
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

On Monitoring Asynchronous Components, Asynchronously

ANONYMOUS AUTHOR(S)

Runtime Monitoring is becoming an important analysis tool for improving software quality. The prevailing
opinion within the software development community is that inline monitoring is preferred over outline
monitoring, mainly because it leads to lower runtime overheads. This paper argues that software has evolved
enough over the last few years to put this commonly-held view into question. We provide a series of qualitative
arguments in favour of outline monitoring in the case of component-based distributed software. We also
develop an algorithm for the correct outline monitoring of dynamic decentralised systems. Finally we conduct
a rigorous analysis of the overheads induced by both inline and outline monitoring over models of component-
based systems, which enables us to assess more precisely the overhead discrepancy induced by the two variants
of the runtime analysis technique.

Additional Key Words and Phrases: Asynchronous component systems, Decentralised monitoring, Dynamic
reconfiguration

1 INTRODUCTION
Software has changed dramatically over the last decades. The rise of the app economy on mobile
devices, the widespread use of streaming services, together with the impending wave of IoT, have
fundamentally altered the manner in which software is developed, the tasks it is expected to
conduct, and the environments in which it is required to execute. In these cases, software runs
autonomously, under constrained resources, and in decentralised fashion. Viewed globally, this
software is structured as a collection of encapsulated components that are massively replicated [Jo-
suttis 2007]; they are expected to run without interruptions for days, months or even years, and
scale in response to fluctuating circumstances [Garg 2015]. These components interact with one
another via asynchronous messaging [Hohpe and Woolf 2003] (e.g. as microservices [Jamshidi et al.
2018]). Invariably, these components are developed by third parties using different technologies.

This landscape poses new challenges to developers. Software is expected to adhere to stringent
requirements (e.g. streaming services need to ensure adequate levels of QoS) and increasingly
handles sensitive information (e.g. mobile devices access our financial data, and medical implants
regulate insulin levels), raising the stakes of understanding how it really behaves at runtime. At
the same time, the behaviour of component-based software has become harder to understand and
predict. This is due to a number of reasons. First, the proper functioning of a system does not
depend solely on that of its individual components, but also relies on the manner in which they
are integrated with one another; this information is rarely readily available when components
are provided by third parties (e.g. webservices or binary libraries), or when their connections are
determined at runtime (e.g. dynamic service discovery). Second, the sheer scale and distribution of
said software further complicates the acquisition and comprehension of this information. Third,
these systems execute in open environments, where they are subject to malicious attacks from
adversaries that are hard to model and anticipate statically.
Traditional verification approaches like model checking—conceived for software developed in

monolithic fashion with conventional deployment practices—do not apply (at least, not in their
present form). They are also bound to suffer from the usual scalability issues for large code-bases.
Popular methods such as testing and mocking are also largely ineffective when debugging open,
large-scale distributed systems with a multitude of execution paths [Alshahwan et al. 2019; Alvaro
et al. 2016; Arora et al. 2016]. Rather, these factors have increased the need to complement the

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

verification analysis carried out at the design and development phases with validation at the post-
deployment phase. For instance, techniques that traditionally scale well, such as type-systems, have
evolved to support the integration of dynamic analyses [Siek and Taha 2007; Takikawa et al. 2012].
Unfortunately, these technologies are inherently language-specific and, presently, are not mature
enough to cope with software developed using multiple programming languages.
Interestingly, industry has witnessed a profusion of tools that enable the observation and mon-

itoring of such systems at runtime. These technologies are broadly classified under Application
Performance Monitoring tools (APMs) [Heger et al. 2017]. They include commercial solutions such
as DataDog, Instana and New Relic One, platform-specific frameworks such as inspectIT-Ocelot (a
JVM Agent) and WombatOAM (for Erlang/OTP), and open source offerings such as Dapper, and
Zipkin. These tools extend traditional profilers to support distributed tracing and telemetry, log
aggregation, data storage, processing and presentation, anomaly detection and threshold-violation
alerting, root cause isolation, and also automation for runtime system adaptation. APMs are used
extensively for maintenance and performance tuning to identify hotspots and reduce bottlenecks;
they presently have an edge on static analysis tools for critical-path analysis and unearthing per-
formance anti-patterns [Smith and Williams 2001, 2002]. Reported load-time errors and statistics
on end-to-end response times are used to improve user experience. The tracing of events such as
exceptions and process failures is used for debugging (live or offline), whereas audit trails are used
for forensic analysis in the case of security breaches. APMs may also turn program information
that used to be ephemeral and uncertain into something that is concrete and analysable through
Machine Learning technologies.

The verification counterpart to APMs is Runtime Verification (RV) [Bartocci et al. 2018], where
executable code is synthesised from formal specifications to observe the behaviour of a running
system against said specifications. Although there is a clear case for using RV for decentralised
and distributed scenarios [Francalanza et al. 2018; Sánchez et al. 2019] there is one fundamental
difference between present-day distributed RV approaches and APMs. Concretely, most APMs
operate as external entities, running asynchronously to the system under scrutiny (SuS) to analyse its
behaviour via intermediaries such as log files and data warehouses. By treating the SuS as a black-
box, APMs become largely programming-language agnostic. Moreover, by operating externally,
APMs provide added assurances that their monitoring does not directly interfere with the execution
of the SuS. In contrast, the state-of-the-art in decentralised and distributed RV [Colombo et al. 2009;
El-Hokayem and Falcone 2020; Jin et al. 2012; Kim et al. 2001; Reger et al. 2015; Sen et al. 2004,
2006] is dominated by tools that still runs synchronously to the SuS, typically using weaving via
code injection (inlining). One reason for this is that most efforts are extensions of mature tools that
were originally developed for local, single-threaded RV. There, inlining is the preferred method
of instrumentation [Bartocci et al. 2018] because it yields lower overheads [Cardoso et al. 2017,
2016]; seminal work in security also highlights the advantages inline instrumentation begets when
analysing insecure software [Erlingsson 2004; Erlingsson and Schneider 1999]. However, inlining
and synchronous instrumentation may not necessarily be the best approach for decentralised and
distributed monitoring. For instance, inlining relies on assumptions, such as full access to the SuS
source code, that may not always be possible in this setting; inlining is also programming-language
dependent and difficult to administer on heterogenous distributed systems; it is also more intrusive
and harder to undo once a properly running SuS is attained.

Despite the fact that low overheads are a central concern for any monitoring system, this paper
contends that the prevailing view about inline and outline monitoring warrants revisiting. To this
end, we present a detailed study of asynchronous monitoring, where instead of considering the
analysis aspect of the problem (see [Francalanza et al. 2018] for a detailed survey), we focus on the
instrumentation part that determines how the runtime analysis hooks onto the running system. To

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

On Monitoring Asynchronous Components, Asynchronously 1:3

our knowledge, this aspect of RV has seldom been studied in its own right, even though it probably
contributes more to runtime overheads than the runtime analysis itself. Concretely, we make the
following contributions:
(1) We detail an algorithm for concurrent asynchronous monitoring that scales in line with a

SuS that grows and shrinks. We make minimal assumptions on the operational model to
ensures that our algorithm is sufficiently general to be instantiated in a variety of languages
and technologies; the algorithm is also agnostic of the runtime analysis carried out, making
it applicable for monitoring both functional and non-functional requirements alike (Sec. 3).

(2) We build models to evaluate outline monitoring quantitatively. We use a series of systematic
experiments that compare it with inline monitoring, for a selection of typical system loads.
Althoughwe confirm that inlinemonitoring induces lower overhead, we debunk the generally-
held assumption that asynchronous monitoring is necessarily infeasible. We are unaware of
similar results within the scientific community (Sec. 4).

2 BACKGROUND
Online monitors analyse the execution of the SuS while it is running. The analysis is typically moves
forwards in time, discarding already processed events of interest to keep monitors as lightweight as
possible. Depending on the monitoring application, trace events can be analysed within the system
itself at the point they occur (inline monitors), or transmitted to an external entity that performs the
analysis without the system (outline monitors). Inline monitors necessarily execute in synchronous
fashion with the SuS. Outline monitors typically execute asynchronously in a separate thread, but
can also run synchronously when sharing a common thread with the SuS, or in lock-step via a
handshake communication protocol.

The nature of overheads. Inlining determines statically the points in the system where the events of
interest occur, and the monitor instructions are injected accordingly; these segments lay dormant
and get activated only when certain execution paths are followed. Outline instrumentation defers
this decision until runtime. In order to scale dynamically, it needs to analyse every event generated
by the SuS to determine whether to instrument additional monitors; this is clearly more flexible
but also more expensive.

Intrusiveness. Code injection via inlining relies on elements of the program structure. In Object
Orientated (OO) programs, where the unit of decomposition is the object, code weaving patterns
like Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] package aspect code into objects that
interact with other system objects throughmethod invocation. In concurrent paradigms, systems are
structured as independent process units such as actors that interact either via asynchronous message
passing or via synchronous mechanisms (e.g. channels or locks). In either case, the interaction
between processing entities is determined at runtime by the scheduler. This complicates the task
of inlining monitor code since this code has to account for these interactions; this becomes even
harder to manage when inlined monitors themselves interact as well. Outlining naturally keeps
monitors and system processes separate, reducing the risks of subtle bugs from occurring when
runtime monitors are introduced.

Separation of Concerns. The separation of monitors and system processes as distinct computational
units (induced by outlining) adheres better to established software engineering principles. Inlined
monitors are sometimes perceived as functionality that can be aspectised in order to organise the
system and monitor code at the software design level. This separation however, does not permeate
down to the runtime level, since both system and monitor code executes on the same thread. A
dependency is created between the two, such that if a monitor embedded in one system process

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

crashes, so does the process; the reverse is also possible, and the runtime analysis is lost. Moreover,
inlined monitors are harder to remove or disable in a running system once weaved.

Flexibility. There are cases where monitors cannot be inlined because code injection is not possible.
In a setting such as ours, certain components might be offered as-a-service or in the form of
a commercial library where code modifications are prohibited due to availability or licensing
agreements. Obfuscated third-party libraries, while possible to reverse engineer [Chen and Chen
2006], are be hard to instrument, and this certainly cannot be accomplished without intimate
knowledge of the decompiled binary instructions. In instances where it can be done, monitor
inlining generally demands a redeployment of the instrumented system components, which could
be infeasible for long-running systems. Outline monitoring often relies on tracing as a mechanism
to acquire runtime information about the SuS. One advantage that many tracing frameworks offer is
the capability of dynamically switching tracing on or off without the need to recompile or redeploy
the traced system. Tracing is typically intended for use in production due to the minimal levels
of overhead it induces; this also makes it an invaluable tool when it comes to detect and analyse
problems that occur in real-time. Many programming language frameworks come equipped with
tracing mechanisms that can be configured programmatically (e.g. Erlang). There are also tracing
frameworks such as and LTTng [Desnoyers and Dagenais 2006] and DTrace [Cantrill 2006; Cantrill
et al. 2004] that work at the operating system level; DTrace for instance, also supports tracing at
the application (e.g. MySQL, Firefox) and programming language levels (e.g. C, Java, Erlang, etc.).

3 DECENTRALISED OUTLINE MONITORING
We present an outline monitoring algorithm to analyse the behaviour of the SuS by observing its
components in a decentralised fashion. Our solution rests on these general assumptions:

A1 No global clock. System components are not synchronised through a common clock.
A2 System is dynamic. The number of system components may fluctuate at runtime.
A3 Messages can be reordered. This does not apply for point-to-point communication: successive

messages between the same source and destination are delivered in the sequence issued.
A4 Communication is reliable.Messages sent are not tampered with, and communication links

never fail (i.e., message delivery is guaranteed and messages duplication does not arise).
A5 Components are reliable. Components never fail-stop or exhibit Byzantine failures.

Our investigation is scoped to execution-monitors/sequence recognisers [Ligatti et al. 2005;
Schneider 2000] where monitors reach irrevocable verdicts after observing a finite sequence of
system trace events [Aceto et al. 2019b]. We want our monitors to abide by the following require-
ments:

R1 Monitoring is passive and only reacts to SuS events.
R2 Monitoring should minimise interference on SuS execution.
R3 Monitoring is decentralised without a central coordinating entity.
R4 Monitoring does not miss events or analyse them out of order.

Monitors are instrumented to run in asynchronous fashion, in line with assumption A1 and what is
normally found in distributed setups; although this is outside the scope of our present investigation,
distribution could be obtained by weakening assumptions A4 and A5. Asynchrony may occasionally
affect timely detections. Assumption A2 and requirements R2 and R3 also call for monitoring to scale
dynamically, continually reconfiguring its choreography in response to certain events exhibited by
the SuS whilst the runtime analysis is in progress. This complicates outline monitoring substantially,
since it must contend with the potential race conditions that may arise. Requirement R4 addresses

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

On Monitoring Asynchronous Components, Asynchronously 1:5

P

Q

SuS

fork
send

receive

frkfrk sndsnd . . . extext

trace event messages

rcvrcv . . . extext

trace event acquisition verdict monitoring

TP

TQ

AP

AQ

exhibits

exhibits

forwards

forwards

routing detach

(a) Tracer and analyser organised into separate processes

verdict monitoring

TP AP

TQ AQ

routing detach

(b) Tracer and analyser as a single process

Fig. 1. Outline verdict monitoring set-up consisting of tracer and analyser roles

problems caused by assumption A3. It is vital for execution-monitors, which are usually sensitive
to the temporal ordering of the observed events (e.g. RV, root cause analysis, etc.).

