
Work on new event sources
for detectEr

Guðmundur Stefánsson
Master of Science
May 2017
School of Computer Science
Reykjavík University

M.Sc. Final Report

ii

Work on new event sources
for detectEr

by

Guðmundur Stefánsson

Final Report of 30 ECTS credits submitted to the School of Computer Science
at Reykjavík University in partial fulfillment

of the requirements for the degree of
Master of Science (M.Sc.) in School of Computer Science

May 2017

Supervisors:

Luca Aceto, Supervisor
Professor, Reykjavík University, Iceland

Anna Ingólfsdóttir, Supervisor
Professor, Reykjavík University, Iceland

Examiners:

Marcel Kyas, Examiner
Assistant Professor, Reykjavík University, Iceland

Adrian Francalanza, Supervisor
Senior Lecturer, University of Malta, Malta

Copyright
Guðmundur Stefánsson

May 2017

iv

Work on new event sources
for detectEr

Guðmundur Stefánsson

May 2017

Abstract

detectEr is an actor-based runtime verification tool for Erlang programs. It uses the trac-
ing mechanism of the Erlang virtual machine to trace messages sent between Erlang pro-
cesses, creating events that are matched against correctness properties defined in the logic
mHML. This thesis describes work that was done to allow detectEr to receive events from
new sources, including reading events from a textfile, and listening for events on a TCP
port. This change opens the door for detectEr to verify non-Erlang programs, and that is
demonstrated by showing how detectEr can now be used to verify communications between
an Erlang client and a Java server.

Unnið að nýjum atburðum
fyrir detectEr

Guðmundur Stefánsson

maí 2017

Útdráttur

detectEr er keyrslu-sannreyningartól fyrir Erlang forrit sem byggist á leikarahöguninni. Það
notar rekjunarvirkni Erlang sýndarvélarinnar til að rekja skilaboð á milli Erlang ferla, og
býr þannig til atburði sem eru bornir saman við réttleikaeigindi skilgreind í mHML. Þessi
ritgerð gerir grein fyrir því hvernig detectEr var uppfært til að geta fengið atburði á nýja
máta, þ.á.m. með því að lesa þá úr textaskrá, og með því að hlusta eftir þeim á TCP porti.
Þessi breyting gerir detectEr kleift að sannreyna forrit sem ekki eru skrifuð í Erlang, og sýnt
er fram á það með því að sýna hvernig hægt er að nota detectEr til að sannreyna samskipti á
milli Erlang biðlara og Java miðlara.

vi

Work on new event sources
for detectEr

Guðmundur Stefánsson

Final Report of 30 ECTS credits submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science (M.Sc.) in School of Computer Science

May 2017

Student:

Guðmundur Stefánsson

Supervisors:

Luca Aceto

Anna Ingólfsdóttir

Examiners:

Marcel Kyas

Adrian Francalanza

viii

The undersigned hereby grants permission to the Reykjavík University Library to reproduce
single copies of this Final Report entitled Work on new event sources
for detectEr and to lend or sell such copies for private, scholarly or scientific research
purposes only.
The author reserves all other publication and other rights in association with the copyright
in the Final Report, and except as herein before provided, neither the Final Report nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatsoever without the author’s prior written permission.

date

Guðmundur Stefánsson
Master of Science

x

xi

Contents

Contents xi

List of Figures xiii

1 Introduction 1
1.1 detectEr . 2
1.2 Contributions . 2

2 Context 3
2.1 Related work . 3
2.2 µHML and mHML . 4
2.3 Erlang . 5
2.4 How to instrument a system . 5

3 Making detectEr more versatile 7
3.1 Common behaviour . 7
3.2 Receiving events via tracing . 8
3.3 Retrieving events from a file . 8
3.4 Retrieving events from TCP . 8
3.5 Creating new event sources . 8
3.6 Multiple event sources . 9
3.7 How to use detectEr . 9

4 Case study 11
4.1 Case study behaviour . 11
4.2 Case study behaviour - Erlang . 11
4.3 Case study behaviour - Java . 12

4.3.1 The tracker . 12
4.4 Examples . 13

4.4.1 The properties . 13
4.4.2 Two Erlang traces . 14
4.4.3 Java via TCP . 14
4.4.4 Reading a file . 14
4.4.5 Reading a long file . 16
4.4.6 Discussion . 16

5 Conclusions and future work 17

Bibliography 19

xii

xiii

List of Figures

2.1 Synthesis and operation of a runtime verification monitor 3
2.2 The µHML syntax and semantics . 4
2.3 The syntax of mHML . 5

3.1 The processes of detectEr . 7
3.2 The processes of multiple event sources . 10

4.1 Output from the first test . 15

xiv

1

Chapter 1

Introduction

Concurrency [1] is a term used to describe the behaviour of systems comprising of multiple
components whose lifetimes overlap. When concurrent systems are running, a single com-
ponent executes one or more commands at a time, and then another component takes over
(thread interleaving). This way, the various components don’t need to wait for each other to
finish working, and thus it appears that they are running at the same time when they aren’t.
One of the benefits of this approach is that it incentivices dividing systems into multiple
components, where each component performs a specific task. But it has some drawbacks
as well, because it is possible for the multiple components to access shared resources at the
same time, which can cause errors. It is also possible for two processes to wait for each
other to finish, leading to neither process being able to continue. These kinds of problems
can make concurrent systems notoriously hard to debug, but despite that, concurrent systems
are still generally preferred to ones with only one component.

