XX:13

The corresponding tableau relabelled as L′ yielding the strongest sHML consequence is:

maxX1.[a]([a]X1 ∧ tt ∧ [b]X1)
(max)

[a]([a]X1 ∧ tt ∧ [b]X1)
(∨)

[a]([a]X1 ∧ tt ∧ [b]X1)
([a])

[a]X ∧ tt ∧ [b]X1 (∧)
[a]X1 ∧ tt

(∧)
[a]X1 ([a])
X1 (ff)
X1

tt ([a, b])tt

tt ∧ [b]X1 (∧)tt ([a, b])tt
[b]X1 ([b])
X1 (ff)
X1 J

I Lemma 39. Given a closed formula ϕ of recHML without min operators or existential
modalities, f3(ϕ) has the same sHML consequences as ϕ.

Proof sketch. The proof of this lemma rests on the observation that all violations of f3(ϕ)
and ϕ correspond to a single path in T (ϕ). We can then use the two labellings of T (ϕ) to
move between the witnesses that we use for the violation of f3(ϕ) and ϕ. J

5.4 The strongest sHML consequence
I Theorem 40. f3◦f2◦f1(ϕ) is the strongest sHML consequence of any closed ϕ ∈ recHML.

Proof. Follows from Lems. 31 and 39 and Def. 33. By construction f3 ◦ f2 ◦ f1(ϕ) ∈ sHML.
Moreover, f3 ◦ f2 ◦ f1(ϕ) has the same sHML consequences as ϕ, making it the strongest
sHML consequence of ϕ. J

A symmetric construction computes the weakest satisfaction-monitorable antecedent of
ϕ, in order to synthesize an optimal acceptance-monitor. Alternatively, we can construct
the weakest satisfaction-monitorable antecedent by negating f3 ◦ f2 ◦ f1(¬ϕ) where ¬ϕ is
the negation of ϕ in disjunctive form. In principle, one could also consider constructing
optimal monitors from both violations and satisfactions of a property ϕ, by deducing the
strongest violation-monitorable consequence ϕV of ϕ and the weakest satisfaction-monitorable
antecedent ϕS of ϕ; the monitors could be used in tandem to detect all possible satisfactions
or violations for ϕ. However, in a branching-time setting either ϕV or ϕS would be trivial.

I Proposition 41. For any branching-time property P , its strongest monitorable consequence
PV and its weakest monitorable antecedent PS, we either have PV = Prc or PS = ∅. J

5.5 Complexity
Eliminating existential modalities and fixpoints does not increase the size of a formula.
However, the two tableau constructions used—the first one required to turn the initial
formula into disjunctive form, and the second one used to eliminate disjunctions—each
can cause an exponential blow-up. This seems unavoidable: disjuntive form eliminates
conjunctions while the second eliminates disjunctions (except those that choose an action).

Morally, this is just the cost of determinising alternating automata (already double
exponential for finite automata [16]): the automaton corresponding to our final formula,
obtained via standard formula-automata correspondences [20], is deterministic (even though
automata over trees are not in general determinisable). Indeed, the synthesis from [27], when
applied to the formulas we obtain, yields deterministic monitors, in the sense of [6], because
our formulas contain no disjunctions, and only conjunctions over disjoint modalities (of the

XX:14 The best a monitor can do

form
∧
a∈A[a]ψa). Whether a more compact non-deterministic monitor can be synthesised

instead, or whether the last step, of constructing f3(−), can be implemented on-the-fly (in
the spirit of [35]) is left for future work.

Note that this double-exponential complexity is already present, and necessary, in the
corresponding linear-time problem computing a deterministic automaton that recognises the
bad prefixes of a linear-time property [35]. As Kupferman and Vardi write, this procedure
has the flavour of determinisation, hence its double-exponential complexity. Our procedure,
despite the added complications associated with branching-time, follows the same principle.
Interestingly, obtaining the strongest monitorable consequence of an LTL formula in LTL
form is much harder. While the (counter-free) non-deterministic automaton that recognises
executions without bad prefixes, i.e., the strongest monitorable consequence of an LTL formula,
requires exponential blow-up, the best procedure known to date to go from a (counter-free)
non-deterministic automaton to an LTL formula uses star-free regular expressions and does
not have an elementary complexity upper bound [41, 44].