3.1 Overview
We proposed two outline monitoring set-ups. The choreography in fig. 1a, consisting of independent
tracer and corresponding analyser processes, teases apart the task of trace event routing andmonitor
reorganisation, performed by tracers, from the task of trace event examination, effected by the
analysers. This separation of concerns favours the single responsibility [Agha et al. 1997; Martin
2013] design approach at the expense of introducing an extra process into the monitoring set-up.
By contrast, fig. 1b merges the tracing and analysis tasks to forgo this extra process. Our outline
approach assumes the existence of a tracing mechanism that provides streams of execution events
in the form of messages for the components of interest in the SuS. The mechanism also allows
tracers to control the tracing configuration dynamically at runtime (see discussion in sec. 2). In
fig. 1, trace event messages are shown as issuing from processes P and Q and directed to their
respective tracers TP and TQ ; these messages are forwarded to monitors AP and AQ for analysis
in fig. 1a, or analysed directly as in fig. 1b. The tracing portion of our algorithm relies on these
assumptions:

A6 Tracers cannot share system processes. A system process can be traced by (i.e., trace event
messages are sent to) at most one tracer at any point in time.

A7 System processes may share tracers. A tracer may trace more than one system process.
A8 System processes inherit tracers. A system process that is forked by another process that is

being traced becomes automatically traced by the same tracer.
Assumption A6 means that for one tracer to start tracing a system process currently being traced,
it must first stop the active tracer before it can take over and continue tracing this process itself.

3.2 Definitions and Notation
Processes. We assume a denumerable set of process identifiers (PIDs) to uniquely refer to processes.
We distinguish between system, tracer and analyser process forms, denoting them respectively by
the sets Pids, Pidt and Pida, where ps ∈ Pids, pt ∈ Pidt, pa ∈ Pida. New processes are created via the
function fork(д) that takes the signature of the code to be run by the forked process,д∈Sig, returning
its fresh PID. We refer to the process invoking fork as the parent, and to the forked process as the
child. To create monitor processes, the function fork is overloaded to accept verdict-flagging code,
v ∈Mon, and return the corresponding PID pa; tracer processes are spawned analogously. Processes
communicate with one another through asynchronous messages. Each process is equipped with

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

P

Q

R

ps

qs

rs

fork send

receive fork exit

(a) Process creation sequence for P , Q and R

TP

TQ

TR

pt

qt

rt

⟨evt,frk,ps,qs,дQ ⟩ ⟨evt,snd,ps,qs ⟩

⟨evt,rcv,qs ⟩ ⟨evt,frk,qs,rs,дR ⟩ ⟨evt,ext,qs ⟩

(no events)

(b) Trace event streams for TP , TQ and TR (see tbl. 4)

Fig. 2. SuS with processes P , Q , and R instrumented with three independent monitors

a message queue, K, from where it can read messages out-of-order and in a non-blocking fashion.
Unless stated otherwise, we use the terms tracer and analyser synonymously since the distinction
between the two notions is unimportant for the remainder of this section.

Messages. Messages, m ∈ Msg, are represented as tuples ⟨q,d0,d1, . . .,dn⟩, where q is a message
qualifier indicating the message type, and di ∈N are the data elements comprising the message
payload. We classify between three messages types, q ∈ {evt,dtc,rtd}, described thus:
q = evt: trace events obtained via the tracing mechanism to be analysed;
q = dtc: detach commands that tracers exchange to reorganise the monitoring choreography;
q = rtd: trace event or command messages that are routed between tracers.
The meta-variables e , c , and r are reserved to refer to messages of types evt, dtc and rtd respectively
We use the suggestive dot notation (.) to access specific data elements through indexable field names
(e.g. the message qualifier is accessible throughm.type). Trace event messages are structured as
⟨q=evt,d0=a,d1,. . .,dn⟩, where a∈Act identifies the kind of action exhibited by the SuS, andd1,. . .,dn
designate the data particular to the event. For our exposition, we let Act = {frk,ext,snd,rcv},
respectively denoting the process actions fork (frk), exit (ext), send denoted via “!” (snd) and
receive (rcv). We abuse the notation and use a in lieu of the full trace event message data (i.e., q and
d1, . . .) when this simplifies the explanation. The data elements particular to the four trace events
are accessed using the field names catalogued in tbl. 4 of app. A.

3.3 The Monitoring Approach
We present our outline decentralised monitoring algorithm incrementally, highlighting the issues
that arise when the monitoring choreography reorganises itself as the SuS executes. The algorithm
covers both arrangements outlined in fig. 1. In the pseudocode, we also highlight the technical
differences between the two variants, namely: (i) whether trace events are analysed by the separate
analyser, as in fig. 1a, or directly by the tracer, as in fig. 1b, and; (ii) depending on the variant,
whether or not the separate analyser is created and terminated. The core logic found in each
monitor in a choreography is described in lsts. 1–3; auxiliary logic may be found in app. A. Our
exposition focusses on the tracer logic, and is agnostic of the analyser code. Each tracer state
comprises of three maps: the routing map, Π, describing how to re-route events to other tracers, the
instrumentation map, Φ, describing when new monitors need to be launched, and a tracked-processes
map, Γ, recording the system processes the tracer is currently monitoring. We detail how these
maps are used below.

Dynamic process creation. To reorganise the monitoring choreography as the SuS executes, tracers
are programmed to react to specific events observed in the trace; in our setting, these are fork (frk)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

On Monitoring Asynchronous Components, Asynchronously 1:7

P Q

TP

frk 3

fork 2

1 2

(a) Process P forks Q ; TP also traces Q

P Q

TP TQ
instr. 4

5

(b) TP instruments new tracer TQ for process Q

P Q R

TP TQ

send 6

snd 10

receive 7

rcv 9 frk 11

fork 8

8

(c)TP andTQ analyse trace events independently

P Q R

TP TQ TR
instr. 12

exit 15

ext 14

13

(d) Processes P , Q , R and corresponding tracers

Fig. 3. Outline tracer instrumentation for processes P , Q and Q (analysers omitted)

and exit (ext). System processes are typically created in a hierarchical fashion, starting from the
top-level level process that forks one or more child processes [Armstrong 2007]; we borrow the
standard terminology used to describe the relationships between nodes in a tree (i.e., root, ancestor,
descendant, etc.) when referring to processes. Fig. 2a depicts our running example where the root
P forks a child Q and communicates with it; independently Q spawns R and exits. Our example
assumes that a dedicated monitor will be assigned per process; our exposition will focus on the
tracers, i.e., TP , TQ and TR in this case, where fig. 2b depicts the order of trace events each of these
monitors is expected to analyse.

Trace event acquisition. The tracing mechanism alluded to in sec. 3.1 is defined by the operations
Trace, Clear and Preempt listed in lst. 4 of app. A. Trace enables a tracer pt to register its interest
in being notified about trace events of a system process ps. This operation can be undone using
Clear, which blocks the caller, and returns only when all the trace event messages for ps that are
in the process of being delivered are deposited into the message queue of pt. Preempt combines
Clear and Trace, enabling a tracer pt to take over the tracing of process ps from another tracer p ′t .
Following assumption A8, tracing is inherited by every child process that a traced system process
forks; Clear or Preempt can therefore be used to alter this arrangement.

Decentralised trace processing. Fig. 3 demonstrates how the process creation sequence of the SuS
can be exploited to systematically instrument tracers and evolve the choreography at runtime. The
system processes P ,Q and R in fig. 3 are created (with PIDs ps, qs, and rs), following the interaction
protocol of fig. 2a. A tracer instruments other tracers whenever it encounters fork events in the
execution. In fig. 3a, the root tracer TP analyses the top-level process P , step 1 , and instruments a
new tracer, TQ , for process Q when it observes the fork event ⟨evt,frk,ps,qs,дQ ⟩ exhibited by P
in step 3 . The field e .tgt carried by the fork trace event designates the SuS process that is to be
instrumented with the new tracer. Thereafter, TQ takes over the tracing of process Q by calling

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

P Q R

TP

send 4

receive 5

fork 6

rcv 7 frk 9

snd 8

6

Message queue K of TP

K frk

10

rcv

11

snd frk

TP

(a) Trace events for P , Q , and R observed by TP

P Q R

TP TQ TR

instr. 11

rcv 15 frk 19

instr. 22

12 23

Message queues K and routing maps Π of TP and TQ

K frk

10

rcv

14

snd

17

frk

18

Π
Pids Pidt
qs qt 13
rs qt 20

K rcv

16

frk

21

Π
Pids Pidt
rs rt 24

(b) Trace events for Q routed from TP to TQ

Fig. 4. Hop-by-hop trace event routing using local tracer routing maps (analysers omitted)

Preempt withTP and e .src to continue tracingQ independently ofTP , steps 4 and 5 in fig. 3b. The
root tracer resumes its own analysis in parallel, where it receives the send event ⟨evt,snd,ps,qs⟩ in
step 10 after P issues a message to Q in step 6 . Subsequent fork events observed by TP and TQ are
handled in the same manner. Figs. 3c and 3d show how the next tracer, TR , is instrumented as Q
forks its child process R. Recall that prior to the instrumentation of tracers TQ and TR , processes Q
and R automatically start sharing tracers with their respective parents P and Q when forked, as
indicated in steps 2 and 8 .

Trace event routing. Different interleaved executions may still arise for the creation sequence
depicted in fig. 2a, due to the asynchrony between the SuS and tracer components. Fig. 4 shows an
interleaving alternative to the one captured in figs. 3b–3d. In fig. 4a, the root tracer TP is slow to
handle the fork event exhibited by process Q (step 1 in fig. 3a), failing to instrument TQ promptly.
Consequently, in fig. 4a, the trace events due to Q are received by TP in the sequence indicated
by steps 7 and 9 . As a result, the receive event ⟨evt,rcv,qs⟩ is processed by TP in step 11 , rather
than by the correct tracer TQ that is eventually instrumented by TP . This behaviour could derange
the runtime analysis, since the events that are expected to be processed by particular analysers
unintentionally reach a different monitor.
We address this problem by programming tracers to filter the events that are to be analysed

locally, and forward the rest to other tracers. Fig. 4b shows how the root tracer TP first instruments
TQ with Q in step 11 . It subsequently processes the events ⟨evt,rcv,qs⟩ and ⟨evt,frk,qs,rs,дR⟩ in
steps 14 and 18 , forwarding them to TQ , steps 15 and 19 . TQ acts on these events in steps 16 and
21 , where a second tracer, TR , is instrumented with R. Concurrently, the event ⟨evt,snd,ps,qs⟩ is
processed locally by TP in step 17 . Trace event routing is accomplished by maintaining a partial
map inside tracers, Π : Pids⇀Pidt, relating system and tracer PIDs. A tracer queries its instance of
the routing map Π for every trace event it processes, to determine whether the event should be
handled locally or directed elsewhere. The source PID of the event (field e .src in tbl. 4 of app. A)
is used to this effect. Trace events are forwarded to the tracer with PID pt when Π(e .src)=pt, and

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

On Monitoring Asynchronous Components, Asynchronously 1:9

1 def Loop◦(σ ,pa)
2 forever do

# Read routed messages or direct trace events
3 m← next message from queue K
4 if m .type= evt then
5 σ ← HandleEvent◦(σ ,m,pa)
6 else if m .type= dtc then

# dtc command received from descendant
# tracer: route back to sender

7 σ ←RouteDtc(σ ,m)
8 else if m .type= rtd then
9 σ ←RelayRtd◦(σ ,m,pa)
10 end if
11 end forever
12 end def

13 def HandleEvent◦(σ ,e ,pa)
14 if e .act= frk then
15 σ ← HandleFork◦(σ ,e ,pa)
16 else if e .act= ext then
17 σ ← HandleExit◦(σ ,e ,pa)
18 else if e .act ∈ {snd,rcv} then
19 HandleComm◦(σ ,e ,pa)
20 end if
21 return σ
22 end def

23 def HandleFork◦(σ ,e ,pa)
24 if (pt←σ .Π(e .src)),⊥ then
25 Route(e ,pt)

#New route for events of child process e .tgt
# goes through the same tracer ps of its parent

26 σ .Π←σ .Π∪{⟨e .tgt,pt ⟩ }
27 else
28 Monitor pa analyses event e
29 σ ← Instrument◦(σ ,e ,self())
30 end if
31 return σ
32 end def

33 def HandleExit◦(σ ,e ,pa)
34 if (pt←σ .Π(e .src)),⊥ then
35 Route(e ,pt)
36 else
37 Monitor pa analyses event e