Due to the difficulty of debugging concurrent systems, it is necessary to formally ver-
ify their correctness. However, static verification techniques like model checking may not
always be the most suitable methods for this task. Concurrent systems have state spaces
that grow exponentially in size w.r.t. the number of components, due to thread interleaving,
thus making it potentially infeasible to check their entire state space. This is called the state
explosion problem [2]. Moreover, model checking requires a model of the system to be veri-
fied, and those are not guaranteed to be accurate [3], especially for large systems. Therefore,
it is useful to explore alternative methods to address the correctness problem. One approach
that has been proposed to that end is runtime verification.

Runtime verification (RV) is a method to verify the correctness of systems by analyzing
a single execution, or a finite subset of possible executions of the system [4]. Thus, the
system’s state space isn’t exhaustively checked, circumventing the state explosion problem.
It also eliminates the need for a model of the system, and lets the system be verified in its
runtime environment, which may not always be available for model checking. It is similar
to testing in the way that it doesn’t exhaustively check the system’s state space, but the
difference is that testing is only performed pre-deployment, whereas RV is performed post-
deployment. This means that RV can verify a program for as long as it is used, meaning that
potentially, all executions that will ever be executed will be verified. It is also possible to use
RV to recover from violations by altering the offending executions. (See, for instance, [5]–
[7]). However, runtime verification is not a perfect solution for verifying the correctness
of concurrent systems because it is not as expressive as model checking since it judges the
system based on a finite subset of possible executions instead of the entire state space.

2 CHAPTER 1. INTRODUCTION

1.1 detectEr
detectEr [8] is a runtime verification tool that verifies Erlang [9], [10] programs by tracing
the messages that they send and receive, using the tracing mechanism of the Erlang virtual
machine. These messages are then used to test the program against the correctness speci-
fications defined in the logic mHML [11]. It does so by generating a system of monitors
from a given property specification that run alongside the verified system and notify the user
whenever a violation or a satisfaction of a property is detected.

detectEr works well for verifying Erlang programs in terms of the messages sent between
processes, but there is room for improvement. For example, there are systems whose be-
haviour can be described in terms of messages sent between actors that are not programmed
in Erlang which could potentially be verified by detectEr. But since they aren’t, they can’t.
There are also many systems that have components in different programming languages,
like an Erlang server that serves clients written in Java or Python, for example. Therefore,
it is a good idea to change detectEr so it can receive its events from multiple sources simul-
taneously, and by using methods other than just the tracing mechanism of the Erlang virtual
machine, making it more versatile.

1.2 Contributions
Chapter 2 provides some useful context on runtime verification, and describes detectEr in
more detail. Readers who are familiar with detectEr can safely skip this chapter. Then
chapter 3 describes how I made detectEr more versatile by replacing the tracing functionality
with a more general component: the event source. The new component allows detectEr to
read events from a text file and listen for events on a TCP port, in addition to the already
existing tracing functionality. It also makes it easier to extend detectEr by adding support
for new sources of events, which makes future work on the tool easier. I also made it so that
it is possible to monitor multiple systems simultaneously, which can be a great asset when
monitoring concurrent systems. After that, chapter 4 demonstrates how the event source
works in action, by describing two systems that I used as a case study, one written in Erlang,
and the other one written in Java. These two systems are used to show how detectEr can now
be used to monitor multiple systems in different programming languages. Finally, chapter 5
discusses the event source’s impact and how work on it can continue in the future.

3

Chapter 2

Context

When a system is executed, a (possibly infinite) sequence of events is generated. This se-
quence is known as a trace, and it reflects the behaviour of the system in terms of function
invocations or messages sent between processes. In runtime verification, these traces are
fed to a software entity known as a monitor, which matches the events against a predeter-
mined specification of correctness, known as a property, in order to determine if the system
is behaving according to the given specification. The monitor can reach one out of three
possible verdicts for each execution: the system satisfies the property, the system violates
the property, or the trace does not give enough information to reach a conclusive verdict.
This process is illustrated in Figure 2.1.

2.1 Related work
There exist a number of runtime verification tools. For example, LARVA [12] is a run-
time verification tool which uses properties defined with DATEs (Dynamic communication
Automata with Timers and Events) [13] to verify Java programs. It has been extended to
monitor Erlang programs as well, by creating a new version, Elarva [14], making it the only
other runtime verification tool for Erlang, to my knowledge. Java PathExplorer [15] is an-
other runtime verification tool for Java, developed by NASA, which tests execution traces

Figure 2.1: Synthesis and operation of a runtime verification monitor

4 CHAPTER 2. CONTEXT

Figure 2.2: The µHML syntax and semantics

against high level specifications written in Maude, and can also detect deadlocks and race
conditions.