In any case, the theoretical worst-case blow-up is unlikely to seriously affect monitoring
efforts: both f1 and f2 only simplify formulas while f3 will simplify subformulae containing
mixed modalities [a]ψ ∧ [b]ϕ. Blow-ups can only occur in f3 if disjunctions and modalities
over the same action interact in a pathological way.

6 Related Work

Linear- vs. Branching-time Verification. Runtime monitoring can be used to verify
whether the execution being observed satisfies a linear-time property, for example before
the output of a third party component is used as input for a critical component. It can
also be used to verify whether a system satisfies a branching-time property, for example
as a best-effort light-weight verification strategy. The branching-time properties that one
verifies at runtime often consist of properties of the form “on all paths, ϕL holds”, where
ϕL is a linear-time property. For these kinds of properties, the distinction between the
branching-time and linear-time cases can be subtle. In particular, the branching-time case
is then implicitly reduced to the linear-time case, i.e., just checking for violations of ϕL.
However, in this situation it only makes sense to check for violations of ϕL, as satisfactions
do not give enough information to deduce anything about the system itself. In contrast, if
we are interested in truly linear-time properties, then a monitor can simultaneously check
both for violations and satisfactions, as it is done in [28].

Here we are in the branching-time setting: the prior knowledge can be an arbitrary
branching-time property, and the property to be monitored can either be a linear-time
property quantified universally over all branches, or any other branching-time property. Note
that given an LTL formula ϕL, there are standard translations to build a recHML formula
ϕB such that ϕB holds in a system if and only if ϕL holds in all of its executions [15]. These
can be used to combine a linear-time property, to verify at runtime, with a branching-time
property representing the prior knowledge.

As discussed in Sec. 5.5, finding optimal monitors for properties over infinite traces
corresponds to computing the good/bad prefixes of the property. Kupferman and Vardi [35]
describe how to do this for safety properties described as LTL formulas or Büchi automata.
Havelund and Peled [29] describe the same procedure for arbitrary trace properties.
Hierarchies of monitorability. There are many definitions of monitorability (surveyed
in [5]) and property classifications (for instance [29, 43]) that help us understand the
guarantees we can expect from RV tools for different properties. However monitorable a

L. Aceto et al. XX:15

property is, its optimal monitor is the gold standard to which any RV tool can aspire. Thus,
optimal monitors might be useful for determining the degree of monitorability of a property.
Monitoring with prior knowledge Independently, Cimatti et al. and Leucker have
considered a form of monitoring with prior knowledge in [17, 38]. In both cases, the prior
knowledge is a set of traces, i.e., a linear-time property. Leucker proposes an LTL semantics
parameterised by this prior knowledge while Cimatti et al. incorporate the assumption directly
into the monitoring algorithm, thereby treating violations of the assumptions and violations
of the property to be monitored differently. Stucki et al. [48] parameterise monitorability
for hyperproperties with the system under consideration. Their notion of perfect monitor
corresponds to our optimal monitor. Although the authors in [23] study the decidability
of monitorability for hyperproperties, neither work describes methods for computing the
optimal monitors of hyperproperties. To our knowledge, this is still an open problem.
Monitoring non-regular properties. Although our technical development focuses on
recHML, the theory of runtime monitoring extends to more expressive logics and monitor
models. For instance, [22] considers monitors with registers, [49] consider recursively enumer-
able safety properties and [48] distinguishes between whether a property is monitorable in
the abstract or whether its sound and complete monitor is computable. Interesting directions
include computing the strongest monitorable consequence of context-free properties, and
parameterising the type of monitorable consequence we look for by the computational power
of the monitoring setup. For instance, prior work [2] has already shown that the monitorable
fragment of a logic can change substantially; in particular, when considering a monitoring
setup that allows for repeated monitored runs of the same system, disjunctions become
part of the monitorable safety fragment. This would, in effect, obviate the need for the last
transformation discussed in Sec. 5.3, thereby side-stepping one exponential blowup.
Multi-valued logics. Logics with three-valued semantics (yes, no, indecisive) can be used
to describe monitors [12, 21, 19]. However, whether monitor semantics are given by a
many-valued logic or other means, questions of soundness, completeness and optimality with
respect to the (two valued) specification formula remain the same.
Monitoring for under-specified components. In orthogonal work that has similarities
with ours, Sistla and co-authors [42, 47, 46] address the following problem: given an under-
specification ϕ, and a goal specification ψ, compute a safety property θ such that ϕ∧θ =⇒ ψ.
The intuition for this is that if ϕ is assumed, and violations of θ can be monitored at runtime,
then ψ can be assumed whenever the monitor does not detect a violation of θ. This problem
then reduces to computing a safety antecedent of a specification, namely ¬ϕ ∧ ψ. Unlike the
strongest monitorable consequence, there is no weakest safety antecedent: properties can be
approximated from below with arbitrary precision using a safety formula.
Future Work. In addition to the future lines or research outlined so far, we plan to
implemente the procedure for computing the strongest monitorable consequence from Sec. 5,
and then integrate this as a tool chain with the monitor synthesis tool of [9].

