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Abstract

We examine the complexity of determining whether a modal formula (possibly with
recursion operators) characterizes a process up to bisimulation equivalence.

1 Introduction

Characteristic formulae are formulae that characterize a process up to some notion of be-
havioural equivalence or preorder, which in our case is bisimilarity: a formula ϕ is characteristic
for a process p when every process q is bisimilar to p exactly when it satisfies ϕ. A construction
of characteristic formulae for variants of CCS processes [9] was introduced in [6]. This con-
struction allows one to verify that two CCS processes are equivalent by reducing this problem
to model checking. Similar constructions were studied later in, for instance, [1, 10,12].

We are interested in detecting when a formula is characteristic for a certain process. We call
this the characterization problem and we determine its complexity. We focus on a representative
collection of logics, including a selection of modal logics without recursion and maxHML, the
max-fragment of µHML [8], a variant of the µ-calculus [7], which consists of the µHML formulae
that only use greatest fixed points. These formulae are sufficient to provide characteristic
formulae for any state in a finite labelled transition system.

Similar to the characterization problem is the completeness problem, which asks whether
a given formula is complete, meaning that any two processes that satisfy it are bisimilar to
each other. Therefore, a complete formula is characteristic if and only if it is satisfiable. As
we see in the following sections, the completeness problem tends to have the same complexity
as validity. The techniques that we use to determine the complexity of completeness for modal
logics without fixed points were presented in [2], but we extend these techniques for the case
of maxHML and show that the completeness problem for this fragment is EXP-complete. The
EXP-completeness of the characterization problem is an immediate corollary.

2 Background

Definition 1. The formulae of that we consider are constructed using the following grammar:

ϕ,ψ :: = p | ¬p | tt | ff | X | ϕ ∧ ψ | ϕ ∨ ψ
| 〈α〉ϕ | [α]ϕ | µX.ϕ | νX.ϕ

where X comes from a countably infinite set of logical variables LVar, α from a finite set of
actions, Act, and p from a countable set of propositional variables, P .

∗This extended abstract is partly based on results from [2].
†This research was supported by the project “TheoFoMon: Theoretical Foundations for Monitorability”

(grant number: 163406-051) and the project “Epistemic Logic for Distributed Runtime Monitoring” (grant
number: 184940-051) of the Icelandic Research Fund.



The Complexity of Characteristic Formulas Aceto et al.

We interpret formulae on the states of a labelled transition system (LTS). An LTS is a
quadruple 〈Proc,Act,→, V 〉 where Proc is a set of states or processes, Act is the set of
actions, →⊆ Proc × Act × Proc is a transition relation, and V : P → 2Proc determines
on which states a propositional variable is true. We assume that our LTS contains all the
possible finite behaviours and only those. State nil represents any state that cannot transition
anywhere: ∀α∀s.nil 6 α−→ s. The size of a state s is |s|, the number of states that can be reached
from s by any sequence of transitions, and |ϕ| is the length of ϕ as a string of symbols. All our
complexity results are with respect to these measures.

Formulae are evaluated in the context of an LTS and an environment, ρ : LVar → 2Proc,
which gives values to the logical variables. For an environment ρ, variable X, and set S ⊆ Proc,
ρ[X 7→ S] is the environment which maps X to S and all Y 6= X to ρ(Y ). The semantics for
our formulae is given through a function J·K:

Jtt, ρK = Proc, Jff, ρK = ∅, Jp, ρK = V (p), J¬p, ρK = Proc \ V (p), JX, ρK = ρ(X)

Jϕ1 ∧ ϕ2, ρK = Jϕ1, ρK ∩ Jϕ2, ρK J[α]ϕ, ρK =
{
s
∣∣ ∀t. s α−→ t implies t ∈ Jϕ, ρK