McErlang [16] is a model checker for Erlang programs that verifies them using properties
defined in Erlang.

Rebeca [17] is an actor-based modeling language, making it a good choice for creating
models of Erlang programs, which provides automatic translation to model checkers like
SPIN [18] and SMV [19].

2.2 µHML and mHML
µHML [11] is a branching-time logic for describing correctness properties over Labeled
Transition Systems (LTSs). A LTS consists of a set of system states p, q ∈ SYS, a set of
actions α ∈ ACT, and a transition relation between states and actions which contains a set
of moves on the form, p α−→ q, meaning that it is possible to transition from state p to state q
by performing an a - move. The syntax and the semantics of the logic are shown in Figure
2.2 [11] and the semantics is defined in terms of the mapping between µHML formulae ϕ
and the set of LTS states S ⊆ SYS which satisfy them. The truth value tt is satisfied by all
processes and the falsity value ff is satisfied by none. Possibility formulae <α>ϕ mean that
there must be at least one system transition with the event α where the subsequent transition
satisfies ϕ. On the other hand, necessity formulae [α]ϕ mean that all system executions (if
any) with the event α must lead to states satisfying ϕ.

Here are a few examples of µHML properties:

• ϕ1 = <α>tt

• ϕ2 = [α]ff

• ϕ3 = max X .([β]X ∧ [α][α]ff)

• ϕ4 = min X .(<α>X ∨ <β>tt)

2.3. ERLANG 5

Figure 2.3: The syntax of mHML

Property ϕ1 is satisfied by all processes that can perform an α-action, and ϕ2 is satisfied
by all processes that can not make an α-action. ϕ3 is violated by processes that via a se-
quence of β - moves can reach a state that can perform two α - moves in a row, and ϕ4 is
satisfied by processes that can perform a β - move after zero or more α - moves.

In µHML, there are properties that can be shown to be satisfied or violated by examining
a single system computation. For example, ϕ1 requires the system to be able to perform a
single α - move to be satisfied, so if the system performs an α - move, it is enough infor-
mation to determine that the system satisfies ϕ1. Similarly, a system only needs one α -
move for it to be clear that it violates ϕ2. But for some properties, particularly ones describ-
ing infinite or branching executions, a single finite runtime trace is not enough to reach a
conclusive verdict. The work in [11] explores the monitorable limits of µHML, and defines
a logical subset called mHML, which is monitorable and maximally-expressive w.r.t. the
constraints of runtime monitoring. Its syntax is described in Figure 2.3 [11] and it consists
of two parts: safety HML (sHML) and co-safety HML (cHML). sHML describes invariant
properties that state that violations do not occur and cHML describes properties that will
eventually be satisfied after a finite number of events.

2.3 Erlang
Erlang [9], [10] is a functional programming language that uses the actor-model to model
concurrency. In the actor model, each component can only communicate with other com-
ponents by sending messages to them. In Erlang, each process is an actor and there are no
shared resources, thus the problem of mutial exclusion is circumvented. Each process can
communicate with other processes by sending asynchronous messages with the ! operator,
and the messages are then stored in the receiving process’ message queue. The receiving
process can then use the receive keyword to dequeue messages from the queue. It is also
possible to use the tracing mechanism of the Erlang virtual machine (EVM) to trace these
messages without changing the source code or altering the behaviour of the program.

2.4 How to instrument a system
detectEr is an asynchronous actor-based runtime verification tool for Erlang programs that
uses properties defined in mHML. It is available online on bitbucket.org [20] and the work
presented in this thesis is on the branch detecter-lite-1.0-event-source. It
requires a working installation of Erlang, and the GNU make utility. OSX users can acquire
it by installing the XCode Command Line Tools, and Windows users can install MinGW,
Cygwin or GnuWin.

In order to use detectEr to verify a system, the system must go through the instrumen-
tation process. That is done by invoking the instrument target of detectEr’s makefile.
During the instrumentation process, detectEr is compiled, and the mHML property that will

6 CHAPTER 2. CONTEXT

be used to verify the system is parsed and used to generate a monitor. The monitor is a
process that listens for events generated by the system, and then matches them against the
mHML property, checking if the system violates or satisfies it.

The arguments needed to instrument a system are:

• hml: The relative or absolute path that leads to the formula script file

• app-bin-dir: The target application’s binary base directory

• MFA: The target application’s entry point function, encoded as a {Module, Function,
[Arguments]} tuple

However, following the work described in this paper, these arguments were changed,
and the changes will be described later.

When the instrumentation process is done, the output is a launcher.beam binary file,
which will be located in the app-bin-dir directory. It contains the launcher:start/0
function, which can be invoked to start detectEr.

7

Chapter 3

Making detectEr more versatile

Some drawbacks of detectEr are that it is only able to monitor Erlang applications, and only
by running a program and tracing it. Ideally, it should be able to monitor any type of system,
so long as its behaviour can be expressed by a finite sequence of events. In order to make
that happen, I replaced detectEr’s tracing functionality with a more general component: the
event source.