7 Conclusion

We have shown how to compute optimal monitors for arbitrary regular branching-time
properties, following a procedure which is sound for arbitrary (not just regular) properties.
Our core insight is that the theory of runtime monitors can be extended to the (partial)
verification of specifications previously dismissed as unmonitorable, such as most branching-
time properties. In particular, this enables us to integrate any prior contextual knowledge of
the system into our monitors. We show that this is indeed the best a monitor can do.

XX:16 The best a monitor can do

References
1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for

silent actions. In Satya Lokam and R. Ramanujam, editors, FSTTCS, volume 93 of LIPIcs,
pages 7:1–7:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework
for parameterized monitorability. In Christel Baier and Ugo Dal Lago, editors, Foundations
of Software Science and Computation Structures - 21st International Conference, FOSSACS
2018, volume 10803 of Lecture Notes in Computer Science, pages 203–220. Springer, 2018.
URL: https://doi.org/10.1007/978-3-319-89366-2_11.

3 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. On the complexity of determinizing monitors. In Arnaud Carayol and Cyril
Nicaud, editors, Implementation and Application of Automata - 22nd International Conference,
CIAA 2017, volume 10329 of Lecture Notes in Computer Science, pages 1–13. Springer, 2017.
URL: https://doi.org/10.1007/978-3-319-60134-2_1.

4 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proceedings of
the ACM on Programming Languages, 3(POPL):52:1–52:29, 2019. URL: https://dl.acm.org/
citation.cfm?id=3290365.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability. In Software Engineering and Formal Methods - 17th
International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings,
volume 11724 of LNCS, pages 433–453. Springer, 2019. URL: https://doi.org/10.1007/
978-3-030-30446-1_23, doi:10.1007/978-3-030-30446-1_23.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. Determinizing monitors for HML with recursion. Journal of Logical and Algebraic
Methods in Programming, 111:100515, feb 2020. doi:10.1016/j.jlamp.2019.100515.

7 Bowen Alpern and Fred B Schneider. Defining liveness. Information processing letters,
21(4):181–185, 1985.

8 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir.
Behavioural Types: from Theory to Tools, chapter A Runtime Monitoring Tool for Actor-Based
Systems, pages 49–74. River Publishers, 2017.

9 Duncan Paul Attard and Adrian Francalanza. A monitoring tool for a branching-time logic. In
Yliès Falcone and César Sánchez, editors, Runtime Verification - 16th International Conference,
RV 2016, volume 10012 of Lecture Notes in Computer Science, pages 473–481. Springer, 2016.
URL: https://doi.org/10.1007/978-3-319-46982-9_31.

10 Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model checking.
MIT press, 2008.

11 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to Runtime
Verification, pages 1–33. Springer International Publishing, Cham, 2018. doi:10.1007/
978-3-319-75632-5_1.

12 Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and the ugly,
but how ugly is ugly? In Oleg Sokolsky and Serdar Taşıran, editors, Runtime Verification,
pages 126–138, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

13 Julian Bradfield and Colin Stirling. Chapter 4 - Modal logics and mu-calculi: An introduction.
In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages 293 –
330. Elsevier Science, Amsterdam, 2001. URL: http://www.sciencedirect.com/science/article/
pii/B9780444828309500229, doi:https://doi.org/10.1016/B978-044482830-9/50022-9.

14 Julian Bradfield and Colin Stirling. Modal µ-calculi. Studies in Logic and Practical Reasoning,
3:721–756, 2007.

15 Julian Bradfield and Igor Walukiewicz. The mu-calculus and Model Checking, pages 871–919.
05 2018. doi:10.1007/978-3-319-10575-8_26.