}
Jϕ1 ∨ ϕ2, ρK = Jϕ1, ρK ∪ Jϕ2, ρK J〈α〉ϕ, ρK =

{
s
∣∣ ∃t. s α−→ t and t ∈ Jϕ, ρK

}
JνX.ϕ, ρK =

⋃{
S
∣∣ S ⊆ Jϕ, ρ[X 7→ S]K

}
JµX.ϕ, ρK =

⋂{
S
∣∣ S ⊇ Jϕ, ρ[X 7→ S]K

}
A formula is closed when every occurrence of a variable X is in the scope of recursive operator
νX or µX. Henceforth we consider only closed formulae. As the environment has no effect
on the semantics of a closed formula ϕ, we write s |= ϕ for s ∈ Jϕ, ρK. Depending on how
we further restrict our syntax, and the LTS, we can describe several logics. Without further
restrictions, the resulting logic is the µ-calculus. If we do not allow any propositional variables,
the resulting logic is µHML, and if we further disallow the recursive operators, the resulting
logic is HML. If we allow propositional variables, but only one action and no recursive operators
(or recursion variables), then we have the basic modal logic K, and further restrictions on the
LTS can result in a wide variety of modal logics. For example, logic D has all the restrictions
of K, but furthermore, nil is not allowed as a state, while for logic S4, the transition relation
must be reflexive and transitive — for more on Modal Logic, see [3, 4]. For convenience and
brevity, we examine the logics HML, D− that has all the restrictions of both HML and D, and
maxHML that allows only the formulae of µHML that do not use the operator µX. For more
details on our techniques — mostly on non-recursive logics — the reader can see [2].

In the context of these logics, we call a formula ϕ characteristic for state s when s |= ϕ and
for every state t, s ∼ t if and only if t |= ϕ, where ∼ stands for bisimilarity without accounting
for variables. The characterization problem is the following: Given a formula ϕ and a state s,
is ϕ characteristic for s? A formula ϕ is called complete when for all states s and t, if s |= ϕ
and t |= ϕ, then s ∼ t. The completeness problem is: Given a formula ϕ, is ϕ complete?

3 The Complexity of Completenes and Characterization

Proposition 1. The completeness and characterization problems for D− are in P.

Proof. For D−, all states are bisimilar, so all formulae are complete; for more, see [2].

It is known that satisfiability for the min-fragment of the µ-calculus (on one action) is EXP-
complete. It is in EXP, as so is the satisfiability problem of the µ-calculus [7]. Furthermore,
this fragment suffices [11] to describe the PDL formula that is constructed by the reduction
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used in [5] to prove EXP-hardness for PDL, therefore the reduction can be adjusted to prove
that the min-fragment of the µ-calculus is EXP-complete. Therefore, validity for the min-
and max-fragments of the µ-calculus (on one action) is EXP-complete. To see that this lower
bound transfers to minHML and maxHML, it suffices to use one extra action to represent
propositional variables (for example, variable xi can be replaced by 〈α〉itt).

Proposition 2. The completeness problems for HML and maxHML are PSPACE-hard and
EXP-hard, respectively.

Proof. We prove the theorem for the case of µHML by a reduction from minHML-validity. First,
notice that

∧
α∈Act[α]ff is complete and it is satisfiable by process nil. Given a minHML-

formula ϕ, there are two cases. If nil |= ¬ϕ, then ϕ is not valid and we set ϕc = tt.
Otherwise, let ϕc = ¬ϕ ∨

∧
α∈Act[α]ff. For the second case, if ϕ is valid, then ϕc is equivalent

to
∧
α∈Act[α]ff, which is complete; if ϕc is complete, then only nil satisfies it and therefore,

ϕ is valid. Thus, in both cases, ϕ is valid if and only if ϕc is complete.

Theorem 3. The completeness problems for HML and maxHML are PSPACE-complete and
EXP-complete, respectively.

Notice that in the proof of Proposition 2, the reduction could have returned both ϕc and nil,
instead of just ϕc. Furthermore, as model-checking has a lower complexity than completeness,
checking if ϕ is characteristic of s is at most as hard as checking if ϕ is complete. Therefore,
the same complexity bounds hold for the characterization problem of HML and maxHML.
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