# Remove terminated process e .src from group
38 σ .Γ←σ .Γ\{ ⟨e .src,◦⟩}
39 TryGC(σ ,pa)
40 end if
41 return σ
42 end def

43 def HandleComm◦(σ ,e ,pa)
44 if (pt←σ .Π(e .src)),⊥ then
45 Route(e ,pt)
46 else
47 Monitor pa analyses event e
48 end if
49 end def

Expect: σ .Π(c .tgt),⊥
50 def RouteDtc(σ ,c ,pa)
51 if (pt←σ .Π(c .tgt)),⊥ then
52 Route(c ,pt)
53 σ .Π←σ .Π\{ ⟨c .tgt,pt ⟩ } # Remove route
54 TryGC(σ ,pa)
55 end if
56 return σ
57 end def

58 def RelayRtd◦(σ ,r ,pa)
59 m← r .emb
60 if m .type= dtc then
61 σ ← RelayDtc(σ ,r ,pa)
62 else if m .type= evt then
63 σ ← RelayEvt(σ ,r )
64 end if
65 return σ
66 end def

67 def RelayDtc(σ ,r ,pa)
68 c← r .emb
69 if (pt←σ .Π(c .tgt)),⊥ then
70 Relay(r ,pt)
71 σ .Π←σ .Π\{ ⟨c .tgt,pt ⟩ } # Remove route
72 TryGC(σ ,pa)
73 end if
74 return σ
75 end def

Expect: σ .Π(r .emb.src),⊥
76 def RelayEvt(σ ,r )
77 e← r .emb
78 if (pt←σ .Π(e .src)),⊥ then
79 Relay(r ,pa)

#New route for events of child process e .tgt
# goes through the same tracer ps of its parent

80 if e .act= frk then
81 σ .Π←σ .Π∪{⟨e .tgt,pt ⟩ }
82 end if
83 end if
84 return σ
85 end def

Lst. 1. Tracer loop that handles direct events, message routing and relaying

handled by the tracer itself when no such route exists, i.e., Π(e .src)=⊥. HandleFork, HandleExit
and HandleComm in lst. 1 implement this logic on lines 24, 34 and 44.

A tracer extends its routing map Π whenever it processes a fork event ⟨evt,frk,ps,p ′s,д⟩. It has to
consider the following two cases:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

Expect: e .act= frk
1 def Instrument◦(σ ,e ,pt)
2 ps← e .tgt
3 if (v←σ .Φ(e .sig)),⊥ then
4 p′t← fork(Tracer(σ ,v ,ps,pt))
5 σ .Π←σ .Π∪{⟨ps,p′t ⟩ }
6 else

# In ◦ mode, there is no process ps to detach
# from an ancestor tracer; add ps to group

7 σ .Γ←σ .Γ∪{⟨ps,◦⟩}
8 end if
9 return σ
10 end def

Expect: e .act= frk
11 def Instrument•(σ ,e ,pt)
12 ps← e .tgt
13 if (v←σ .Φ(e .sig)),⊥ then
14 p′t← fork(Tracer(σ ,v ,ps,pt))
15 σ .Π←σ .Π∪{⟨ps,p′t ⟩ }
16 else

# Take over ps from tracer pt; add ps to group
17 Detach(ps,pt)
18 σ .Γ←σ .Γ∪{⟨ps,•⟩}
19 end if
20 return σ
21 end def

Lst. 2. Instrumentation operations for direct (◦) and priority (•) tracer modes

C1 Π(ps) =⊥. This means that the tracer needs to adapt the choreography in response to the
newly forked process itself. It launches a new (child) tracer TP ′ with fresh PID p ′t to be
instrumented with the forked process p ′s, and extends Π with the mapping p ′s 7→p ′t ; or,

C2 Π(ps)=p ′t . This means that a route to the tracer with PID p ′t exists for events originating from
ps. Accordingly, the tracer forwards the fork event for ps to p ′t , and again extends Π with the
mapping p ′s 7→p ′t (i.e., future events from the new process p ′s will also be forwarded to p ′t ).

Fig. 4b depicts the routing maps of tracers TP and TQ . TP adds the mapping qs 7→ qt in step 13 ,
after handling the event ⟨evt,frk,ps,qs,дQ ⟩ to instrument TQ with Q in steps 10 and 11 ; this is an
instance of case C1. Lst. 2 describes function Instrument where, on line 5, the mapping e .tgt 7→p ′t
(with e .tgt=p ′s) is added to Π following the creation of tracer p ′t . Step 20 of fig. 4b constitutes an
instance of case C2. TP adds the map rs 7→ qt after processing ⟨evt,frk,qs,rs,дR⟩ for R, step 18 .
Crucially, TP does not instrument a new tracer, but simply delegates this task to TQ by forwarding
the event in question. Lines 26 and 81 in lst. 1 (and later line 26 in lst. 3) are manifestations of this,
where the mapping e .tgt 7→p ′t is added after the fork event e is routed to the next tracer p ′t .

We note that in fig. 4b both mappings inside TP , created in steps 13 and 20 , point to tracer TQ ,
and the mapping 24 inTQ points toTR . This routing map configuration arises as a result of cases C1
and C2, and implies that any given tracer can only forward trace events to adjacent neighbours. For
instance, trace events exhibited by R (to be collected byTP ) need to be forwarded twice to reach the
intended tracer TR : from tracer TP to TQ , and from TQ to TR . This hop-by-hop routing [Baker 1995]
between tracers forms a connected DAG, and ensures that every message is eventually delivered by
the tracer choreography. Our algorithm performs routing using two operations, Route and Relay
from lst. 5 in app. A. Route creates a new message, r , with type rtd and embeds the message that
needs to be routed. Messages routed to a tracer can either be analysed or forwarded using Relay.

Trace event order preservation. Trace event routing does not guarantee that a tracer will receive
events in the sequence that should be processed by each monitor, as depicted in fig. 2b, in order to
reflect the execution of the SuS shown in fig. 2a. The situation arises when the tracer simultaneously
actively traces a system component while receiving routed events for that component from another
tracer. Fig. 5a highlights the deleterious effect this can have on the runtime analysis should events
be deposited out-of-order in the tracer’s message queue (assumption A3). Tracer TQ takes over
tracing process Q from TP in step 12 , and collects the event ext, step 15 , before it receives the
routed event rcv for Q in step 17 . If TQ naïvely analyses the events based on their position in the
message queue, step 18 , it would violate the (correct) order stated in fig. 2b; in factQ cannot receive
a message after exiting. To address this issue, tracers prioritise the processing of routed trace event

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

On Monitoring Asynchronous Components, Asynchronously 1:11

messages. This captures the invariant that out of all events to be analysed by a monitor, routed
events must have temporally preceded all other events. Tracers operate on two levels, priority mode
and direct mode, denoted by • and ◦ in our algorithm. Fig. 5b shows that when in priority mode,
tracer TQ dequeues the routed events rcv and frk (labelled with •), and handles them first: rcv
is analysed in step 23 , whereas frk results in the instrumentation of a new tracer TR in step 25 .
Events that should not be analysed by the tracer are forwarded as described earlier in fig. 4. We
note that TQ can still receive trace events from process Q while this is ongoing, but these events
are only considered once the tracer transitions to direct mode later. Newly-instrumented tracers
default to priority mode, so that routed trace events are processed first (see line 5 in lst. 6 of app. A).
Lst. 3 shows the priority processing logic, Loop•, where routed trace events are dequeued and

handled (lines 3 and 6). HandleFork, HandleExit and HandleComm for the two tracer modes,
Loop◦ and Loop• in lsts. 1 and 3, handle trace events differently. In priority mode, tracers only
dequeue routed trace events, and these can be either analysed or relayed (e.g. the branching
statement between lines 24 and 31 in lst. 3). By contrast, tracers in direct mode can relay events
that have been routed their way, but also start routing trace events themselves when these are to
be handled by other tracers.

Transitioning safely between tracing modes. A router tracer is one that currently receives events
from a system process that is configured to be tracked by another tracer; the latter tracer must
be in priority mode. In fig. 4b, TP is the router tracer for TQ , since Q (originally set to be traced
by TQ ) shares TP with process P once forked in fig. 4a, following assumption A8. Similarly, TP is
also the router tracer for TR . Our tracer choreographies observe the invariant that every tracer in
priority mode has exactly one router tracer. Moreover, if any other tracer along the path between
this tracer and the router tracer is also in priority mode, it must share the same router tracer.

P Q R

TP TQ

instr. 11

rcv 17

exit 14

ext 15

12

Message queues K and routing maps Π of TP and TQ

K frk

10

rcv

16

snd frk

Π
Pids Pidt
ps pt 13

TP

K ext

18

rcv

Π Pids Pidt

TQ

(a) TQ observes event ext before TP routes rcv

P Q R

TP TQ TR

instr. 11

dtc 13

exit 15

ext 16

rcv 18 frk 21

instr. 25

dtc 29

12 26

31

Message queues K and routing maps Π of TP and TQ

K frk

10

rcv

17

snd

19

frk

20

dtc

28

Π
Pids Pidt
qs qt 14
rs qt 22

K ext

32

rcv

23

frk

24

dtc

30

Π
Pids Pidt
rs rt 27

(b)TQ processes priority events routed byTP first

Fig. 5. Trace event order preservation using priority (•) and direct (◦) tracer modes (analysers omitted)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

1 def Loop•(σ ,pa)
2 forever do

# Trace event messages collected directly are
# left in the queue to be handled in ◦ mode

3 r← next rtd message from queue K
4 m← r .emb
5 if m .type= evt then
6 σ ← HandleEvent•(σ ,r ,pa)
7 else if m .type= dtc then

# dtc command routed back from ancestor
8 σ ←HandleDtc(σ ,r ,pa)
9 end if
10 end forever
11 end def

12 def HandleEvent•(σ ,r ,pa)
13 e← r .emb
14 if e .act= frk then
15 σ ← HandleFork•(σ ,r ,pa)
16 else if e .act= ext then
17 σ ← HandleExit•(σ ,r ,pa)
18 else if e .act ∈ {snd,rcv} then
19 HandleComm•(σ ,r ,pa)
20 end if
21 end def

22 def HandleFork•(σ ,r ,pa)
23 e← r .emb
24 if (pt←σ .Π(e .src)),⊥ then
25 Relay(r ,pt)
26 σ .Π←σ .Π∪{⟨e .tgt,pt ⟩ }
27 else
28 Monitor pa analyses event e
29 p′t← r .rtr
30 σ ← Instrument•(σ ,e ,p′t )
31 end if
32 return σ
33 end def

34 def HandleExit•(σ ,r ,pa)
35 e← r .emb
36 if (pt←σ .Π(e .src)),⊥ then
37 Relay(r ,pt)
38 else
39 Monitor pa analyses event e

# Remove terminated process e .src from group
40 σ .Γ←σ .Γ\{ ⟨e .src,•⟩}
41 TryGC(σ ,pa)
42 end if
43 return σ
44 end def

45 def HandleComm•(σ ,r ,pa)
46 e← r .emb
47 if (pt←σ .Π(e .src)),⊥ then
48 Relay(r ,pt)
49 else
50 Monitor pa analyses event e
51 end if
52 end def

Expect: r .emb.iss= self()∨σ .Π(r .emb.tgt),⊥
53 def HandleDtc(σ ,r ,pa)
54 c← r .emb
55 if (pt←σ .Π(c .tgt)),⊥ then
56 Relay(r ,pt)
57 else

#Mark process c .tgt in group as detached
58 σ .Γ←σ .Γ\{ ⟨c .tgt,•⟩}
59 σ .Γ←σ .Γ∪{⟨c .tgt,◦⟩}
60 γ = { ⟨ps,d ⟩ | ⟨ps,d ⟩ ∈ σ .Γ,d = •}
61 if γ = ∅ then
62 Loop◦(σ ,pa) # Switch tracer to ◦ mode
63 end if
64 end if
65 return σ
66 end def

Lst. 3. Tracer loop that handles priority trace events and message relaying

A tracer in priority mode coordinates with its router tracer to determine whether all of the
events for its tracked system processes have been routed. A tracer must effect this procedure for
every process it currently tracks, recorded in Γ, before it can safely transition to direct mode, and
start operating on the trace events it collects directly. The tracer issues a special detach command
message, dtc, to notify the router tracer that it is now responsible for tracing a particular system
process. Detach commands contain the PIDs of the issuer tracer in priority mode and system
process in question, accessed via the fields iss and tgt respectively, described in tbl. 5 in app. A.
Fig. 5b shows tracer TQ in priority mode (•) sending the command ⟨dtc,qt,qs⟩ for Q , step 13 ,

after it starts tracing this process directly, step 12 . This transaction is implemented by Detach in
lst. 6 of app. A, where ⟨dtc,p ′t,ps⟩ is sent to the router tracer pt on line 10, after it invokes Preempt.
In fig. 5b, dtc issued byTQ follows rcv and frk in the message queue of tracerTP . The router tracer
processes its message queue sequentially in steps 10 , 17 , 19 , 20 and 28 . These trace events are
forwarded to neighbouring tracers as necessary in steps 18 and 21 (see lines 3–5 in lst. 1). It also
routes the dtc command back to the issuer tracer in step 29 where, once handled, marks the system
process as detached from the router tracer. HandleDtc in lst. 3 effects this update on the routing