3.1 Common behaviour

When detectEr is launched, the event source is started on a new process, es, and the monitor
is started on another process, sup. The event source process then acts as a medium between
the monitored system, sys, and the monitor sup, as shown in Figure 3.1.

Currently, there are 3 implementations of the event source, and each is defined by
an Erlang module. These are trace_event_source, which receives events by trac-
ing an Erlang program, file_event_source, which reads events from a text file, and
tcp_event_source, which listens for events on a TCP socket.

main

essup

sys

createscreates

sends events

start

watchessends events

Figure 3.1: The processes of detectEr

8 CHAPTER 3. MAKING DETECTER MORE VERSATILE

3.2 Receiving events via tracing
Originally detectEr could only receive events by tracing an Erlang program. I relocated that
functionality to the module trace_event_source. As an argument, it takes a tuple
containing the module, function and arguments of the program to be monitored. This tuple
is used to start the program, and then the event source traces the program, and passes the
events forward to the monitor.

3.3 Retrieving events from a file
In order to read events from a file, I created the module file_event_source. The
only argument that it needs is the path to the file from which the events should be read.
However, it should be noted that the given filepath needs to be absolute or relative to the
output launcher.beam file, unlike the other arguments of the instrumentation process. That
is because the filepaths of the instrument target are used at compile-time, but the filepath
of file_event_source is used at runtime.

The supplied file should have a number of events written as Erlang terms, separated
by periods. The event source expects two types of events; namely send and recv, in the
following forms:

• {recv, Receiver, Message}

• {send, Sender, Receiver, Message}

The atoms recv and send determine whether the event is a receive(?) or a send(!)
operation. Receiver and Sender are identifiers for the systems receiving and sending the
messages, respectively, and Message is the payload of the message. An example of events
from a simple echo server would be:

{recv, server, {request, client, 1}}.
{send, server, client, {response, 1}}.

After the file has been read, the events are sent to the monitoring process by sending
{read_line, N} messages to the event source’s process, where N is either a positive
integer, determining how many lines should be read, or the atom all, meaning that all
remaining lines should be read.

3.4 Retrieving events from TCP
In order to read events from a TCP port, I created the module tcp_event_source.
The only argument that it needs is the port that should be used. When the launcher is
started, it will listen for a connection to that port, and then receive TCP messages on that
port. The messages should contain events of the same form as previously described for
file_event_source.

3.5 Creating new event sources
Creating support for new event sources becomes very easy once the communications be-
tween the monitor and the system to be monitored have been isolated within a single module.

3.6. MULTIPLE EVENT SOURCES 9

Indeed, in order to introduce a new event source, all the programmer has to do is to create a
new module, using the behaviour event_source_behaviour. The only function that
the behaviour has is setup/2, which takes an object and a Pid as arguments. The object
should contain whatever information is required to set up the event source (filename, port,
et.c.), and the Pid will be the Pid of sup, which will receive the events generated by the
event source. The function should create a new process and return its Pid. That process then
waits for the mon_start message, and then performs the necessary setup for the events.
For example, in order to create an event source that reads events from a database, the new
process should start a connection to the database after receiving mon_start.

3.6 Multiple event sources
Since concurrent systems consist of multiple components working concurrently, it seems
logical that verification tools should be capable of handling multiple systems simultaneously.
Therefore, I changed detectEr to support multiple event sources, each being checked against
a single property. For each event source, the same processes are created, just like described
in Figure 3.1. However, in order to identify them, a number is appended to their names, as
shown in Figure 3.2.

There is still much to be done with this new feature, though. One limitation is that each
event source can only check properties using events from only one event source. If that was
changed, so that properties could be checked against events from multiple event sources, the
resulting version of detectEr would allow us to check properties involving multiple systems.

Another limitation is that each event source creates only one monitor, and thus only
checks for only one property at a time. But most systems have to satisfy multiple properties
at the same time, and it would therefore be ideal to be able to have each event source verify
its system for multiple properties. That can be done by creating multiple monitors for each
event source, where each monitor corresponds to a property that the system has to satisfy.

However, it is possible to combine multiple mHML properties into one big property
which can be used to create a monitor, but that approach has its drawbacks. If we have two
properties ϕ1 and ϕ2, and we create a new property ϕ3 = ϕ1 ∧ ϕ2, then ϕ3 is violated iff
either ϕ1 or ϕ2 is violated. But if we use ϕ3 to create a monitor, and then the monitor detects
a violation, it is not obvious which property is being violated. The violated property can be
deduced by looking at the events and the output of the monitor, but it would be better to have
them separate. Furthermore, a bigger problem is that something as simple as conjoining or
disjoining multiple properties may not work well enough when we have multiple properties,
some of which detect satisfactions, others detect violations, and yet others may detect either.
Creating a big property from smaller ones is something that can be done, but it has to be
done carefully.