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://dl.acm.org/citation.cfm?id=3290365
https://dl.acm.org/citation.cfm?id=3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
http://www.sciencedirect.com/science/article/pii/B9780444828309500229
http://www.sciencedirect.com/science/article/pii/B9780444828309500229
https://doi.org/https://doi.org/10.1016/B978-044482830-9/50022-9
https://doi.org/10.1007/978-3-319-10575-8_26

L. Aceto et al. XX:17

16 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, jan 1981. doi:10.1145/322234.322243.

17 Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-based runtime verification
with partial observability and resets. In International Conference on Runtime Verification,
pages 165–184. Springer, 2019.

18 Edmund M Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT press, 1999.
19 Volker Diekert and Martin Leucker. Topology, monitorable properties and runtime verifica-

tion. Theoretical Computer Science, 537:29 – 41, 2014. Theoretical Aspects of Computing
(ICTAC 2011). URL: http://www.sciencedirect.com/science/article/pii/S0304397514002035,
doi:https://doi.org/10.1016/j.tcs.2014.02.052.

20 E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In
FoCS, volume 91, pages 368–377. Citeseer, 1991.

21 Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce
at runtime? International Journal on Software Tools for Technology Transfer, 14(3):349–382,
2012.

22 Thomas Ferrère, Thomas A. Henzinger, and N. Ege Saraç. A theory of register monitors.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’18, page 394–403, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3209108.3209194.

23 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods in System Design, 54(3):336–363, 2019.

24 Adrian Francalanza. A Theory of Monitors (Extended Abstract). In FoSSaCS, volume 9634
of LNCS, pages 145–161, 2016.

25 Adrian Francalanza. Consistently-detecting monitors. In Roland Meyer and Uwe Nestmann,
editors, 28th International Conference on Concurrency Theory (CONCUR 2017), volume 85
of LIPIcs, pages 8:1–8:19, Dagstuhl, Germany, 2017. Schloss Dagstuhl. doi:10.4230/LIPIcs.
CONCUR.2017.8.

26 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,
Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In
Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification - 17th International Con-
ference, RV 2017, volume 10548 of Lecture Notes in Computer Science, pages 8–29. Springer,
2017. URL: https://doi.org/10.1007/978-3-319-67531-2_2.

27 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017. URL:
https://doi.org/10.1007/s10703-017-0273-z.

28 M.C.W. Geilen. On the construction of monitors for temporal logic properties. Electronic
Notes in Theoretical Computer Science, 55(2):181 – 199, 2001. RV’2001, Runtime Verifica-
tion (in connection with CAV ’01). URL: http://www.sciencedirect.com/science/article/pii/
S157106610400252X, doi:https://doi.org/10.1016/S1571-0661(04)00252-X.

29 Klaus Havelund and Doron Peled. Runtime Verification: From Propositional to First-Order
Temporal Logic. In Runtime Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings, volume 11237 of LNCS, pages 90–112. Springer,
2018. URL: https://doi.org/10.1007/978-3-030-03769-7_7.

30 Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In TACAS,
volume 2, pages 342–356. Springer, 2002.

31 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In International Conference on
Concurrency Theory, pages 263–277. Springer, 1996.

32 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In CONCUR '96: Concurrency
Theory, pages 263–277. Springer Berlin Heidelberg, 1996. doi:10.1007/3-540-61604-7_60.

https://doi.org/10.1145/322234.322243
http://www.sciencedirect.com/science/article/pii/S0304397514002035
https://doi.org/https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
http://www.sciencedirect.com/science/article/pii/S157106610400252X
http://www.sciencedirect.com/science/article/pii/S157106610400252X
https://doi.org/https://doi.org/10.1016/S1571-0661(04)00252-X
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/3-540-61604-7_60

XX:18 The best a monitor can do

33 Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. URL: http://doi.acm.org/10.1145/360248.360251, doi:10.1145/360248.360251.

34 Dexter C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

35 Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001.

36 Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

37 Kim G. Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic with recursion. The-
oretical Computer Science, 72(2):265 – 288, 1990. URL: http://www.sciencedirect.com/science/
article/pii/030439759090038J, doi:http://dx.doi.org/10.1016/0304-3975(90)90038-J.

38 Martin Leucker. Sliding between model checking and runtime verification. In International
Conference on Runtime Verification, pages 82–87. Springer, 2012.

39 Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Daniel Thoma. Runtime
verification for timed event streams with partial information. In Bernd Finkbeiner and
Leonardo Mariani, editors, Runtime Verification - 19th International Conference, RV 2019,
Porto, Portugal, October 8-11, 2019, Proceedings, volume 11757 of LNCS, pages 273–291.
Springer, 2019. doi:10.1007/978-3-030-32079-9_16.