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

On Monitoring Asynchronous Components, Asynchronously 1:13

map Γ : Pids⇀ {◦,•} of the issuer tracer on lines 58 and 59. Once all the processes in Γ become
detached, the tracer transitions to direct mode by executing Loop◦; this check is performed on lines
60 and 61 in lst. 3. While in priority mode, TQ handles the prioritised (•) events forwarded by TP
in the correct order stipulated earlier in fig. 2b (steps 23 and 24 ). This is followed by handling the
command dtc in step 30 . The transition from priority to direct mode for TQ in fig. 5b takes place in
step 31 . Finally, the trace event ext is handled in the correct order in step 32 (as opposed to step
18 in fig. 5a).
A detach command c originating at the router tracermay be relayed throughmultiple intermediate

tracers until it reaches its destination. Every intermediate tracer purges the association c .tgt 7→pt
from its routing map Π for some neighbouring tracer PID pt. This functionality is provided by
RelayDtc and RouteDtc in lst. 1: despite their similar logic, RouteDtc is used by the tracer to
commence the routing of detach commands, whereas RelayDtc merely forwards commands to
other tracers. While these steps are not shown in fig. 5b, we briefly remark that tracer TP would
remove from Π the mapping qs 7→ qt, calling RouteDtc to start routing back the detach command
⟨dtc,qt,qs⟩ it receives fromTQ . In due course,TP also removes rs 7→qt for process R once it handles
⟨dtc,qt,rs⟩ sent by tracerTR . When it receives the routed detach command ⟨rtd,pt,⟨dtc,qt,rs⟩⟩ from
TP , TQ removes rs 7→ rt from Π and relays it, in turn, to tracer TR using RelayDtc.

Selective instrumentation. In practice, one might want to have the flexibility to group processes under
a single monitor to analyse them as one component. Our algorithm selectively instruments (new)
tracers for particular system processes using the map, Φ : Sig⇀Mon: it maps the code signatures,
д (of the system process forked), to the monitoring code, v (to be executed by the newly spawned
monitor). Instrument in lst. 2 applies Φ to the code signature, where e .sig=д, in the fork event e
on lines 3 and 13. When Φ(д)=⊥, instrumentation is not performed, and the tracer is automatically
shared by the new process e .tgt, according to assumptions A7 and A8.

Garbage collection. Our outline set-up can shrink in size by discarding tracers that are no longer
needed. A tracer self-terminates after its routing map Π and tracked-processes map Γ become
empty; this check is performed by TryGC in lst. 6 in app. A. The tracer purges process references
from Γ when it handles exit trace events via HandleExit◦ and HandleExit• (lsts. 1 and 3). Note
that, even when Γ= ∅ and the tracer has no processes to analyse, it might still be required to route
trace events to adjacent tracers, i.e., Π, ∅. The garbage collection check is therefore performed
each time mappings from Π or Γ are removed on lines 39, 54 and 72 in lst. 1, and line 41 in lst. 3. In
fig. 5b, tracer TQ would terminate sometime after handling the exit event ext for process Q in step
32 , once the routed detach command ⟨rtd,pt,⟨dtc,qt,rs⟩⟩ it receives from TP is relayed to tracer TR .

4 EVALUATION
We give a comprehensive evaluation to assess quantitative aspects of inline and outline monitoring.
Our evaluation takes the form of a case study that instantiates the monitoring problem from sec. 3 to
a RV setting, where event streams are analysed to reach acceptance/rejection verdicts in connection
to satisfactions/violations of correctness properties [Bartocci et al. 2018; Francalanza et al. 2017].
The set-up follows that of fig. 1, where the analysis components (used in fig. 1 and in inlined
monitors) are synthesised from syntactic descriptions of the properties of interest. Our synthesis
compiles properties down to automata-based monitors following [Aceto et al. 2019a]. We evaluate
the different approaches in terms of runtime overheads and, by this, asses their viability. We follow
an approach similar to [Bartocci et al. 2019], and consider the following overhead performance
metrics: (i) mean scheduler utilisation, as a percentage of the total available capacity, (ii) mean
memory consumption, measured in GB, (iii) mean round trip time (RTT), measured in milliseconds

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

(ms), and, (iv) mean execution duration, measured in seconds (s). Our measurements are collected
globally by sampling the runtime environment in which the SuS and monitoring system execute.

4.1 Scope
Our evaluation focusses on master-slave systems [Tarkoma 2010], where one central process, called
the master, creates and farms out tasks to multiple slave processes. This class of decentralised
systems satisfies assumptions A1–A5 from sec. 3, and is used pervasively in areas such as DNS,
IoT and Big Data. On a local concurrency scale, master-slave systems underlie applications like
thread pools and web servers.1 We require an evaluation setup that targets the instrumentation
layer of the various monitoring approaches. To achieve this, we need correctness properties that,
while being parametric w.r.t. components, yield an analysis component that is uniform across
the various approaches. We opted not to use global properties because, in a decentralised setting
such as ours, individual monitors would need to cooperate in order to reach global verdicts.
Decentralised inline and outline monitors interact in fundamentally different ways (e.g. inline
monitors typically can query the internal data structures of the SuS whereas outline monitors would
need to replicate this state externally) and this discrepancy introduces runtime biases that make
the results hard collect and interpret. Instead, our evaluation exclusively employs local properties
where the synthesised analysis components can reach verdicts without the need to interact with
other analysing components [Attard and Francalanza 2017; Chen and Rosu 2009; Jin et al. 2012;
Neykova and Yoshida 2017a; Reger et al. 2015]; this fixes the analysis overhead parameter to a
uniform constant across all experiments. In fact, our synthesised analysis is identically pluggable in
both the inline and outline monitoring algorithms. The properties we use for benchmarks translate
to monitors that loop continually in order that these exert the maximum level of overhead possible.

4.2 Methodology
We use Erlang [Armstrong 2007] to implement our evaluation set-up and monitoring algorithms.
Erlang adopts the actor model of computation [Agha et al. 1997], implementing them as lightweight
processes. Actors interact via asynchronous messaging, changing their (local) internal state based
on messages received. Every actor owns a message queue, called the mailbox, where messages
can be taken out-of-order. Actors can also fork other actors to execute independently in their own
process space. Every actor is identified via a PID that is assigned to it when forked. We use the
term actor and process interchangeably in the rest of this section.

Implementation. The inline monitoring tool we developed for this study assumes access to the SuS
source code. It instruments monitoring instructions into the target system via code injection by
manipulating its parsed abstract syntax tree. The modified syntax tree is then compiled into an
executable form, and the instrumented instructions perform the runtime analysis in a synchronous
manner as the SuS executes. Our implementation of the outline monitoring algorithm in sec. 3 maps
tracer processes to Erlang actors. Tracers collect the trace events by leveraging the native tracing
infrastructure provided by the Erlang Virtual Machine (EVM). This infrastructure complies with
assumptions A6–A8. EVM tracing directs trace event messages from system processes to tracer
mailboxes acting as the tracer messages queues K of sec. 3.2. The maps Π, Φ and Γ are implemented
using Erlang maps for efficient access. We implement the two trace analysis variants of fig. 1. For
the arrangement in fig. 1a, the analysis is forked as a separate actor where tracers forward their
event messages. Line 4 in lst. 6 of app. A indicates the point at which the actor tasked with the
analysis is created whereas line 14 signals said actor to terminate when garbage collection takes
place. The analysis is incorporated directly into tracers for the merged monitor case in fig. 1b.
1We could have employed a peer-to-peer set-up, but this complicates the evaluation considerably.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

On Monitoring Asynchronous Components, Asynchronously 1:15

0 20 40 60 80 100

Timeline (s)

0.20

0.40

0.60

0.80

1.00

Co
nc
ur
re
nt

sla
ve
s(
K)

Steady

20 40 60 80 100

Timeline (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pulse

20 40 60 80 100

Timeline (s)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Burst

Fig. 6. Steady, Pulse and Burst load distributions with 100 k slaves for the duration of 100 s

The SuS. We opt for a custom-built evaluation platform that emulates models of master-slave
systems. The decision not to go with off-the-shelf (e.g. web servers, thread pools, etc.) systems
stems from three core drawbacks these have, namely: (i) they make it challenging to precisely
control particular experiment parameters conducive to repeatable results, (ii) do not provide hooks
that permit accurate measurement taking, (iii) often embody highly-specific use cases that make it
difficult to generalise the findings obtained. Our evaluation platform is parametrisable to emulate
different system models. The tasks farmed out by the master consist of work requests that a slave
receives, processes and echoes back. A slave is set to terminate once all of its work requests have
been handled and acknowledged by the master. The parameterw in our framework regulates the
number of work requests that can be batched in one task; the actual amount of work requests per
slave is drawn randomly from a normal distribution with mean µ =w , and a standard deviation
σ =w×0.02. This ensures a degree of variability in the amount of messages exchanged between the
master and each slave. The speed with which the system reacts to work requests can be controlled
via the parameters Pr(send) and Pr(recv). To distribute tasks uniformly amongst slaves, the master
interleaves the sending and receiving of work requests: Pr(send) and Pr(recv) can bias this behaviour.
Pr(send) determines the probability that a work request is assigned by the master to a slave. Pr(recv)
controls the probability that a work request received by the master is handled and acknowledged.
Load on the system is induced by the master when it creates slave processes; the total number of
slaves that are created during one experiment is set using the parameter n.

Load models. Our system considers three load shapes (fig. 6) that establish how the creation of slaves
based on the parameter n is distributed along the load timeline t . The load timeline is represented
as a sequence of discrete logical time units that denote instants at which a new set of slaves is
created by the master. Steady loads reproduce executions where a system operates under stable
conditions. These are modelled on a homogeneous Poisson distribution with rate λ, specifying the
mean number of slaves that are created at every time instant along the load timeline with duration
t = ⌈n/λ⌉. Pulses emulate scenarios where a system undergoes gradually-increasing load peaks. The
pulse load shape is parametrised by t and the spread, s , that controls how slowly or sharply the
system load increases as it approaches its peak halfway along t . Pulses follow a normal distribution
with µ = t/2 and σ = s . Burst loads capture scenarios where a system is stressed due to instant load
spikes: these are based on a log-normal distribution with µ = ln(m2/

√
p2+m2), σ =

√
ln(1+p2/m2)

wherem = t/2 and p is the pinch controlling the intensity of the initial load burst.

Experiment set-up. To meet the objectives set out in this section, we conduct two case studies where
the SuS is configured with n = 10k for moderate loads and n = 100k high loads. The number of

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

work requests per task is set to w = 100. Pr(send)=Pr(recv)=0.9 fixes the probability of sending
and acknowledging work requests: this emulates a system that reacts promptly to load, but at
the same time, exhibits slight processing delays that arise in a master-slave architecture. Our
chosen parameter values instantiate the SuS to model realistic web response time where the request
intervals observed at the server follow a Poisson process [Ciemiewicz 2001; Kayser 2017; Liu
et al. 2001]. Further detail regarding the validation of this model are given in app. B. For these
experiments, the total loading time is set to t = 100s. We use the term experiment to denote a series
of ten benchmarks where the SuS is configured with one particular monitoring set-up (e.g. with
outline monitors). Load to the set-up is added incrementally at each benchmark until the maximum
load is reached, e.g. for the case study with n = 10k slaves, we start with the first benchmark set to
n1 = 1k and progress to n10 = 10k in steps of 1 k. We repeated ten readings for each experiment, and
aggregated the results by computing the weighted mean for the performance metrics mentioned
above. Consult app. B for the full list of precautions. The experiments were conducted on an Intel
Core i7 M620 64-bit machine with 8GB of memory, running Ubuntu 18.04 and Erlang/OTP 22.2.1.

4.3 Results and Discussion
Our results are reported in tbls. 1 and 2 and figs. 7–10, plotting each performance metrics (y-axis)
against the slave processes (x-axis) for every monitoring mode; the unmonitored system is inserted
as a baseline reference. Fitted data plots corresponding to figs. 7–10 are given in app. C.

