On Benchmarking for
Concurrent Runtime Monitoring*

Luca Aceto?3, Duncan Paul Attard!?,
Adrian Francalanza!, and Anna Ingdlfsdéttir?

! University of Malta, Malta {duncan.attard.01,adrian.francalanza}@um.edu.mt
2 Reykjavik University, Iceland {luca,duncanpal7,annai}@ru.is
3 Gran Sasso Science Institute, L’ Aquila, Ttaly {luca.aceto}@gssi.it

Abstract. We present a synthetic benchmarking framework targeting
the systematic evaluation of Runtime Verification (RV) tools for con-
current systems. Our framework can emulate various load profiles via
configuration. It also provides a multi-faceted measurement that allows
for a more comprehensive assessment of the runtime overheads induced.
The framework can generate significant loads to reveal edge case be-
haviour that may only emerge when a monitored system is pushed to its
limit. Our framework is evaluated in two ways. First, we conduct sanity
checks to assess the precision of the measurement mechanisms used, the
repeatability of the results obtained, and the veracity of the behaviour
emulated by the synthetic benchmark. We then showcase the utility of
the features offered by our benchmarking tool via a RV case study.

Keywords: Concurrent Runtime Verification - Synthetic benchmarking
- Software performance evaluation

1 Introduction

Large-scale software design has shifted from the classic monolithic architecture
to one where applications are structured in terms of independent components
that execute asynchronously to one another [14]. Runtime monitoring [21] is a
lightweight post-deployment technique that is used to complement other conven-
tional methods such as testing [36], to assess the functional (e.g. correctness)
and non-functional (e.g. quality-of-service) aspects of concurrent software. This
analysis technique relies on instrumenting the system with monitors. Inevitably,
monitoring introduces runtime overhead that should be kept to a minimum [6].
Although worst-case complexity bounds for monitor-induced overheads can be
calculated via standard methods (e.g. see [32,11,1,24]), benchmarking is, by far,
the preferred method for assessing these overheads [6,23]. One reason for this

* Supported by the IRF project “TheoFoMon” (No0:163406-051), project BehAPI,
funded by the EU H2020 RISE programme under the Marie Sktodowska-Curie grant
(No:778233), the RU Research Fund, ENDEAVOUR Scholarship Scheme - Group B
- National Funds, and the MIUR project PRIN 2017FTXR7S IT MATTERS.

2 L. Aceto et. al.

is that benchmarks tend to be more representative of the overheads observed
in practice [27,12]. Benchmarks also provide a common platform for measuring
workloads, making it possible to compare different RV tool implementations, or
rerun specific experiments to reproduce and confirm existing results.

The utility of a benchmarking tool typically rests on two aspects: (i) the cov-
erage of scenarios of interest, and, (i) the quality of runtime metrics collected
by the benchmark harness. To represent the scenarios of interest, benchmark-
ing tools generally employ a suite of third-party off-the-shelf (OTS) programs
(e.g. [45,8,44]). OTS software is appealing because it is readily usable and in-
herently provides realistic scenarios; benchmarks typically rely on a range of
OTS programs to broaden the coverage of real-world scenarios (e.g. DaCapo [8]
uses eleven open-source applications). However, the use of OTS programs as
benchmarks poses challenges. By design, OTS software does not provide hooks
that allow harnesses to easily and accurately collect the runtime metrics of in-
terest. When the OTS programs are treated as black-boxes, such benchmarks
become harder to control, which impacts their ability to produce repeatable re-
sults. Such benchmarks are also limited when inducing specific edge cases; this
aspect is critical when assessing the safety of software such as runtime monitors,
considered to be part of the trusted computing base. A second alternative for
benchmarking is that of custom-built synthetic programs (e.g. [29]). These tend
to be less popular because of the perceived drawbacks associated with develop-
ing such programs from scratch, and the lack of ‘real-world’ behaviours intrinsic
to benchmarks based on OTS programs. However, synthetic benchmarks offer
benefits that offset these drawbacks. For one, specialised hooks can be built into
the synthetic set-up to collect a broader range of runtime metrics. For two, syn-
thetic benchmarks can also be parametrised to emulate variations on the same
core benchmark behaviour; this is usually harder to achieve using OTS programs
that implement specific use-cases.