40 Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin. Ltl is closed under
topological closure. Information Processing Letters, 114(8):408–413, 2014.

41 Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin. Ltl is closed under
topological closure. Information Processing Letters, 114(8):408–413, 2014.

42 Tiziana Margaria, A. Prasad Sistla, Bernhard Steffen, and Lenore D. Zuck. Taming interface
specifications. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 – Concurrency
Theory, pages 548–561, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

43 Doron Peled and Klaus Havelund. Refining the safety–liveness classification of temporal
properties according to monitorability. In Models, Mindsets, Meta: The What, the How, and
the Why Not?, pages 218–234. Springer, 2019.

44 A Peuli and Lenore Zuck. In and out of temporal logic. In [1993] Proceedings Eighth Annual
IEEE Symposium on Logic in Computer Science, pages 124–135. IEEE, 1993.

45 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, 2000.

46 A Prasad Sistla and Abhigna R Srinivas. Monitoring temporal properties of stochastic systems.
In International Workshop on Verification, Model Checking, and Abstract Interpretation, pages
294–308. Springer, 2008.

47 A Prasad Sistla, Min Zhou, and Lenore D Zuck. Monitoring off-the-shelf components. In
International Workshop on Verification, Model Checking, and Abstract Interpretation, pages
222–236. Springer, 2006.

48 Sandro Stucki, César Sánchez, Gerardo Schneider, and Borzoo Bonakdarpour. Gray-box
monitoring of hyperproperties. In Formal Methods–The Next 30 Years: Third World Congress,
FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings, volume 11800, page 406. Springer
Nature, 2019.

49 Mahesh Viswanathan and Moonzoo Kim. Foundations for the run-time monitoring of reactive
systems - fundamentals of the MaC language. In Zhiming Liu and Keijiro Araki, editors,
Theoretical Aspects of Computing - ICTAC 2004, First International Colloquium, volume
3407 of Lecture Notes in Computer Science, pages 543–556. Springer, 2004. URL: https:
//doi.org/10.1007/978-3-540-31862-0_38.

50 Igor Walukiewicz. Completeness of Kozen's axiomatisation of the propositional µ-calculus.
Information and Computation, 157(1-2):142–182, February 2000. doi:10.1006/inco.1999.
2836.

http://doi.acm.org/10.1145/360248.360251
https://doi.org/10.1145/360248.360251
http://www.sciencedirect.com/science/article/pii/030439759090038J
http://www.sciencedirect.com/science/article/pii/030439759090038J
https://doi.org/http://dx.doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1006/inco.1999.2836
https://doi.org/10.1006/inco.1999.2836

L. Aceto et al. XX:19

A Technical Proofs

In our proofs, instead of working with the classical semantics, we use consistent annotations
and counter-annotations which respectively witness that a property holds or does not hold
for a process. The intuition is that an evaluation of ψ ∨ ϕ to true must also evaluate either
ψ or ϕ to true, and an annotation indicates which one. Similarly, for 〈a〉ψ to be true at a
state, one of the state’s a-successors must be annotated with ψ.

I Example 42. The witness of the reachability specification minX.(〈a〉X ∨ 〈b〉tt) (there is a
sequence of a-transitions that leads to a b-transition) for a process p would consist of the
following annotation: p is annotated with

{minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈a〉X},

a finite sequence of a-successors will be annotated with

{X,minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈a〉X}

and finally an a-successor will be annotated with

{X,minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈b〉tt}

and its b-successor will be annotated with tt. J

In the following, for each formula ϕ with free variables we consider the closure c(ϕ) of ϕ,
which results by replacing in ϕ all free variables X by ϕX . We use JϕK for an open formula
ϕ, to mean Jc(ϕ)K. We say that a formula ϕ is satisfiable when JϕK 6= ∅.