Moderate loads. Our first batch of results considers loads that are slightly higher than those
employed by the state-of-the-art to evaluate decentralised, concurrent and distributed runtime
monitoring, e.g. [Attard and Francalanza 2017; Berkovich et al. 2015; Cassar and Francalanza 2016;
Colombo and Falcone 2016; El-Hokayem and Falcone 2017; Francalanza and Seychell 2015; Mostafa
and Bonakdarpour 2015; Neykova and Yoshida 2017a,b; Scheffel and Schmitz 2014]; works like
[Chen and Rosu 2007, 2009; Reger et al. 2015] consider higher loads, but they evaluate sequential
monitoring. Crucially, neither of the aforementioned studies employ different load shapes in their
analysis: they either use loads modelled on a Poisson process, i.e., Steady load, or do not specify
the load types considered. The SuS set with n = 10k slaves and w = 100 work requests per slave
generates≈n×w×(work requests and responses)=2Mmessages exchanged between themaster and
slaves, producing 2M×(snd and rcv trace events)= 4M trace events. Tbl. 1 reports the percentage
overhead at n=10k. It shows that inline and the two flavours of outline monitoring induce negligible
execution slowdown for all three load shapes (e.g. 0.77 % maximum for DM under Burst load); the
memory consumption overhead behaves similarly. At the Steady load illustrated in fig. 7, memory
consumption and RTT (round trip) grow linearly in the number of slave processes. Under the Pulse
and Burst loads in tbl. 1, inline monitoring induces negligible scheduler overhead. This is markedly
higher for outline monitoring (DS and DM), mostly caused by the dynamic reconfiguration of the

Steady Pulse Burst
Filler I DS DM I DS DM I DS DM

Scheduler 1.68 42.13 22.60 1.54 35.17 18.12 2.08 38.92 26.03
Memory 0.01 0.10 0.09 0.01 0.08 0.04 0.03 0.10 0.06
RTT 4.37 67.05 58.36 7.72 82.85 60.79 20.17 859.91 666.46
Execution 0.09 0.40 0.28 0.10 0.32 0.22 0.12 1.09 0.77

Inline (I), Decentralised outline separate (DS), Decentralised outline merged (DM)

Tbl. 1. Percentage runtime overhead taken at the maximum load n = 10k

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

On Monitoring Asynchronous Components, Asynchronously 1:17

2 4 6 8 10
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Steady)

2 4 6 8 10

1.584

1.585

1.586

1.587

1.588

1.589

Co
ns
um

pt
io
n
(G
B)

Memory (Steady)

2 4 6 8 10

Total slaves (k)

0.2

0.5

0.8

1.0

1.2

1.5

1.8

Ti
m
e
(m

s)

Round trip (Steady)

2 4 6 8 10

Total slaves (k)

99.0

99.5

100.0

100.5

101.0

101.5

102.0

102.5

D
ur
at
io
n
(s
)

Execution (Steady)

baseline inline outline (separate) outline (merged)

Fig. 7. Mean runtime overhead for monitoring the master and slave processes (10 k slaves)

monitoring choreography. Tbl. 1 also suggests that the RTT is very sensitive to the type of load
applied, and it increases for the load shapes Steady, Pulse and Burst respectively. In fact, the latter
load shape induces a sharp growth in the RTT for outline monitoring at around 9k∼ 10k slaves, as
illustrated in fig. 8. This indicates that specific load shapes prompt very different behaviours from
the monitors, and should be taken into account.
Despite the clear discrepancies (percentage-wise) in scheduler and RTT overheads between

inline and outline monitoring in tbl. 1, these are comparable (value-wise) for the loads that are
typically used in other bodies of work, as shown in figs. 7 and 8 (e.g. the worst discrepancy is 11ms
for RTT under Burst). Merging the analysis with tracing as in fig. 1b yields improvements, but its
effect is negligible. For certain performance metrics, our data plots do not allow us to confidently
extrapolate our results. A case in point is the RTT Burst plot for outline monitoring, which raises
the question of whether the trend remains consistent when the number of slaves exceeds 10k.

High loads. We increase the number of slaves ton=100k and keepw=100, to generate 20 Mmessages
and 40 M trace events. Our aim is to assess how the monitored system performs under stress, and
whether this reveals aspects that do not emerge at lower loads. Since these loads span a broader
range, this also gives us a reasonable level of confidence when extrapolating our observations.
Particular, we also include the measurements obtained for the SuS with a centralised monitoring
set-up for this case study, to better isolate the effects of outline monitoring.

Tbl. 2 confirms that inline monitoring induces lower overheads. However, dissecting these results
uncovers a few surprising aspects. For instance, the memory overhead between inline and outline
monitoring with the separate analysis is 13.3 % under a Steady load at its highest point of 100 k
slaves. This overhead is arguably tolerable for a number of applications. When merging outline
tracing with its analysis as in fig. 1b, this discrepancy goes down to respectable 6.8 %. Centralised

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

2 4 6 8 10
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Pulse)

2 4 6 8 10

1.584

1.585

1.586

1.587

1.588

1.589

Co
ns
um

pt
io
n
(G
B)

Memory (Pulse)

2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m
e
(m

s)

Round trip (Pulse)

2 4 6 8 10

100.4

100.6

100.8

101.0

101.2

101.4

D
ur
at
io
n
(s
)

Execution (Pulse)

baseline inline outline (separate) outline (merged)

2 4 6 8 10
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Burst)

2 4 6 8 10

1.584

1.586

1.588

1.590

Co
ns
um

pt
io
n
(G
B)

Memory (Burst)

2 4 6 8 10

Total slaves (k)

2.0

4.0

6.0

8.0

10.0

12.0

Ti
m
e
(m

s)

Round trip (Burst)

2 4 6 8 10

Total slaves (k)

100.5

101.0

101.5

102.0

D
ur
at
io
n
(s
)

Execution (Burst)

Fig. 8. Mean runtime overhead for monitoring the master and slave processes (10 k slaves, cont.)

outline monitoring further lower this difference to a negligible 0.6 %; this seems to debunk the
general assumption that outline monitoring necessarily leads to infeasible overheads. The plots in
fig. 9 also show that under Steady loads, the overhead for the memory, RTT and execution duration
are comparable to inline monitoring up to the considerable load of around 40 k slaves (i.e., 8 M

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

On Monitoring Asynchronous Components, Asynchronously 1:19

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Steady)

20 40 60 80 100

1.60

1.65

1.70

1.75

1.80

1.85

1.90

Co
ns
um

pt
io
n
(G
B)

Memory (Steady)

20 40 60 80 100

Total slaves (k)

0

200

400

600

800

Ti
m
e
(m

s)

Round trip (Steady)

20 40 60 80 100

Total slaves (k)

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Steady)

baseline inline outline (separate) outline (merged) outline (centralised)

Fig. 9. Mean runtime overhead for monitoring the master and slave processes (100 k slaves)

messages and 16 M trace events). Tbl. 2 indicates that the RTT overhead for outline monitoring
decreases for the load shapes Steady, Pulse and Burst respectively; this trend is also mirrored in the
execution slowdown metric. These results contrast with the ones in tbl. 1, where the overhead for
said metrics gradually increases under the same load shapes. This suggests that outline monitoring
exhibits a degree of robustness at high numbers for loads like Pulse and Burst, whose shapes
induce higher stress in the SuS in comparison to consistent loads. In these two instances, outline
monitoring pays a price in terms of memory overhead (tbl. 1), although the maximum overhead
reported in our results, 24.6 %, may be acceptable for many scenarios. Merging the analysis with
tracing in outline monitoring consistently yields lower overheads when compared to the variant
with separate analysis, irrespective of the load shape.

We draw attention to the charts in figs. 9 and 10, where the memory consumption plot for
centralised outline monitoring crosses over that of inline monitoring. This behavior emerges

Steady Pulse Burst
I DS DM C I DS DM C I DS DM C

Scheduler 1.8 86.8 58.1 46.8 2.9 85.5 55.6 47.5 3.1 84.4 57.9 51.6
Memory 1.9 15.2 8.7 1.3 2.9 18.1 11.8 2.2 3.1 24.6 15.4 1.9
RTT 68.9 326.9 267.9 167.9 72.7 257.8 238.7 189.0 28.4 120.6 114.3 100.1
Execution 23.5 108.6 93.8 68.9 24.5 101.8 93.5 72.8 15.7 82.0 77.5 69.3

Inline (I), Decentralised outline separate (DS), Decentralised outline merged (DM), Centralised outline (C)

Tbl. 2. Percentage runtime overhead taken at the maximum load n = 100k

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Pulse)

20 40 60 80 100

1.60

1.70

1.80

1.90

Co
ns
um

pt
io
n
(G
B)

Memory (Pulse)

20 40 60 80 100

0

200

400

600

800

Ti
m
e
(m

s)

Round trip (Pulse)

20 40 60 80 100

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Pulse)

baseline inline outline (separate) outline (merged) outline (centralised)

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Burst)

20 40 60 80 100

1.60

1.70

1.80

1.90

2.00

2.10

Co
ns
um

pt
io
n
(G
B)

Memory (Burst)

20 40 60 80 100

Total slaves (k)

0

500

1000

1500

2000

Ti
m
e
(m

s)

Round trip (Burst)

20 40 60 80 100

Total slaves (k)

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Burst)

Fig. 10. Mean runtime overhead for monitoring the master and slave processes (100 k slaves, cont.)

because the former method consumes less memory than inline monitoring on average, but it then
executes for a longer period of time. Figs. 9 and 10 illustrate the mean measurements obtained per
experiment; a different depiction that shows the total memory consumed during the experiment
can be found in app. C. From the figures reported in tbl. 2, one could even make a case that for

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

On Monitoring Asynchronous Components, Asynchronously 1:21

Steady Pulse Burst
DSm DMm OSs DMs DSm DMm DSs DMs DSm DMm DSs DMs

Scheduler 20.4 10.1 0.001 0.001 21.4 14.4 0.001 0.000 23.2 15.4 0.001 0.000
Memory 1.4 0.7 0.000 0.000 2.0 1.5 0.000 0.000 1.4 0.9 0.000 0.000
RTT 194.6 134.4 0.001 0.001 200.5 185.4 0.001 0.001 87.2 72.7 0.000 0.000
Execution 74.9 61.1 0.000 0.000 79.2 73.7 0.000 0.000 60.7 50.3 0.000 0.000

Decentralised outline separate on master (DSm), Decentralised outline merged on master (DMm)
Decentralised outline separate per slave (DSs), Decentralised outline merged per slave (DMs)

Tbl. 3. Percentage amortised runtime overhead on each slave taken at the maximum load n = 100k

settings where memory is limited but execution time is not, outlined centralised monitoring is more
appropriate than inlined decentralised monitoring.
The memory consumption, RTT, and execution duration plots in figs. 9 and 10 exhibit a linear

growth beyond specific x-axis thresholds. This contrasts with the plots in figs. 7 and 8 for n = 10k,
where different trends may be observed: the execution duration plot under a Steady load shape
grows (negative) quadratically in fig. 7, but follows a cubic trend in the case of Pulse and Burst
loads in fig. 8; a similar effect is obtained in the RTT for Burst (consult the fitted data plots in
app. C). These differences in runtime behaviour underscore the value of performing tests using
reasonably high loads, as this increases the chances of observing likely trends. For instance, the
empirical evidence obtained for moderate loads could mislead one to assert that outline monitoring
scales very poorly in the case of RTT under moderately-sized Burst loads.

Estimated overhead on slaves. Our results thus far present an overall view of the overhead induced
by runtime monitoring. In certain cases however, this measure is too coarse since we would be
interested more in quantifying the overhead incurred at each slave: this bears particular relevance
to distributed setting where the processing capability of the system is spread over heterogenous
machines (e.g. in an IoT set-up deployed on edge nodes [Shi et al. 2016] with limited computing
power, understanding slave overheads is essential). Our experiment set-up does not allow us to
directly measure the overhead at each slave since our measurements are collected globally. Instead,
Tbl. 3 shows the percentage overhead for decentralised outline monitoring induced on the master
process only, together with the estimated overhead apportioned over each slave. The overhead
incurred by the SuS when monitoring the master process, DSm and DMm in tbl. 3, is obtained
by setting up the experiment with n = 100k andw = 100 as before. We can then approximate the
combined overhead induced by the slaves by subtracting DSm and DMm from the total overhead
obtained when the master and slaves are monitored together (DS and DM in tbl. 2). An apportioned
overhead per slave can therefore be obtained by dividing this combined overhead by the number of
slaves, i.e., 100 k, to give DSs and DMs in tbl. 3. Figs. 18 and 19 in app. C show the gap in overhead
between the SuS fixed with one monitor on the master process and to the fully-monitored system.
The estimated figures in tbl. 3 clearly indicate that the two flavours of decentralised runtime
monitoring from fig. 1 induce nominal overhead per slave for the load shapes we consider.

5 CONCLUSION
We provide a detailed study of asynchronous outline monitoring, an alternative to inline monitoring
that is often discarded due to its high overheads. Our study makes a case that there are instances
where outlining is the only available solution for analysing a system at runtime and that the
overheads are tolerable in certain scenarios. To the best of our knowledge, the algorithm presented

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

in sec. 3 differs from the state-of-the art in three fundamental ways: (i) it asynchronously gathers
events from the SuS, (ii) effects the analysis using outline monitors, and, (iii) dynamically scales
the runtime set-up as the SuS grows and shrinks. Our experiments in sec. 4 give scenarios that
indicate the uses-cases where outline monitoring is best applied. They establish a pessimistic point
of departure for outline monitoring: (i) RV monitoring typically does not exclude any events but
less stringent analyses can resort to sampling to lower overheads [Sigelman et al. 2010]; (ii) RV
analysis was carried out on every slave until termination, but RV verdicts may be reached early in
the execution; We anticipate that less demanding settings such as general APM tools will lower
further the overhead discrepancies reported.