3.7 How to use detectEr
In order to facilitate the changes made to detectEr, I changed the arguments of the instrument
target to the following ones:

• app-bin-dir: The target application’s binary base directory

• args: A string containing a list of event source objects. Each event source should be
formatted like so: {hml, event-source, args}

10 CHAPTER 3. MAKING DETECTER MORE VERSATILE

main

es1

sup1

sys1

es2

sup2

sys2

creates

creates

sends events

start

watchessends events

creates

creates

sends events

watches sends events

Figure 3.2: The processes of multiple event sources

– hml: The relative or absolute path that leads to the formula script file

– event-source: The module defining the event source to be used

– args: The arguments for the event source

Listing 3.1: An example of arguments for the instrumentation process
1 make instrument args="[{’priv/case_study/prop1_server.txt’, trace_event_source, {←↩

↪→client_server_erlang, start, [server, echo, nul]}}]" app−bin−dir="ebin"

An example would be the arguments shown in Listing 3.1, which indicate that a monitor
will be created using only one event source which uses the module trace_event_source
with the arguments {client_server_erlang, start, [server, echo, nul]}}
The monitor will verify the system against the property defined in ’priv/case_study/prop1_server.txt’
and the resulting launcher.beam file will go into the folder ebin.

11

Chapter 4

Case study

One of the benefits of the new event source is that detectEr can receive events from various
sources, and can therefore, in theory, monitor any type of system regardless of programming
language. To demonstrate that, I created two programs as a case study: The Erlang module
client_server_erlang, and the Java program client_server_java [21]. Both
programs behave the same way for the most part; the biggest difference is that one is written
in Erlang and the other is written in Java.

4.1 Case study behaviour
The case study can be run either as a client or as a server. When run as a client it sends re-
quests to the server and waits for responses. The requests it sends are on the form {request,
Self, Num}, where Self is the Pid of the client, and Num is an integer. When run as a
server, it waits for requests and then returns responses on the form {response, Other},
where Other is a number that is determined by the server’s configuration and the num-
ber that the server receives. For the purposes of testing, the correct response to a request
{request, Self, Num} is viewed to be {response, Num + 1}.

4.2 Case study behaviour - Erlang
The case study written in Erlang has 6 different configurations and it is run by invoking the
client_server_erlang:start/3 method. The first and second parameters define
how the program should behave, whether it should be a server or a client, and how it acts.
The possible combinations of the first and second arguments are:

• server success: Runs a server that returns the correct response (Num + 1)

• server wrong_response: Runs a server that returns a wrong response (Num -
1)

• server echo: Runs a server that returns a wrong response (Num)

• client success: Runs a client that sends a request and waits for a response

• client success_multiple: Runs a client that sends two subsequent request,
waiting for responses in between

• client no_request: Runs a client that does nothing

12 CHAPTER 4. CASE STUDY

The third argument is only necessary if the program is being run as a client. It is the
identifier of the server, which can be anything that can be on the left side of a ! operator in
Erlang. But if the program is being run as a server, it doesn’t matter what it is, since it will
never be used.

4.3 Case study behaviour - Java
The case study in Java uses the jinterface [22] package in order to create an Erlang node,
which it uses to send and receive messages from Erlang programs. It is run by invoking the
main function in the client_server_java class and it has 5 different configurations,
depending on the arguments provided from the command line.

The first two arguments are the names of the Erlang node and mailbox, respectively,
used for communication with Erlang programs. The third and fourth arguments define how
the program should behave, whether it should be a server or a client, and how it acts. The
possible combinations of the third and fourth arguments are:

• server success: Runs a server that returns the correct response (Num + 1)

• server wrong_response: Runs a server that returns a wrong response (Num -
1)

• server echo: Runs a server that returns a wrong response (Num)

• client success: Runs a client that sends a request and waits for a response

• client no_request: Runs a client that does nothing

If the case study is run as a client, the fifth and sixth arguments need to be the name of
the node and the process that will receive the message, respectively.

As an example, when provided with the following arguments:
client_server java server success
the case study is run as a successful server, and an Erlang program can send a message

to it with the following syntax:
{java, client_server@User} ! {request, self(), Num}
Conversely, when provided with the following arguments:
client_server java client success monitor@User sys2
the case study is run as a client that sends a single request to the process sys2 on the

Erlang node monitor@User.

4.3.1 The tracker
In order to test the usefulness of file_event_source and tcp_event_source, I
equipped the Java case study with an additional component; the tracker. The purpose of
the tracker is to generate events that the new event sources can understand, thus allowing
detectEr to monitor the Java case study.

The tracker is an interface with two methods;

• send(String to, Object[] params)

• recv(Object[] params)

4.4. EXAMPLES 13

They correspond to the two messages that detectEr expects, ! and ? respectively. In
order to monitor the Java case study, these methods are called before messages are sent or
received from the Erlang case study.

The tracker has two different implementations. One generates events by writing events
to a file which can then be read by file_event_source, and the other one sends the
events over TCP to be received by tcp_event_source.