I Definition 43 (Locally consistent annotation). An annotation A : P → P(sf (ϕ)), where
P ⊆ Prc is a labelling of P (a partial labelling of Prc) with sets of subformulae of a closed
formula ϕ of recHML. An annotation is locally consistent if for all states s ∈ P :

ff 6∈ A(s);
If minX.ϕ ∈ A(s) or maxX.ϕ ∈ A(s) then ϕ ∈ A(s);
If X ∈ A(s) then minX.ϕ ∈ A(s) if X is a least fixpoint variable and maxX.ϕ ∈ A(s)
otherwise;
If ϕ ∧ ψ ∈ A(s) then ϕ ∈ A(s) and ψ ∈ A(s);
If ϕ ∨ ψ ∈ A(s) then ϕ ∈ A(s) or ψ ∈ A(s);
If 〈a〉ϕ ∈ A(s) then ϕ ∈ A(s′) for some s′ ∈ P , such that s a−→ s′;
If [a]ϕ ∈ A(s) then ϕ ∈ A(s′) for all s′ ∈ Prc, such that s a−→ s′. J

I Definition 44. For annotation A, an annotated sequence is a (finite or infinite) sequence
π = (ϕ0, s0)(ϕ1, s1) · · · , such that

for each i, ϕi ∈ A(s0);
for all i, i+ 1 that appear as indexes in π, ϕi is of the form ϕi+1 ∧ψ, ψ ∧ϕi+1, ϕi+1 ∨ψ,
ψ ∨ ϕi+1, [a]ϕi+1, 〈a〉ϕi+1, minX.ϕi+1, minX.ϕi+1, or X, where ϕi+1 = minX.ψ or
minX.ψ;
if ϕi = [a]ϕi+1 or 〈a〉ϕi+1, then si

a−→ si+1, and otherwise si = si+1; J

It is not hard to see that if two fixpoint formulas ϕ1, ϕ2 appear in an annotated sequence,
then in the subsequence between (but including) the respective appearances of ϕ1 and ϕ2,
there appears a fixpoint formula ϕ3, such that ϕ1 and ϕ2 are subformulae of ϕ3. Therefore,
in every infinite annotated sequence there appears infinitely often a fixpoint formula ψ, such
that all other fixpoint formulas that appear infinitely often are subformulae of ψ. Then, ψ is
called the outermost fixpoint formula that appears infinitely often in the sequence.

XX:20 The best a monitor can do

I Definition 45 (Consistent Annotation). An annotation is consistent if it is both locally
consistent and for every infinite annotated sequence, the outermost fixpoint formula that
appears infinitely often in the sequence is a max-formula. J

It is a standard result (see for example [14] for a more thorough discussion) that for a
process p and a subformula ϕ of ϕ, we have that p ∈ JϕK if and only if there is a consistent
annotation such that ϕ ∈ A(p). We call this a consistent ϕ-annotation of p.

We observe that, because formulas are assumed to be guarded, every annotation on
processes with no infinite traces is consistent if and only if it is locally consistent. The same
is true, if no min-fixpoints appear in the annotation.

For convenience, we also define the dual, a consistent counter-annotation, which witnesses
that a computation tree violates a property.

I Definition 46 (Consistent counter-annotation). A counter-annotation C : P → P(sf (ϕ))
is a labelling of P ⊆ Prc with sets of subformulae of a formula ϕ of recHML. A counter-
annotation is locally consistent if for all states s ∈ P :

tt 6∈ C(s);
If minX.ϕ ∈ C(s) or maxX.ϕ ∈ C(s) then ϕ ∈ C(s);
If X ∈ C(s) then minX.ϕ ∈ C(s);
If ϕ ∧ ψ ∈ C(s) then ϕ ∈ C(s) or ψ ∈ C(s);
If ϕ ∨ ψ ∈ C(s) then ϕ ∈ C(s) and ψ ∈ C(s);
If 〈a〉ϕ ∈ C(s) then ϕ ∈ C(s′) for all s′ ∈ Prc, such that s a−→ s′;
If [a]ϕ ∈ C(s) then ϕ ∈ C(s′) for some s′ ∈ P , such that s a−→ s′.

Counter-annotated sequences are defined similarly to annotated sequences. A counter-
annotation is consistent if it is both locally consistent and for every infinite annotated sequence
of subformulae, the outermost fixpoint formula that appears infinitely often in the sequence is
a µ-formula. J

Then, a process p violates a subformula ϕ of ϕ if and only if there is a consistent
counter-annotation C, such that ϕ ∈ C(p).

Eliminating existentials
Lemma 31. For every closed disjunctive recHML formula ϕ, the formula f1(ϕ) has the
same sHML consequences as ϕ.

Proof. Observe that we can construct a consistent annotation for f1(ϕ) from a consistent
annotation for ϕ, by simply replacing each ψ in the annotation by f1(ψ). Then, all conditions
for a consistent annotation are satisfied, and therefore ϕ implies f1(ϕ).