5.1 Related Work
Decentralised monitoring in RV. Following standard texts on distributed computing [Buyya et al.
2011; Coulouris et al. 2005; Tarkoma 2010]. distributed systems are necessarily concurrent, but can
be either centralised or decentralised, although the opposite does not always hold. Specifically,
assumption A1 in sec. 3 renders a system concurrent whereas lifting assumptions A3 and A4 changes
this to distributed. Systems that rely on a global clock are neither concurrent nor distributed.
For example, works such as [Colombo and Falcone 2016], while decentralised, do not qualify as
distributed solutions; system components operate in synchronous rounds whereby a unique global
trace can be reconstructed by combining the different traces collected at each component. Their
approach does not address challenges such as message reordering (assumption A3 in sec. 3).
Code injection is used in a number of tools targeting concurrent and distributed component

systems. For example, [Sen et al. 2006] study decentralised monitors that are attached to differ-
ent threads to collect and process trace events locally. In an earlier work [Sen et al. 2004], this
investigation is conducted in a distributed setting using decentralised monitors that are weaved
into components of the SuS. The authors focus on the efficiency of monitor communication but
do not study nor quantify the overhead induced by runtime monitoring. Minimising overhead is
also the focus of [Mostafa and Bonakdarpour 2015]. In this setting, the SuS consists of distributed
asynchronous processes that communicate together via message-passing primitives over reliable
channels. Similar to ours, their monitoring algorithm does not rely on a global notion of timing, and
does not assume failing system components. The work by [Basin et al. 2015] is one of the few that
considers distributed system monitoring where components and network links may fail. Despite
the absence of a global clock, their monitoring algorithm is based on the timed asynchronous model
for distributed systems [Cristian and Fetzer 1999] that assumes highly-synchronised physical clocks
across nodes. In a different manner, [Bonakdarpour et al. 2016; Fraigniaud et al. 2014] address the
problem of when the monitors themselves crash. Failure is an aspect that we do not presently
address (see assumptions A4 and A5). The tools in [Basin et al. 2015; Cassar and Francalanza 2016;
Jin et al. 2012] weave special instructions to enable the system to externalise its monitors, similar to
fig. 1a. Crucially, inlining spares their algorithms from having to deal with reordered trace events.

Tools such as [Attard and Francalanza 2017; Neykova and Yoshida 2017a] target Erlang. In [Neykova
and Yoshida 2017a], the authors propose a method that statically analyses the program commu-
nication flow, specified in terms of a multiparty protocol. Monitors attached to system processes
check that the messages received coincide with the projected type, and in the case of failure, the
associated processes are restarted. The authors show that their recovery algorithm induces less
communication overhead, and improves upon the static process structure recovery mechanisms of-
fered by the Erlang/OTP platform. Similarly, [Attard and Francalanza 2017] focus on decentralised
outline monitoring in a concurrent setting. By contrast to [Neykova and Yoshida 2017a], they
leverage the native tracing infrastructure offered by the EVM.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

On Monitoring Asynchronous Components, Asynchronously 1:23

We remark that the works above all rely on bespoke evaluation platforms, making it hard to
reproduce or directly compare their empirical results to ours. They either use loads modelled on
a Poisson process, i.e., Steady load, or fail altogether to specify the load types considered. Our
empirical study has shown that different load shapes are indeed relevant.

Evaluation and benchmarking tools. Savina [Imam and Sarkar 2014] addresses the lack of a common
benchmarking tool for actor-based systems. In the spirit of DaCapo [Blackburn et al. 2006], it
provides a suite of diverse benchmarks that represent compute (as opposed to IO) intensive appli-
cations. These range from micro-benchmarks to classical concurrency problems and parallelism
benchmarks. Similar our evaluation framework, Savina includes instantiations of the master-slave
set-up (Trapezoidal Approximation and Precise Pi Computation), that are configurable with the
number of slaves. However, our implementation accommodates more parameters: (i) the number
of work requests per slave, (ii) the probability of allocating and acknowledging work requests,
and, (iii) the type of load shape. In addition, we also support dynamic set-ups, as opposed to the
static ones currently included in this suite. Savina measures the mean execution duration; we also
collect the scheduler utilisation, memory consumption and RTT between the master and slaves. The
requirement for a dynamic set-up, together with the performance metrics outlined in sec. 4 made
Savina unsuitable to our use-case. Presently, Savina targets JVM actor-based languages. Like our
implementation, Savina does not yet include benchmarks based on the peer-to-peer architecture.
Themis [El-Hokayem and Falcone 2017] is a tool that aims to facilitate the design and analysis

of decentralised monitoring algorithms. It supports static set-ups where the number of system
components and corresponding monitors is known and remains fixed at runtime. Unlike Savina
or our benchmarking tool, Themis processes only pre-recorded tracers supplied via text files,
making it incompatible with online monitoring. In [El-Hokayem and Falcone 2017], the authors
claim that these trace files may be obtained from instrumented programs. Monitor and monitor
communication in Themis is simulated via method calls that deposit messages inside blocking
queues linked to each monitor. Like Savina, Themis is developed for Java applications.

The Behaviour, Interaction, Priority (BIP) framework models heterogenous real-time component
systems. In BIP [Basu et al. 2006; El-Hokayem et al. 2018], the interaction between components is
specified using syntactic descriptions that are parsed by a Java front-end and translated to C++
code. The automata-based operational model of BIP is implemented into their back-end platform
that executes the generated code. BIP supports synchronous and asynchronous components that
may run on the same or separate threads. While the back-end implementation relies on POSIX
threads [Butenhof 1997] for easy integration with C++, this also limits the scalability of BIP when
many asynchronous components are used, since each pthread takes kernel resources from the
system. By contrast, the green processes used by Erlang allows our evaluation platform to scale
considerably while incurring manageable overhead. Erlang process scheduling is performed by the
EVM, making these much more lightweight when compared to pthreads. BIP is principally built as
a flexible modelling tool that is inapplicable to our benchmarking requirements from sec. 4.

Kollaps [Gouveia et al. 2020] emulates distributed network conditions from an application-level
perspective that considers the observable end-to-end properties such as latency or packet loss.
The tool simplifies the network view by abstracting over the state of physical network appliances
that sit in between nodes of the distributed application. Kollaps is fully-decentralised and agnostic
of the application language and transport protocol. The authors show that Kollaps can closely
model realistic network conditions. We plan to integrate Kollaps into our evaluation framework
when extending it to account for further experiment variables such as packet loss and node failure
(assumptions A4 and A5).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

REFERENCES
Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. 2019a. Adventures in

monitorability: from branching to linear time and back again. Proc. ACM Program. Lang. 3, POPL (2019), 52:1–52:29.
https://doi.org/10.1145/3290365

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. 2019b. An Operational
Guide to Monitorability. In SEFM (LNCS), Vol. 11724. Springer, 433–453. https://doi.org/10.1007/978-3-030-30446-1_23

Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. 1997. A Foundation for Actor Computation. JFP 7, 1 (1997),
1–72.

Nadia Alshahwan, Andrea Ciancone, Mark Harman, Yue Jia, Ke Mao, Alexandru Marginean, Alexander Mols, Hila Peleg,
Federica Sarro, and Ilya Zorin. 2019. Some Challenges for Software Testing Research (Invited Talk Paper). In ISSTA.
ACM, 1–3.

Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri, and Lorin Hochstein. 2016. Automating Failure
Testing Research at Internet Scale. In SoCC. ACM, 17–28.

Joe Armstrong. 2007. Programming Erlang: Software for a Concurrent World (first ed.). Pragmatic Bookshelf.
Vinay Arora, Rajesh Kumar Bhatia, and Maninder Singh. 2016. A systematic review of approaches for testing concurrent

programs. CCPE 28, 5 (2016), 1572–1611.
Duncan Paul Attard and Adrian Francalanza. 2017. Trace Partitioning and Local Monitoring for Asynchronous Components.

In SEFM (LNCS), Vol. 10469. Springer, 219–235.
Fred Baker. 1995. Requirements for IPv4 Routers. https://www.ietf.org/rfc/rfc1812.txt
Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker, Klaus Havelund, Yogi Joshi, Felix

Klaedtke, Reed Milewicz, Giles Reger, Grigore Rosu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang. 2019.
First international Competition on Runtime Verification: rules, benchmarks, tools, and final results of CRV 2014. STTT
21, 1 (2019), 31–70. https://doi.org/10.1007/s10009-017-0454-5

Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. 2018. Introduction to Runtime Verification. In Lectures on
Runtime Verification. LNCS, Vol. 10457. Springer, 1–33.

David A. Basin, Felix Klaedtke, and Eugen Zalinescu. 2015. Failure-Aware Runtime Verification of Distributed Systems. In
FSTTCS (LIPIcs), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 590–603.

Ananda Basu, Marius Bozga, and Joseph Sifakis. 2006. Modeling Heterogeneous Real-time Components in BIP. In SEFM.
IEEE Computer Society, 3–12.

Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2015. Runtime Verification with Minimal Intrusion
through Parallelism. FMSD 46, 3 (2015), 317–348.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann.
2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In OOPSLA. ACM, 169–190.

Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and Corentin Travers. 2016. Decentralized
Asynchronous Crash-Resilient Runtime Verification. In CONCUR (LIPIcs), Vol. 59. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 16:1–16:15.

David R. Butenhof. 1997. Programming with POSIX threads (first ed.). Addison-Wesley.
Rajkumar Buyya, James Broberg, and Andrzej Goscinski. 2011. Cloud Computing: Principles and Paradigms (Wiley Series on

Parallel and Distributed Computing). Wiley.
Bryan Cantrill. 2006. Hidden in Plain Sight. ACM Queue 4, 1 (2006), 26–36.
Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004. Dynamic Instrumentation of Production Systems. In

USENIX Annual Technical Conference, General Track. USENIX, 15–28.
João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. 2017. Chapter 5 - Source code transformations and

optimizations. In Embedded Computing for High Performance, João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C.
Diniz (Eds.). Morgan Kaufmann, Boston, 137 – 183. https://doi.org/10.1016/B978-0-12-804189-5.00005-3

João M. P. Cardoso, José Gabriel F. Coutinho, Tiago Carvalho, Pedro C. Diniz, Zlatko Petrov, Wayne Luk, and Fernando M.
Gonçalves. 2016. Performance-driven instrumentation and mapping strategies using the LARA aspect-oriented program-
ming approach. SPE 46, 2 (2016), 251–287.

Ian Cassar and Adrian Francalanza. 2016. On Implementing a Monitor-Oriented Programming Framework for Actor Systems.
In IFM (LNCS), Vol. 9681. Springer, 176–192.

Francesco Cesarini and Simon Thompson. 2009. Erlang Programming: A Concurrent Approach to Software Development (first
ed.). O’Reilly Media.

Feng Chen and Grigore Rosu. 2007. MOP: An Efficient and Generic Runtime Verification Framework. In OOPSLA. ACM,
569–588.

Feng Chen and Grigore Rosu. 2009. Parametric Trace Slicing and Monitoring. In TACAS (LNCS), Vol. 5505. Springer, 246–261.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://www.ietf.org/rfc/rfc1812.txt
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.1016/B978-0-12-804189-5.00005-3


1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

On Monitoring Asynchronous Components, Asynchronously 1:25

Kung Chen and Ju-Bing Chen. 2006. On Instrumenting Obfuscated Java Bytecode with Aspects. In SESSICSE. ACM, 19–26.
David M. Ciemiewicz. 2001. What Do You Mean? - Revisiting Statistics for Web Response Time Measurements. In CMG.

Computer Measurement Group, 385–396.
Christian Colombo and Yliès Falcone. 2016. Organising LTL Monitors over Distributed Systems with a Global Clock. FMSD

49, 1-2 (2016), 109–158.
Christian Colombo, Gordon J. Pace, and Gerardo Schneider. 2009. LARVA—Safer Monitoring of Real-Time Java Programs

(Tool Paper). In SEFM. IEEE Computer Society, 33–37.
George Coulouris, Jean Dollimore, and Tim Kindberg. 2005. Distributed Systems: Concepts and Design (fourth ed.). Addison

Wesley.
Flaviu Cristian and Christof Fetzer. 1999. The Timed Asynchronous Distributed System Model. IEEE Trans. Parallel Distrib.