The tracker is rather simple, and can be replicated easily in other programming lan-
guages. Its main limitation is that the only way to use it is to alter the source code of the
monitored program manually. Despite this limitation, it does allow detectEr to monitor the
Java case study, and it is possible to make a tracker or a similar component in any pro-
gramming language, making it possible to use detectEr to monitor any system regardless of
programming language.

4.4 Examples
I used the case study to verify that the new event source component works as intended. The
following examples all have a simple client-server behaviour, where the client sends one or
more requests to the server and the server responds with either the correct response (Num +
1) or an incorrect one.

4.4.1 The properties
I created 4 mHML properties in order to test the case study. They are: client_vio, client_sat,
server_vio and server_sat 1, and they describe the correct behaviour of the program.

The properties client_vio (Listing 4.1) and server_vio (Listing 4.2) look for violations
in the behaviour of the client and the server, respectively. Both of them detect a violation if
the server responds with anything but Num + 1, and they will keep checking until there is a
violation.

Listing 4.1: As long as the client lives, it does not receive an incorrect response
1 max(’X’,
2 [Server ! {request, Client, Num}]
3 ([Client ? {response, Other}] iff (Other =/= Num + 1) implies ff else ’X’))

Listing 4.2: As long as the server lives, it never sends incorrect responses
1 max(’X’,
2 [Server ? {request, Client, Num}]
3 ([Client ! {response, Other}] iff (Other =/= Num + 1) implies ff else ’X’))

Conversely, the properties client_sat (Listing 4.3) and server_sat (Listing 4.4) look for
a satisfaction in the behaviour of the client and the server, respectively. They only check the
first request made by the client to the server, and if the request is answered with a Num + 1,
then a satisfaction is detected.

Listing 4.3: The client gets a single correct response

1The possibility formulae are written with /α\ instead of <α>. This will be changed in a later version of
detectEr

14 CHAPTER 4. CASE STUDY

1 /Server ! {request, Client, Num}\/Client ? {response, Other}\ iff (Other == Num + 1)←↩
↪→implies tt else ff

Listing 4.4: The server sends a single correct response
1 /Server ? {request, Client, Num}\/Client ! {response, Other}\ iff (Other == Num + 1)←↩

↪→implies tt else ff

4.4.2 Two Erlang traces
To test two trace event sources together, I used the command shown in Listing 4.5. The
resulting monitor runs and traces both the client and the server in Erlang, and tests them
against the properties client_sat and server_sat, which they should satisfy, because they
are both run with the correct configuration, as described in section 4.2. Figure 4.1 shows
the output of the monitor. At the end, both the server, sys1, and the client, sys2, reach a
satisfaction, as expected.

It should be noted that the output of the program tends to be about as long, or even longer
than the output shown in Figure 4.1. Therefore, the output will not be shown for the rest of
the test cases.

Listing 4.5: The make for the first test
1 make instrument args="[{’priv/case_study/server_sat.txt’, trace_event_source, {←↩

↪→client_server_erlang, start, [server, success, nul]}},{’priv/case_study/←↩
↪→client_sat.txt’, trace_event_source, {client_server_erlang, start, [client, ←↩
↪→success, sys1]}}]" app−bin−dir="ebin"

4.4.3 Java via TCP
I used the command shown in Listing 4.6 to create a monitor that monitored the case studies
in Erlang and Java at the same time. The Erlang case study, which acts as a server returning
an incorrect response (Num) in this case, was monitored via tracing, but the Java case study,
acting as a client in this case, was monitored via TCP over port 3456. As expected, the
Erlang server sends an incorrect response to the client’s request, and a violation is detected.
This causes the Java client to receive an incorrect response, causing another violation, which
is also detected.

Listing 4.6: The make for the second test
1 make instrument args="[{’priv/case_study/server_vio.txt’, trace_event_source, {←↩

↪→client_server_erlang, start, [server, echo, nul]}},{’priv/case_study/client_sat.←↩
↪→txt’, tcp_event_source,{3456}}]" app−bin−dir="ebin"

4.4.4 Reading a file
I used the command shown in Listing 4.7 to create a monitor that reads events from a file.
The resulting monitor has only one event source, and it tests the events read against the prop-
erty server_sat. The file to be read has only two lines, shown in Listing 4.8. After reading
one line at a time, by sending {read_line, 1} messages to sys1 twice, a violation is
detected.

4.4. EXAMPLES 15

Figure 4.1: Output from the first test

16 CHAPTER 4. CASE STUDY

Listing 4.7: The make for the third test
1 make instrument args="[{’priv/case_study/server_sat.txt’, file_event_source,{’../priv/←↩

↪→case_study/fileTrace1.txt’}}]" app−bin−dir="ebin"

Listing 4.8: The file read in the third test
1 {recv, server, {request, client, 19}}.
2 {send, server, client, {response, 19}}.

4.4.5 Reading a long file
Finally, I created a monitor to read events from a very long file. Like in the previous test, the
resulting monitor only has one event source, but this time the events read are tested against
the property server_vio. The file to be read has 582 lines, the first 580 describe the server
receiving requests and responding to them correctly (Num + 1), but at the end the server
receives a request to which it responds incorrectly (Num). As expected, the monitor detects
a violation from the last message.