Let θ ∈ sHML be a consequence of ϕ. We show that f1(ϕ) also implies θ.

Assume otherwise: let p be a process such that p ∈ Jf1(ϕ) ∧ ¬θK. Let A1 be an annotation
that witnesses p ∈ Jf1(ϕ)K.

We know, by Thm. 24, that θ is monitorable, so there is a finite trace t of p, such that
for every p′, if t is a trace of p′, then p′ ∈ J¬θK. So, let p = p0

a1−−→ p1
a2−−→ · · · ak−−→ pk, and

let q0, q1, . . . , qk be processes with only the following transitions: q0
a1−−→ q1

a2−−→ · · · ak−−→ qk.
From the above, we see that q0 /∈ JθK. Furthermore, we can define an annotation A2 on
{q0, q1, . . . , qk}, such that for all i = 1, . . . , k, A2(qi) = A1(pi). It is not hard to see, exploit-
ing the absence of existentials in f1(ϕ), that A2 is a consistent annotation, witnessing that

L. Aceto et al. XX:21

q0 ∈ Jf1(ϕ)K.

Let A3 be a minimal consistent annotation witnessing that q0 ∈ Jf1(ϕ)K.

Claim: for every i, if
∧
a∈B[a]

∨
Ba ∈ A3(qi) and

∧
a∈B′ [a]

∨
B′a ∈ A3(qi), then

B = B′ and for all a ∈ B, B′a = Ba.

First we observe that if
∧
a∈B[a]

∨
Ba ∈ A3(qi) and

∧
a∈B′ [a]

∨
B′a ∈ A3(qi), then there is

a ψ ∈ sf(ϕ), such that
∧
a∈B[a]

∨
Ba and

∧
a∈B′ [a]

∨
B′a are subformulae of ψ. Let ψ be

minimal, in that if there is another such ψ′, then ψ is a subformula of ψ′. Then, from the
conditions of local consistency, it can only be that

ψ =
∧
a∈B

[a]
∨
Ba =

∧
a∈B′

[a]
∨
B′a,

or that ψ = ψ1 ∨ ψ2, where
∧
a∈B[a]

∨
Ba is a subformula of ψ1 and

∧
a∈B′ [a]

∨
B′a is a

subformula of ψ2. In the first case, we are done. We now consider the second case. Without
loss of generality, we assume that if

∧
a∈B′′ [a]

∨
B′′a ∈ A3(qi−1) and

∨
B′′a ∈ A3(qi) and∨

B′′a is a subformula of ψ, then
∨
B′′a is a subformula of ψ1. Let A′3 be A3 after removing

all subformulae of ψ2 that are not subformulae of ψ2 from A′3(qi). We can then see that A′3
is still (locally) consistent, and therefore A3 is not minimal, resulting in a contradiction. As
such, the second case is impossible, and we proved the claim.

We have assumed that all subformulae of disjunctive formulas (except for ff) are satisfiable.
Therefore, for every subformula 〈a〉ψ of ϕ, we can fix a process sψ ∈ JψK, and assume a
consistent annotation A4 that witnesses these facts. We now construct a process r ∈ JϕK,
such that t is a trace of r. For each qi, i = 0, . . . , k, we construct a process q′i with exactly
the following transitions: q′i

ai+1−−−−→ q′i+1, if i < k, and q′i
a−→ sψ for every ψ ∈ Ba, for every

f1((
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba) ∈ A3(qi). We can now construct a consistent annotation A5 to

witness that q′i ∈ JψK, for every f(ψ) ∈ A3(qi). For each subformula (
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba

of ϕ and every ψ ∈ Ba, A5(sψ) = A4(sψ) ∪ {
∨
Ba}; for i = 0, . . . , k, A5(q′i) = {ψ ∈ sf(ϕ) |

f1(ψ) ∈ A3(q′i)}, and for every other state s, A5(s) = A4(s) if A4 is defined on s. It is then
not hard to see that all conditions for a consistent annotation are satisfied by A5. Therefore,
A5 witnesses that r def= q′0 ∈ JϕK. Furthermore, it is immediately evident that t is a trace of
r, and therefore r /∈ JθK, and therefore θ cannot be a consequence of ϕ, contradicting our
assumptions. This completes the proof of the lemma. J

I Example 47. The necessity of disjunctive form can be seen from the following example:
ψ = (〈a〉[b]ff) ∧ ([a]〈b〉tt ∨ [a][c]ff). For F = {[b]ff ∧ [c]ff, [c]ff}, the equivalent disjunctive
formula is: ∧

ϕ∈F
〈a〉ϕ ∧ [a]

∨
F.