Syst. 10, 6 (1999), 642–657.
Mathieu Desnoyers and Michel R. Dagenais. 2006. The LTTng tracer : A low impact performance and behavior monitor for

GNU / Linux. Technical Report.
Antoine El-Hokayem and Yliès Falcone. 2017. Monitoring Decentralized Specifications. In ISSTA. ACM, 125–135.
Antoine El-Hokayem and Yliès Falcone. 2017. THEMIS: A Tool for Decentralized Monitoring Algorithms. In ISSTA. ACM,

372–375.
Antoine El-Hokayem and Yliès Falcone. 2020. On the Monitoring of Decentralized Specifications: Semantics, Properties,

Analysis, and Simulation. ACM Trans. Softw. Eng. Methodol. 29, 1, Article 1 (Jan. 2020), 57 pages. https://doi.org/10.1145/
3355181

Antoine El-Hokayem, Yliès Falcone, and Mohamad Jaber. 2018. Modularizing behavioral and architectural crosscutting
concerns in formal component-based systems - Application to the Behavior Interaction Priority framework. JLAMP 99
(2018), 143–177. https://doi.org/10.1016/j.jlamp.2018.05.005

Úlfar Erlingsson. 2004. The Inlined Reference Monitor Approach to Security Policy Enforcement. Ph.D. Dissertation. Cornell
University.

Úlfar Erlingsson and Fred B. Schneider. 1999. SASI Enforcement of Security Policies: A Retrospective. In NSPW. ACM,
87–95.

Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. 2014. On the Number of Opinions Needed for Fault-Tolerant
Run-Time Monitoring in Distributed Systems. In RV (Lecture Notes in Computer Science), Vol. 8734. Springer, 92–107.

Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario Della Monica, and Anna
Ingólfsdóttir. 2017. A Foundation for Runtime Monitoring. In Runtime Verification (RV) (LNCS), Vol. 10548. Springer,
8–29. https://doi.org/10.1007/978-3-319-67531-2_2

Adrian Francalanza, Jorge A. Pérez, and César Sánchez. 2018. Runtime Verification for Decentralised and Distributed
Systems. In Lectures on Runtime Verification. LNCS, Vol. 10457. Springer, 176–210.

Adrian Francalanza and Aldrin Seychell. 2015. Synthesising Correct Concurrent Runtime Monitors. FMSD 46, 3 (2015),
226–261.

Vijay K. Garg. 2015. Elements of Distributed Computing (first ed.). Wiley India.
Paulo Gouveia, João Neves, Carlos Segarra, Luca Liechti, Shady Issa, Valerio Schiavoni, and Miguel Matos. 2020. Kollaps:

Decentralized and Dynamic Topology Emulation. In EuroSys. ACM, 23:1–23:16.
Duncan A. Grove and Paul D. Coddington. 2005. Analytical Models of Probability Distributions for MPI Point-to-Point

Communication Times on Distributed Memory Parallel Computers. In ICA3PP (LNCS), Vol. 3719. Springer, 406–415.
Christoph Heger, André van Hoorn, Mario Mann, and Dusan Okanovic. 2017. Application Performance Management: State

of the Art and Challenges for the Future. In ICPE. ACM, 429–432.
Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions

(first ed.). Addison-Wesley Professional.
Shams Mahmood Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of

Actor Libraries. In AGERE!@SPLASH. ACM, 67–80.
Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov. 2018. Microservices: The Journey So Far

and Challenges Ahead. IEEE Software 35, 3 (2018), 24–35.
Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. 2012. JavaMOP: Efficient Parametric Runtime

Monitoring Framework. In ICSE. IEEE Computer Society, 1427–1430.
Nicolai M. Josuttis. 2007. SOA in Practice: The Art of Distributed System Design: Theory in Practice (first ed.). O’Reilly Media.
Bill Kayser. 2017. What Is the Expected Distribution of Website Response Times? https://blog.newrelic.com/engineering/

expected-distributions-website-response-times
Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John

Irwin. 1997. Aspect-Oriented Programming. In ECOOP (LNCS), Vol. 1241. Springer, 220–242.
Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh Viswanathan. 2001. Java-MaC: a Run-time Assurance

Tool for Java Programs. Electr. Notes Theor. Comput. Sci. 55, 2 (2001), 218–235.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3355181
https://doi.org/10.1145/3355181
https://doi.org/10.1016/j.jlamp.2018.05.005
https://doi.org/10.1007/978-3-319-67531-2_2
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times


1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

Jay Ligatti, Lujo Bauer, and David Walker. 2005. Edit automata: enforcement mechanisms for run-time security policies.
International Journal of Information Security (IJIS) 4, 1-2 (2005), 2–16. https://doi.org/10.1007/s10207-004-0046-8

Zhen Liu, Nicolas Niclausse, and César Jalpa-Villanueva. 2001. Traffic Model and Performance Evaluation of Web Servers.
Perform. Evaluation 46, 2-3 (2001), 77–100.

Robert Martin. 2013. Agile Software Development, Principles, Patterns, and Practices (first ed.). Pearson.
Menna Mostafa and Borzoo Bonakdarpour. 2015. Decentralized Runtime Verification of LTL Specifications in Distributed

Systems. In IPDPS. IEEE Computer Society, 494–503.
Rumyana Neykova and Nobuko Yoshida. 2017a. Let It Recover: Multiparty Protocol-Induced Recovery. In CC. ACM, 98–108.
Rumyana Neykova and Nobuko Yoshida. 2017b. Multiparty Session Actors. Logical Methods in Computer Science 13, 1

(2017).
Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. 2015. MarQ: Monitoring at Runtime with QEA. In TACAS (LNCS),

Vol. 9035. Springer, 596–610.
Richard J. Rossi. 2018. Mathematical Statistics: An Introduction to Likelihood Based Inference. Wiley.
César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci, Domenico Bianculli, Christian Colombo, Yliès Falcone,

Adrian Francalanza, Srdan Krstic, João M. Lourenço, Dejan Nickovic, Gordon J. Pace, José Rufino, Julien Signoles, Dmitriy
Traytel, and Alexander Weiss. 2019. A survey of challenges for runtime verification from advanced application domains
(beyond software). FMSD 54, 3 (2019), 279–335.

Torben Scheffel and Malte Schmitz. 2014. Three-Valued Asynchronous Distributed Runtime Verification. In MEMOCODE.
IEEE, 52–61.

Fred B. Schneider. 2000. Enforceable Security Policies. Transactions on Information and System Security (TISSEC) 3, 1 (2000),
30–50. https://doi.org/10.1145/353323.353382

Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2004. Efficient Decentralized Monitoring of Safety in Distributed
Systems. In ICSE. IEEE Computer Society, 418–427.

Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2006. Decentralized Runtime Analysis of Multithreaded
Applications. In IPDPS. IEEE.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge Computing: Vision and Challenges. IEEE Internet
of Things Journal 3, 5 (2016), 637–646.

Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP (LNCS), Vol. 4609. Springer, 2–27. https:
//doi.org/10.1007/978-3-540-73589-2_2

Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and
Chandan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google, Inc.
https://research.google.com/archive/papers/dapper-2010-1.pdf

Connie U. Smith and Lloyd G. Williams. 2001. Software Performance AntiPatterns; Common Performance Problems and
their Solutions. In CMG§. Computer Measurement Group, 797–806.

Connie U. Smith and Lloyd G. Williams. 2002. New Software Performance AntiPatterns: More Ways to Shoot Yourself in
the Foot. In CMG. Computer Measurement Group, 667–674.

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual
typing for first-class classes. In OOPSLA, Gary T. Leavens and Matthew B. Dwyer (Eds.). ACM, 793–810. https:
//doi.org/10.1145/2384616.2384674

Sasu Tarkoma. 2010. Overlay Networks: Toward Information Networking (first ed.). Auerbach Publications.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1145/2384616.2384674


1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

On Monitoring Asynchronous Components, Asynchronously 1:27

Event Action (e .act) Field names Description

fork frk

src PID ps of the (parent) process invoking fork(д)
tgt PID ps of the forked (child) process
sig Code signature д run by the forked process

exit ext src PID ps of the terminated process

send snd
src PID ps of the sender process
tgt PID ps of the recipient process

receive rcv src PID ps of the recipient process

Tbl. 4. Trace event messages data field names

A DECENTRALISED OUTLINE MONITORING ALGORITHM AUXILLARY CODE
Field access notation for tracer messages. Just as the message qualifier is accessible through the field
namem.type, so are the data elements of the respective trace event types frk, ext, snd, and rcv.
These are catalogued in tbl. 4.

Trace event acquisition. The tracing mechanism is defined by the operations Trace, Clear and
Preempt listed in lst. 4. Trace enables a tracer pt to register its interest in being notified about trace
events of a system process ps; this operation can be undone using Clear. Clear blocks the caller,
and returns only once all the trace event messages for ps that are in the process of being delivered
are deposited into the message queue of pt. Preempt combines Clear and Trace, enabling a tracer
pt to take over the tracing of process ps from another tracer p ′t . The preemption instructions on
lines 19–20 are ideally executed atomically to prevent potential trace event loss that could occur
when switching tracers. This guarantee however, depends exclusively on the implementation of
the underlying tracing mechanism. We recall that, following assumption A8, tracing is inherited by
every child process that a traced system process forks; Clear or Preempt can then be used to alter
this arrangement.

Trace routing and relaying. Our algorithm performs routing using two operations, Route and Relay
in lst. 5. Route creates a new message, r , with type rtd, that embeds trace events or dtc commands

1 def Trace(ps,pt)
2 if ps is not traced then
3 Set the tracer for ps to pt; pt will trace new

descendant processes ps1 ,ps2 , . . . forked
by ps automatically (assumption A8)

4 while ps’s tracer is set do
5 s← read next event for ps from

trace event source
6 e← encode s as a message
7 pt ! e
8 end while
9 end if
10 end def

11 def Clear(ps,pt)
12 if ps is traced then
13 Clear the tracer pt for ps; pt still traces

the descendant processes ps1 ,ps2 , . . . of ps
14 Block until the trace events for ps that are in

transit are delivered to pt
15 end if
16 end def

Expect: ps’s tracer is set
17 def Preempt(ps,pt)
18 p′t←ps’s tracer
19 Clear(ps,p′t )
20 Trace(ps,pt)
21 end def

Lst. 4. Trace event acquisition, clear, and preemption operations offered by the tracing mechanism

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

Expect: m .type= evt∨m .type= dtc
1 def Route(m,pt)
2 pt ! ⟨rtd,self(),m ⟩
3 end def

Expect: m .type= rtd
4 def Relay(m,pt)
5 pt !m
6 end def

Lst. 5. Message routing and relaying operations

1 def Tracer(σ ,v ,ps,pt)
# Executable monitor map σ .Φ is copied to the
# new (child) tracer state σ ′; component group Γ
# is initialised with the process being traced, ps

2 σ ′← ⟨Π← ∅,σ .Φ,Γ← {⟨ps,•⟩}⟩
3 Detach(ps,pt)
4 pa← fork(v) executable monitor

#New tracer is started in • mode to process
# routed events before locally-traced ones

5 Loop•(σ ′,pa)
6 end def

7 def Detach(ps,pt)
8 p′t← self()
9 Preempt(ps,p′t )
10 pt ! ⟨dtc,p′t ,ps ⟩
11 end def

12 def TryGC(σ ,pa)
13 if σ .Γ= ∅∧σ .Π= ∅ then
14 Signal monitor pa to terminate
15 Terminate tracer
16 end if
17 end def

Lst. 6. Operations used by the (◦) and priority (•) tracer loops

that need to be routed. The PID of the tracer process invoking Route is included into a routed
message: we refer to this process as the router tracer that it is responsible for injecting the message
into the tracer choreography. This PID is retrievable using the fieldm.rtr (see tbl. 5), and enables
other tracers to identify the tracer that initiated the message dispatch. Routed messages can only
be handled by tracers or forwarded using Relay.

Starting the system. Start in lst. 7 launches the SuS andmonitoring system in tandem. The operation
accepts the code signature д, as the entry point of the SuS, together with the map of executable
monitors, Φ. As a safeguard that prevents the initial loss of trace events, the SuS is launched in a
paused state (line 7.2) to permit the root tracer to start tracing the top-level system process. Root
resumes the system (7.8), and begins its trace inspection in direct mode, as shown in line 7.10.

Message Type (m.type) Field name Description

routed rtd
rtr PIDpt of the (ancestor) tracer that starts routing

the message
emb The embedded trace event e or command c

detach
command dtc

tgt PID ps of the system process that is, from this
point, traced by the new tracer

iss PID pt of the new tracer issuing the detach com-
mand to the router tracer

Tbl. 5. Routed messages and detach command data field names

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

On Monitoring Asynchronous Components, Asynchronously 1:29

1 def Start(д,Φ)
# Pausing allows root tracer to be set
# up; no initial message loss

2 ps← fork(д) in paused mode
3 pt← fork(Root(ps,Φ))
4 return ⟨ps,pt ⟩
5 end def

6 def Root(ps,Φ)
7 Trace(ps,self())
8 Resume system ps
9 σ ← ⟨Π← ∅,Φ,Γ← {⟨ps,◦⟩}⟩

# Root tracer has no monitor
10 Loop◦(σ ,⊥)
11 end def

Lst. 7. System starting operation and root tracer

B EXPERIMENT SET-UP AND EVALUATION
Inline monitoring implementation. We synthesise automata-based monitors from high-level correct-
ness specifications. These monitors are encoded as executable functions that can be represented as
an AST. Fig. 11 outlines how our monitors are inlined in the SuS. In step 1 , the Erlang source code
of the system is pared into the corresponding AST, step 2 The Erlang compilation process contains
a parse transform phase step 3 provides a hook that allows for the AST to be post-processed [Ce-
sarini and Thompson 2009]. We leverage this mechanism through our custom-built weaver, step 4 ,
that injects into the AST of the SuS the AST of the monitor in step 5 . It performs two types of
code transformations:
C1 Monitor bootstrapping. The function encoding the synthesised monitor is stored in the process

dictionary (a key-value map) of the monitored system process to make it globally accessible
from within said process;

C2 Instrumentation points. The AST of the system is instrumented with calls at the points of
interest: these calls constitute the trace event actions that are to be analysed.