4.4.6 Discussion
As the preceding test cases have shown, creating different kinds of event sources is as simple
as changing the command line arguments during the instrumentation process. It is possible to
trace multiple Erlang programs simultaneously, and it is possible to verify a Java application
by changing the source code to send system events over TCP. Ideally it would be possible to
verify Java applications without tampering with the source code at all, but this is a good first
step.

It is also possible to read events from a file, which is a very useful feature. Sometimes
it can be infeasible to monitor a system at runtime, due to environmental or time constraints
on the system. Then it could be a better idea to log the system’s events to a text file, and
to use the file to verify the correctness of the system. Like listening for events via TCP,
reading events from a text file is not dependent on the programming language of the system.
Therefore, in theory, it is now possible for detectEr to verify the correctness of any system,
regardless of programming language.

17

Chapter 5

Conclusions and future work

As the case study demonstrated, the event source has made detectEr a more versatile tool,
by decoupling it from the Erlang tracing mechanism. The tool is now capable of reading
events from files, and listening for events via TCP, and it is easier than ever to add support
for other ways to generate events. It is also possible to have multiple event sources at the
same time, which can be very useful when verifying concurrent systems. There is still room
for improvement, though. For example, each event source only checks a single property,
but systems usually have to satisfy more than one property. Therefore, it could be a good
idea to enable each event source to check multiple properties simultaneously. That could
be achieved simply by creating multiple monitor processes for each event source, but the
arguments for the makefile would need to be altered to reflect that change.

Creating new event source modules is something that can make detectEr even more ver-
satile. It could for example be a good idea to create an event source that can trace function
calls of Erlang programs, and if that is successful, create a similar event source for other pro-
gramming languages. As the Java case study shows, it is possible to use the event source to
monitor systems in languages other than Erlang. In order to do so, one needs the right event
source, and some connective tissue between the event source and the monitored system, like
the tracker of the Java case study.

Acknowledgements
I would like to thank my supervisors: Luca Aceto and Anna Ingólfsdóttir, for their help
and support during the work on this project. I would also like to thank Adrian Francalanza,
for his guidance, and Marcel Kyas, for his honest feedback. And finally, I would like to
thank Duncan Paul Attard and Ian Cassar for helping me understand detectEr. The work
presented in this thesis was supported by the project “TheoFoMon: Theoretical Foundations
for Monitorability” (grant number: 163406-051) of the Icelandic Research Fund.

18

19

Bibliography

[1] L. Lamport, “The computer science of concurrency: The early years”, Commun. ACM,
vol. 58, no. 6, pp. 71–76, May 2015, ISSN: 0001-0782. DOI: 10.1145/2771951.

[2] E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani, “Model checking and the state
explosion problem”, Lecture notes in computer science, vol. 7682, pp. 1–30, 2012.

[3] C. Baier and J.-P. Katoen, Principles of model checking. The MIT Press, 2008.

[4] M. Leucker and C. Schallhart, “A brief account of runtime verification”, The Journal
of Logic and Algebraic Programming, vol. 78, pp. 293–303, 5 2009.

[5] Y. Falcone, “You should better enforce than verify”, in Runtime Verification - First
International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Pro-
ceedings, H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G.
Rosu, O. Sokolsky, and N. Tillmann, Eds., ser. Lecture Notes in Computer Science,
vol. 6418, Springer, 2010, pp. 89–105, ISBN: 978-3-642-16611-2. DOI: 10.1007/
978-3-642-16612-9.

[6] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement of nonsafety policies”,
ACM Trans. Inf. Syst. Secur., vol. 12, no. 3, 19:1–19:41, 2009. DOI: 10.1145/
1455526.1455532.

[7] F. B. Schneider, “Enforceable security policies”, ACM Trans. Inf. Syst. Secur., vol. 3,
no. 1, pp. 30–50, 2000. DOI: 10.1145/353323.353382.

[8] D. P. Attard, I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. (May 2016).
A runtime monitoring tool for actor-based systems, [Online]. Available: http://
icetcs.ru.is/theofomon/BettyBookSubmission.pdf (visited on
10/05/2017).

[9] (May 2017). Erlang programming language, [Online]. Available: https://www.
erlang.org/ (visited on 10/05/2017).

[10] J. Armstrong, Programming erlang: Software for a concurrent world, Second Edition.
Pragmatic Bookshelf, 2013, ISBN: 978-1-937785-53-6.

[11] A. Francalanza, L. Aceto, and A. Ingólfsdóttir, “On verifying hennessy-milner logic
with recursion at runtime”, in Runtime Verification: 6th International Conference,
RV 2015, Vienna, Austria, September 22-25, 2015. Proceedings, E. Bartocci and R.
Majumdar, Eds. Cham: Springer International Publishing, 2015, pp. 71–86, ISBN:
978-3-319-23820-3. DOI: 10.1007/978-3-319-23820-3_5.