In ψ, replacing existentials with tt would yield a formula itself equivalent to tt. However,
from its disjunctive form we can extract its strongest sHML consequence [a][c]ff (rather than
tt). J

Eliminating least fixpoints
Lemma 34. For every closed formula ϕ of recHML without existentials, f2(ϕ) has the
same sHML consequences as ϕ.

XX:22 The best a monitor can do

Proof. First, observe that ϕ implies f2(ϕ): an annotation for ϕ is locally consistent, so by
replacing all occurrences of min by max, we are certain to have no sequences with infinite
occurrences of min-formulas, so we have a consistent annotation for f2(ϕ).

Now, let θ ∈ sHML, such that θ is not a consequence of f2(ϕ). We prove that θ is also
not a consequence of ϕ, which completes the proof of the lemma. Since θ is not a consequence
of f2(ϕ), there is a p ∈ Jf2(ϕ)∧¬θK. Similarly to the proof of Lem. 31, we know, by Thm. 24,
that θ is monitorable, so we can construct a process q that has no infinite traces and satisfies
f2(ϕ) ∧ ¬θ. Let A be a consistent annotation that witnesses the fact. From A, we can then
construct an annotation A′: A′(s) = {ψ ∈ sf(ϕ) | f2(ψ) ∈ A(s)}, when A(s) is defined. It is
straightforward to see that A′ is locally consistent, using the fact that A is locally consistent.
It is also consistent, because q has no infinite traces. Therefore, A′ witnesses that q ∈ JϕK,
which completes the proof. J

A.1 Eliminating disjunctions
Lemma 39. Given a closed formula ϕ of recHML with neither min operators nor existen-
tials, f3(ϕ) has the same sHML consequences as ϕ.

Proof. We fix a tableau T (ϕ) and the corresponding labellings L and L′ of its nodes, as
defined in Def. 37.

We first show that f3(ϕ) is a consequence of ϕ, i.e., ¬f3(ϕ) implies ¬ϕ. Let p be a process
such that p /∈ Jf3(ϕ)K. Since f3(ϕ) is a sHML formula, and similarly to the proofs of Lems. 31
and 34, we can assume that process p has a single maximal trace t. Let C : P → P(sf (f3(ϕ)))
be a counter-annotation that witnesses the fact that p /∈ Jf3(ϕ)K. Since p only has finite
traces and f3(ϕ) is guarded, C has no infinite counter-annotated sequences. Therefore, ff
appears somewhere in C. We now define C ′, a counter annotation for ϕ that is defined on
the set P ⊆ Prc of processes that are reachable from p by a (possibly empty) sequence of
transitions:

C ′(q) = {ψ ∈ L(n) | n is a tableau node s.t. L′(n) ∈ C(q)},

for every q ∈ P . It is then, not hard to verify that C ′ is locally consistent, and therefore it is
also consistent, thus witnessing that p /∈ JϕK.

We now show that if ϕ implies a formula θ ∈ sHML, then f3(ϕ) also implies θ. Assume
that ϕ implies θ ∈ sHML. Let p be a process such that p 6∈ JθK — therefore, p 6∈ JϕK. Since
θ is a sHML formula, as above, we can assume that process p has a single maximal trace t.
Let C be a consistent counter-annotation that witnesses that p /∈ JϕK, defined over P ⊆ Prc.
We now define C ′, a counter annotation for f3(ϕ) that is defined on P ′ = {q ∈ P | C(q) 6= ∅}:

C ′(q) = {L′(n) | n is a tableau node s.t. L(n) ⊆ C(q)},

for every q ∈ P ′. Again, it is not hard to verify that C ′ is locally consistent — and since p has
no infinite traces and our formulas are guarded, C ′ is also consistent. Therefore, p 6∈ Jf3(ϕ)K,
so we have showed that f3(ϕ) implies all sHML consequences of ϕ, which completes the
proof. J

	Introduction
	Preliminaries
	The Strongest Monitorable Consequence
	Monitorability in recHML
	Computing Strongest Monitorable Consequences in recHML
	Eliminating Existential Modalities
	Eliminating Least Fixpoints
	Eliminating Disjunctions
	The strongest sHML consequence
	Complexity

	Related Work
	Conclusion
	Technical Proofs
	Eliminating disjunctions