The instrumented calls in transformation C2 retrieve the monitor function stored the process
dictionary in transformationC1, and apply it to the trace event in question. This function application
on the event returns the monitor continuation that is used to replace the current monitor in the
process dictionary. Our two-step weaving process produces the instrumented code in step 6 which
can be subsequently compiled by the Erlang compiler into the application binary. We note that the
same monitor ASTs synthesised for use in inline monitoring are used by our outline monitoring
algorithm as well.

. . . . . .

. . . . . .

. . . . . .

erl

Application
sources

Preprocessing
and

parsing

Parse
transform
hook Other passes

Erlang compiler passes

Weaver

. . . . . .

. . . . . .

. . . . . .

beam

Instrumented
application
binary. . . . . .

. . . . . .

. . . . . .

beam

Monitor
binary

ASTs

ASTs AST′s

AST′s

ASTm

1 2 3

4

5

6 7

Fig. 11. Instrumentation pipeline for inline monitors

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

Validation of system model parameters. Our SuS, when configured with steady load, models web
server traffic where the requests observed at the server are known to follow a Poisson process. The
probability distribution of the RTT of web application requests is generally right-skewed, and can
be approximated to a log-normal [Ciemiewicz 2001; Grove and Coddington 2005; Liu et al. 2001] or
Erlang (a special case of gamma) distribution [Kayser 2017]. We conduct three experiments using
steady loads fixed with n = 10k andw = 100. Pr(send)= Pr(recv) are varied through 0.1, 0.5 and 0.9
to establish whether the RTT for our chosen set-ups resembles the aforementioned probability
distributions. Our results, summarised in fig. 12, were obtained as follows. The parameters for a
series of candidate probability distributions (e.g. normal, log-normal, gamma, etc.) were estimated
using Maximum Likelihood Estimation [Rossi 2018] on the RTT obtained from each experiment.
We then performed goodness-of-fit tests on these parametrised distributions, selecting the most
appropriate RTT fit for each of the three experiments. Our goodness-of-fit measure was derived
using the Kolmogorov-Smirnov test. The fitted distributions in fig. 12 indicate that the RTT of our
SuS confirms the findings reported in [Ciemiewicz 2001; Grove and Coddington 2005; Kayser 2017],
which show that web response times follow log-normal or Erlang distributions.

Experiment Precautions. Further to the set-up parameters discussed in sec. 4.2, the following pre-
cautions were also taken:

P1 Ten repeated readings. The number of repeated readings to take was determined empirically
based on the coefficient of variation, CV= σ

x̄ ×100, that was calculated for experiments with
different repetitions.

P2 Pr(send)= Pr(recv)= 0.9. Lower values of Pr(send) and Pr(recv) detract from the veracity of
the experiments because slaves become frequently idle.

P3 Scheduler utilisation. Sampled every 500 ms asynchronously, not to affect the SuS. Samples
were obtained using EVM function calls to get the most accurate reading. We did not measure
the CPU at the OS-level, because the EVM keeps scheduler threads momentarily spinning to
remain reactive, and this inflates the utilisation metric. This EVM feature could have been
switched off, but we decided to use the default settings and instead, measure the utilisation
internally.

P4 Memory consumption. Sampled every 500 ms asynchronously, not to affect the SuS. Samples
were obtained using EVM function calls to get the most accurate reading.

P5 Mean RTT. Sampled every 10 % out of the total number of messages exchanged between
master and each slave. The sampling window of 10 % was determined empirically via a series
of tests. The RTT is calculated as a running mean of each sample taken; the overall drift w.r.t.

0 50 100 150 200 250

Mean round trip time (ms)

0.000

0.005

0.010

0.015

N
or
m
al
is
ed

de
ns
ity

Pr(send )=Pr(r ecv)=0.1

Log-normal
Mean: 50.88
Mode: 13

0 50 100 150 200 250

Mean round trip time (ms)

0.000

0.005

0.010

0.015

Pr(send )=Pr(r ecv)=0.5

Log-normal
Mean: 55.43
Mode: 33

0 100 200 300 400

Mean round trip time (ms)

0.000

0.005

0.010

0.015

Pr(send )=Pr(r ecv)=0.9

Gamma
Mean: 77.32
Mode: 17

Fig. 12. Fitted probability distributions on mean RTT for steady loads of 10 k slaves

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

On Monitoring Asynchronous Components, Asynchronously 1:31

the mean calculated over all samples was ≈±1.4%. We gathered the RTT thus to avoid as
much as possible perturbations in the SuS that would arise due to data collection.

P6 Weighted mean. We aggregated the sampling records collected from repetitions of the same
experiment using the weighted mean to account for the differing number of records counts
that were obtained at each run.

P7 Randomisation seed. We fixed the randomisation seed to ensure experiment repeatability.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Anon.

20 40 60 80 100

200

300

400

500

600

Co
ns
um

pt
io
n
(G
B)

Execution memory total (Steady)

0 50 100 150 200 250 300 350

1.65

1.70

1.75

1.80

1.85

1.90

1.95

Co
ns
um

pt
io
n
(G
B)

Sampled memory (Steady)

20 40 60 80 100

200

300

400

500

600

700

Co
ns
um

pt
io
n
(G
B)

Execution memory total (Pulse)

0 50 100 150 200 250 300 350

1.70

1.80

1.90

2.00

2.10

Co
ns
um

pt
io
n
(G
B)

Sampled memory (Pulse)

20 40 60 80 100

Total slaves (k)

200

300

400

500

600

700

Co
ns
um

pt
io
n
(G
B)

Execution memory total (Burst)

0 50 100 150 200 250 300 350

Execution duration (s)

1.60

1.80

2.00

2.20

2.40

2.60

Co
ns
um

pt
io
n
(G
B)

Sampled memory (Burst)

baseline inline outline (separate) outline (merged) outline (centralised)

Fig. 13. Total and sampled memory consumption over entire execution duration with 100 k slaves

C SUPPORTING DATA PLOTS
The plots in figs. 14–17 have been fitted with linear, quadratic and cubic polynomials where the R2

is above 0.96.

Total memory consumed. Fig. 13 shows the total memory consumed and sampled memory during
the experiment runs conducted under Steady, Pulse and Burst loads for the case study with n=100k
slaves. Note that unlike in figs. 9 and 10, the y-axis is labelled in GB. The total memory consumed
plotted on the left in fig. 13 corresponds to the area under the sampled memory plots on the right.
Decentralised outline monitoring consumes the most memory, while the centralised version falls
midway between decentralised outline (separate) and inline monitoring. The sampled memory
plots reveal that centralised outline monitoring consumes less memory than inline monitoring on
average, but does so for a longer time period. This is especially noticeable in the Steady and Pulse
plots, suggesting the memory overhead in centralised outline monitoring is induced in a more

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

On Monitoring Asynchronous Components, Asynchronously 1:33

consistent manner. Our sampled memory plots reflect the shapes of the loads applied, although
these extend for a longer duration that goes beyond the original loading time of t = 100s (see fig. 6).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Anon.

Moderate loads (fitted data plots).

2 4 6 8 10
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Steady)

2 4 6 8 10

1.584

1.585

1.586

1.587

1.588

1.589

Co
ns
um

pt
io
n
(G
B)

Memory (Steady)

2 4 6 8 10

Total slaves (k)

0.2

0.5

0.8

1.0

1.2

1.5

1.8

Ti
m
e
(m

s)

Round trip (Steady)

2 4 6 8 10

Total slaves (k)

99.0

99.5

100.0

100.5

101.0

101.5

102.0

102.5

D
ur
at
io
n
(s
)

Execution (Steady)

baseline inline outline (separate) outline (merged)

Fig. 14. Mean runtime overhead for monitoring the master and slave processes 10 k slaves

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

On Monitoring Asynchronous Components, Asynchronously 1:35

2 4 6 8 10
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Pulse)

2 4 6 8 10

1.584

1.585

1.586

1.587

1.588

1.589

Co
ns
um

pt
io
n
(G
B)

Memory (Pulse)

2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m
e
(m

s)

Round trip (Pulse)

2 4 6 8 10

100.4

100.6

100.8

101.0

101.2

101.4

D
ur
at
io
n
(s
)

Execution (Pulse)

baseline inline outline (separate) outline (merged)

2 4 6 8 10
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Burst)

2 4 6 8 10

1.584

1.586

1.588

1.590

Co
ns
um

pt
io
n
(G
B)

Memory (Burst)

2 4 6 8 10

Total slaves (k)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Ti
m
e
(m

s)

Round trip (Burst)

2 4 6 8 10

Total slaves (k)

100.5

101.0

101.5

102.0

D
ur
at
io
n
(s
)

Execution (Burst)

Fig. 15. Mean runtime overhead for monitoring the master and slave processes 10 k slaves (cont.)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Anon.

High loads (fitted data plots).

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Steady)

20 40 60 80 100

1.60

1.65

1.70

1.75

1.80

1.85

1.90

Co
ns
um

pt
io
n
(G
B)

Memory (Steady)

20 40 60 80 100

Total slaves (k)

0

200

400

600

800

Ti
m
e
(m

s)

Round trip (Steady)

20 40 60 80 100

Total slaves (k)

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Steady)

baseline inline outline (separate) outline (merged) outline (centralised)

Fig. 16. Mean runtime overhead for monitoring the master and slave processes (100 k slaves)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

On Monitoring Asynchronous Components, Asynchronously 1:37

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Pulse)

20 40 60 80 100

1.60

1.70

1.80

1.90

Co
ns
um

pt
io
n
(G
B)

Memory (Pulse)

20 40 60 80 100

0

200

400

600

800

Ti
m
e
(m

s)

Round trip (Pulse)

20 40 60 80 100

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Pulse)

baseline inline outline (separate) outline (merged) outline (centralised)

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Burst)

20 40 60 80 100

1.60

1.70

1.80

1.90

2.00

2.10

Co
ns
um

pt
io
n
(G
B)

Memory (Burst)

20 40 60 80 100

Total slaves (k)

0

500

1000

1500

2000

Ti
m
e
(m

s)

Round trip (Burst)

20 40 60 80 100

Total slaves (k)

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Burst)

Fig. 17. Mean runtime overhead for monitoring the master and slave processes (100 k slaves, cont.)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Anon.

Estimated overhead on slaves.

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Steady)

20 40 60 80 100

1.60

1.65

1.70

1.75

1.80

1.85

1.90

Co
ns
um

pt
io
n
(G
B)

Memory (Steady)

20 40 60 80 100

Total slaves (k)

0

200

400

600

800

Ti
m
e
(m

s)

Round trip (Steady)

20 40 60 80 100

Total slaves (k)

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Steady)

baseline separate merged separate (master only, dashed) merged (master only, dashed)

Fig. 18. Mean runtime overhead for monitoring the master process only (100 k slaves)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

On Monitoring Asynchronous Components, Asynchronously 1:39

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Pulse)

20 40 60 80 100

1.60

1.70

1.80

1.90

Co
ns
um

pt
io
n
(G
B)

Memory (Pulse)

20 40 60 80 100

0

200

400

600

800

Ti
m
e
(m

s)

Round trip (Pulse)

20 40 60 80 100

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Pulse)

baseline separate merged separate (master only, dashed) merged (master only, dashed)

20 40 60 80 100
0

25

50

U
til
is
at
io
n
(%
)

Scheduler (Burst)

20 40 60 80 100

1.60

1.70

1.80

1.90

2.00

2.10

Co
ns
um

pt
io
n
(G
B)

Memory (Burst)

20 40 60 80 100

Total slaves (k)

0

500

1000

1500

2000

Ti
m
e
(m

s)

Round trip (Burst)

20 40 60 80 100

Total slaves (k)

100

150

200

250

300

350

D
ur
at
io
n
(s
)

Execution (Burst)

Fig. 19. Mean runtime overhead for monitoring the master process only (100 k slaves, cont.)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.


	Abstract
	1 Introduction
	2 Background
	3 Decentralised Outline Monitoring
	3.1 Overview
	3.2 Definitions and Notation
	3.3 The Monitoring Approach

	4 Evaluation
	4.1 Scope
	4.2 Methodology
	4.3 Results and Discussion

	5 Conclusion
	5.1 Related Work

	References
	A Decentralised Outline Monitoring Algorithm Auxillary Code
	B Experiment Set-Up and Evaluation
	C Supporting Data Plots