[12] C. Colombo, G. J. Pace, and G. Schneider, “Larva — safer monitoring of real-time
java programs (tool paper)”, in Proceedings of the 2009 Seventh IEEE International
Conference on Software Engineering and Formal Methods, ser. SEFM ’09, Washing-
ton, DC, USA: IEEE Computer Society, 2009, pp. 33–37, ISBN: 978-0-7695-3870-9.
DOI: 10.1109/SEFM.2009.13.

http://dx.doi.org/10.1145/2771951
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1145/1455526.1455532
http://dx.doi.org/10.1145/1455526.1455532
http://dx.doi.org/10.1145/353323.353382
http://icetcs.ru.is/theofomon/BettyBookSubmission.pdf
http://icetcs.ru.is/theofomon/BettyBookSubmission.pdf
https://www.erlang.org/
https://www.erlang.org/
http://dx.doi.org/10.1007/978-3-319-23820-3_5
http://dx.doi.org/10.1109/SEFM.2009.13

20 BIBLIOGRAPHY

[13] ——, “Dynamic event-based runtime monitoring of real-time and contextual prop-
erties”, in Formal Methods for Industrial Critical Systems: 13th International Work-
shop, FMICS 2008, L’Aquila, Italy, September 15-16, 2008, Revised Selected Papers,
D. Cofer and A. Fantechi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 135–149, ISBN: 978-3-642-03240-0. DOI: 10.1007/978-3-642-03240-
0_13.

[14] C. Colombo, A. Francalanza, and R. Gatt, “Elarva: A monitoring tool for erlang”,
in Runtime Verification: Second International Conference, RV 2011, San Francisco,
CA, USA, September 27-30, 2011, Revised Selected Papers, S. Khurshid and K. Sen,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 370–374, ISBN: 978-
3-642-29860-8. DOI: 10.1007/978-3-642-29860-8_29.

[15] K. Havelund and G. Roşu, “An overview of the runtime verification tool Java PathEx-
plorer”, Formal Methods in System Design, vol. 24, no. 2, pp. 189–215, 2004, ISSN:
1572-8102. DOI: 10.1023/B:FORM.0000017721.39909.4b.

[16] L.-Å. Fredlund and H. Svensson, “McErlang: A model checker for a distributed func-
tional programming language”, in Proceedings of the 12th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ser. ICFP ’07, Freiburg, Germany:
ACM, 2007, pp. 125–136, ISBN: 978-1-59593-815-2. DOI: 10.1145/1291151.
1291171.

[17] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and verification of
reactive systems using Rebeca”, Fundam. Inf., vol. 63, no. 4, pp. 385–410, Jun. 2004,
ISSN: 0169-2968. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1227079.1227084.

[18] G. Holzmann, Spin model checker, the: Primer and reference manual, 1st ed. Addison-
Wesley Professional, 2003, ISBN: 0-321-22862-6.

[19] K. L. McMillan, Symbolic model checking. Kluwer Academic Publ, 1993.

[20] D. P. Attard. (May 2017). duncanatt / detecter-lite - bitbucket, [Online]. Available:
https://bitbucket.org/duncanatt/detecter- lite (visited on
10/05/2017).

[21] G. Stefánsson. (May 2017). gudmundurste12 / detecter-monitor-java, [Online]. Avail-
able: https://bitbucket.org/gudmundurste12/detecter-monito
r-java (visited on 10/05/2017).

[22] (May 2017). Erlang - the jinterface package, [Online]. Available: http://erla
ng.org/doc/apps/jinterface/jinterface_users_guide.html
(visited on 10/05/2017).

http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-29860-8_29
http://dx.doi.org/10.1023/B:FORM.0000017721.39909.4b
http://dx.doi.org/10.1145/1291151.1291171
http://dx.doi.org/10.1145/1291151.1291171
http://dl.acm.org/citation.cfm?id=1227079.1227084
http://dl.acm.org/citation.cfm?id=1227079.1227084
https://bitbucket.org/duncanatt/detecter-lite
https://bitbucket.org/gudmundurste12/detecter-monitor-java
https://bitbucket.org/gudmundurste12/detecter-monitor-java
http://erlang.org/doc/apps/jinterface/jinterface_users_guide.html
http://erlang.org/doc/apps/jinterface/jinterface_users_guide.html

School of Computer Science
Reykjavík University
Menntavegur 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.ru.is

www.ru.is

	Contents
	List of Figures
	Introduction
	detectEr
	Contributions

	Context
	Related work
	HML and mHML
	Erlang
	How to instrument a system

	Making detectEr more versatile
	Common behaviour
	Receiving events via tracing
	Retrieving events from a file
	Retrieving events from TCP
	Creating new event sources
	Multiple event sources
	How to use detectEr

	Case study
	Case study behaviour
	Case study behaviour - Erlang
	Case study behaviour - Java
	The tracker

	Examples
	The properties
	Two Erlang traces
	Java via TCP
	Reading a file
	Reading a long file
	Discussion

	Conclusions and future work
	Bibliography