Established benchmarking tools such as SPECjvm2008 [45], DaCapo [8],
ScalaBench [44] and Savina [29] are often cited in RV literature; some exam-
ples include [37,16,15,41,35,10]. With the exception of [35], these RV tools assess
the runtime overhead by measuring only the execution slowdown, i.e., the dif-
ference in running time between the system fitted with and without monitors.
Recently, the International RV competition (CRV) [5] has advocated for other
metrics, such as memory consumption, to give a more qualitative view of runtime
overhead. This is not surprising, since the program running time and its mem-
ory consumption are generally at odds with one another, e.g. caching speeds up
the program at the expense of larger memory footprints. In the case of concur-
rency, RV set-ups for component systems benefit from other facets of runtime
behaviour. For instance, measuring the response time captures the overhead be-
tween communicating components. In practical terms, this reflects the perceived
responsiveness from an end-user standpoint (e.g. interactive apps) [39,46]; more
generally, it describes the service degradation that must be accounted for to en-
sure adequate quality-of-service [12,31]. Arguably, benchmarking tools such as
those mentioned above should provide even more. It is often the case that RV

On Benchmarking for Concurrent Runtime Monitoring 3

set-ups for component systems need to scale in response to dynamic changes,
and the capacity for a benchmark to emulate high loads is vital. These loads are
known to assume distinct profiles (e.g. spikes or uniform rates), something that
is hard to administer with the benchmarks mentioned above.

The state-of-the-art in benchmarking for the RV of component systems suffers
from another issue. Existing benchmarks—built for validating other tools—are
repurposed for use in RV, and these do not cater for concurrent scenarios where
RV is realistically employed. SPECjvm2008, DaCapo, and ScalaBench lack work-
loads that leverage the JVM concurrency primitives [40], whereas [9] shows that
the Savina microbenchmarks are essentially sequential, and that the remaining
programs in the suite are sufficiently simple to be regarded as microbenchmarks
themselves. The CRV suite includes benchmarks contributed by various partic-
ipants: most of them target monolithic software with limited concurrency and
the possibility of scaling up to high loads is therefore, severely curbed.

We propose a framework that targets the asynchronous message-passing
paradigm. It generates synthetic system models that follow the master-slave
architecture [46]. Master-slave designs are used pervasively in distributed com-
puting areas such as DNS, IoT, and Big Data applications that scale massively;
on a local concurrency level, this architecture underlies software such as thread
pools and web servers [46,25]. Our concrete contributions are:

— The development of a configurable benchmark and harness that emulates
various master-slave models under commonly-observed load profiles, Sec. 2.

— A validation demonstrating that our synthetic benchmarking framework can
be engineered to approximate the realistic behaviour of web server traffic
with high degrees of precision and repeatability, Sec. 3.1.

— A case study that shows how the load shapes and parametrisability of the
benchmark can produce edge cases that can be measured via a number of
metrics to assess RV tools in a comprehensive manner, Sec. 3.2.

2 Design and Implementation

Our benchmarking set-up can emulate a range of system models and subject
them to various types of loads. We focus on master-slave system models, where
one central process, called the master, creates and allocates tasks to slave pro-
cesses [46]. Slaves work concurrently on tasks, relaying the result to the master
when ready; the master then combines these results to yield the final output.

2.1 Approach

Our design focusses on concurrent applications that execute on a single node.
It however adheres to three criteria that facilitate the extension of our tool to a
distributed setting. Specifically, components: (i) share neither a common clock,
(#) nor memory, and (74) communicate via asynchronous messages. Our current
set-up assumes that communication is reliable and components do not fail-stop
or exhibit Byzantine failures; this extension will be added in future releases.

4 L. Aceto et. al.

Generating load. System load is induced by the master process when it creates
slave processes and allocates tasks. The total number of slaves in one run can be
set via the parameter n. Tasks are allocated to slave processes by the master,
and consist of one or more work requests that a slave receives and echoes back. A
slave terminates its execution when all of its allocated work requests have been
processed and acknowledged by the master. The number of work requests that
can be batched in a task is controlled via the parameter w; the actual batch
size per slave is then drawn randomly from a normal distribution with mean,
p=w and standard deviation o= x0.02. This induces a degree of variability in
the amount of work requests exchanged between master and slaves. The master
and slaves communicate asynchronously: an allocated work request is delivered
to a slave process’ incoming work queue where it is eventually handled. Work
responses issued by a slave are queued and processed similarly by the master.

Load models. We consider three load profiles (see fig. 4) that establish how the
creation of slaves is distributed along the load timeline t. The timeline is mod-
elled as a sequence of discrete logical time units representing instants at which
a new set of slaves is created by the master. Steady loads replicate executions
where a system operates under stable conditions. These are modelled on a homo-
geneous Poisson distribution with rate A, specifying the mean number of slaves
that are created at each time instant along the load timeline with duration
t = [n/A]. Pulse loads emulate settings where a system experiences gradually
increasing load peaks. The Pulse load shape is parametrised by ¢ and the spread,
s, that controls how slowly or sharply the system load increases as it approaches
its maximum peak, halfway along ¢. Pulses are modelled on a normal distribu-
tion with p=1¢/2 and o = s. Burst loads capture scenarios where a system is
stressed due to load spikes; these are based on a log-normal distribution with
pw=In(m?/\/p2+m?2), o = \/In(1+p2?/m?), where m =t/2 and p is the pinch
controlling the concentration of the initial load burst.

Wall-clock time. A load model generated for a logical timeline ¢ needs to be put
into effect by the master process when the system starts running. The master
cannot simply create the slave processes that are set to execute in a particu-
lar time unit all at once, since this naive strategy risks saturating the system,
deceivingly increasing the load. Concretely, the system may become overloaded
not because the mean request rate is high, but because the created slaves send
their initial requests at one go. We address this issue by introducing the notion
of concrete timing that maps a discrete time unit in ¢ to a real time period, 7.
The parameter 7 is specified in milliseconds (ms), and defaults to 1000 ms.

Slave scheduling. The master process employs a scheduling scheme to distribute
the creation of slaves uniformly across the time period 7. It makes use of three
queues: the Order queue, Ready queue, and Await queue, denoted by Qo, @R,
and @Qa respectively in fig. 1. Qo is initially populated with the load profile,
step @ in fig. la. It consists of an array with ¢ elements (each corresponding
to a discrete time instant in t), where the value [of every element indicates
the number of slaves to be created at that instant. Slaves are scheduled and
created in rounds, as follows. The master picks the first element from Qo to

On Benchmarking for Concurrent Runtime Monitoring 5

t=4 units . Time unit 1; round 1
/—/%
Qo - — ;% \ Qo
@ e
s e Load model @ Qr
— ™
M
@L OFTTLle oL o
M . @ 1 2
: fork req. . fork

®.,,® .®

a
)
+
3

[s
[]
(a) Master schedules the first batch of (b) Slaves S1 and S> created and added
four slaves for execution in Qr to Qa; a work request is sent to Si

Time unit 1; round 2 Time unit 2; round 1

I

Nann @[

i ?ﬁi}@nﬂllw
oL e
Jork: | rea. . fork V regs. r(’@s;)

(c) Slaves S3 and Sy created and added (d) Qr becomes empty; master schedules
to Qa; slave S2 completes execution next batch of two slaves

=]

Fig. 1: Master M scheduling slave processes S; and allocating work requests

compute the upcoming schedule, step @), that starts at the current time, c,
and finishes at ¢+ m. A series of [time points, p1,pa,...,p;, in the schedule
period 7w are cumulatively calculated by drawing the next p; from a normal
distribution with p=[x/l] and o =px0.1. Each time point stipulates a moment
in wall-clock time when a new slave is to be created; this set of time points is
monotonic, and constitutes the Ready queue, Qgr, step ®@. The master checks
@R, step @ in fig. 1b, and creates the slaves whose time point p; is smaller than
or equal to the current wall-clock time*, steps ® and ®. Newly-created slaves
are removed from @Qr and appended to the Await queue Qa, step @, ready to
receive work requests from the master, step ®. Q)4 is traversed by the master at
this stage so that work requests can be allocated to existing slaves. The master
continues processing queue Qg in subsequent rounds, creating slaves, issuing
work requests, and updating Qr and Qa accordingly as shown in steps @—@
in fig. 1c. At any point, the master can receive responses, e.g. step @ in fig. 1d;
these are buffered inside the masters’ incoming work queue and handled once
the scheduling and work allocation actions are complete. A fresh batch of slaves

4 We assume that the platform scheduling the master and slave processes is fair.

6 L. Aceto et. al.

from Qo is scheduled by the master whenever Qr becomes empty (fig. 1d), and
the whole procedure is repeated. Scheduling stops when all the entries in Q¢ are
processed. The master then transitions to work-only mode, where it continues
allocating work requests and handling incoming responses from slaves.

Reactiveness and task allocation. Systems generally respond to load with dif-
fering rates, due to the computational complexity of the task at hand, 10, or
slowdown when the system itself becomes gradually loaded. We simulate this
phenomenon using the parameters Pr(send) and Pr(recv). The master inter-
leaves the sending and receiving of work requests to distribute tasks uniformly
among the various slaves: Pr(send) and Pr(recv) bias this behaviour. Specifically,
Pr(send) controls the probability that a work request is sent by the master to a
slave, whereas Pr(recv) determines the probability that a work response received
by the master is processed. Sending and receiving is turn-based and modelled on
a Bernoulli trial. The master picks a slave S; from Qo and sends at least one
work request when X <Pr(send); X is drawn from a uniform distribution on the
interval [0,1]. Further requests to the same slave are allocated following the same
procedure, steps @, @ and @0 in fig. 1, and the entry for S; in Q is updated ac-
cordingly with the number of work requests remaining. When X > Pr(send), the
slave misses its turn, and the next slave in Q5 is picked. The master also checks
its incoming work queue to determine whether a response can be processed. A
response is taken out from its incoming work queue when X < Pr(recv), and
the attempt is repeated for the next response in the queue until X > Pr(recv).
Slaves are instructed to terminate by the master once all of their work responses
have been acknowledged (e.g. step @). Due to the load imbalance that can oc-
cur when the master becomes overloaded with work responses sent by slaves,
the dequeuing procedure is repeated |Qa| times. This encourages an even load
distribution in the system as the number of slaves fluctuates at runtime.

2.2 Realisability

We implemented our benchmarking tool using Erlang [13]. Erlang adopts the
actor model [2], a message-passing paradigm where the units of decomposition
are actors: concurrent units of decomposition that do not share mutable mem-
ory with other actors. Instead, they interact via asynchronous messaging, and
change their internal state based on messages they receive. Each actor owns a
(received) message queue, called a mailboz, where messages can consumed by the
recipient at any stage, possibly out-of-order. Besides sending and receiving mes-
sages, an actor can also fork other actors. Actors can be uniquely addressed via
a dynamically-assigned identifier, called the PID. Erlang implements actors as
lightweight processes to enable massively-scalable architectures that span multi-
ple machines. The terms actor and process are used interchangeably henceforth.

Implementation. We map the master and slave processes from sec. 2.1 to Erlang
actors. The incoming work request queues for these processes coincide with actor
mailboxes. We abstract the task computation, and model work requests as Erlang
messages. Slaves do not emulate delay, but respond instantly to work requests;

On Benchmarking for Concurrent Runtime Monitoring 7

:
() 1
ﬂ'"p‘h

Tstart i 10 % samples >
('2,76q~>® — (@2, 7eq.) @
recorded metrics
Collector | M | | So
@('2»"'€SP~> @(02,15311‘)
csv -~
time in queue

Metric round-trip = Tstart — Tfinish

records © message ref.

Fig. 2: Collector tracking the round-trip time for work requests and responses

delay in the system can be induced using parameters Pr(send) and Pr(recv). To
maximise efficiency, the Order, Ready and Await queues used by our scheduling
scheme are maintained locally within the master. The master process keeps track
of other details, such as the total number of work requests sent and received, to
determine when the system should stop executing. Our implementation extends
the parameters in sec. 2.1 with a seed parameter, r, used to fix the Erlang
pseudorandom number generator to output consistent number sequences.

2.3 Measurement Collection

Our set-up collects these metrics: (1) mean scheduler utilisation, as a percentage
of the total available capacity, (i7) mean memory consumption, measured in GB,
(#i) mean response time (RT), measured in milliseconds (ms), and, (iv) mean
execution duration, measured in seconds (s). The definition of runtime overhead
we use encompasses all four metrics. Measurement taking largely depends on
the platform on which the benchmark executes: one often leverages platform-
specific optimised functionality in order to attain high levels of efficiency. Our
implementation relies on the functionality provided by the Erlang ecosystem.

Sampling. We collect measurements centrally using a special process, called the
Collector, that samples the runtime to obtain periodic snapshots of the envi-
ronment (see fig. 2). Sampling is often necessary to induce low overhead in the
system, especially in scenarios where the system components are sensitive to
latency. Our sampling frequency is set to 500 ms: this figure was determined em-
pirically, whereby the measurements gathered are neither too coarse, nor exces-
sively fine-grained such that sampling affects the runtime. Every sampling snap-
shot combines the four metrics mentioned above and formats them as records
that are written asynchronously to disk to minimise 10 delays.

Performance metrics. Memory and scheduler readings using built-in functions
offered by the Erlang Virtual Machine (EVM). We sample the scheduler rather
than CPU utilisation at the OS-level, since the EVM keeps scheduler threads
momentarily spinning to remain reactive; both would inflate the metric reading®.

5 This EVM feature can be turned off, but we opted for the default settings and to
measure the scheduler utilisation metric inside the EVM instead.

8 L. Aceto et. al.

The overall system responsiveness is captured by the RT metric. The collector
exposes a hook that the master uses to obtain unique timestamped references,
step @ in fig. 2; these opaque values are embedded in every work request message
the master issues to slaves. Each reference enables the collector to track the time
taken for one message to travel from the master to a slave and back, in addition
to the time it spends waiting in the master’s mailbox until dequeued, i.e., the
round-trip in steps @—@. To efficiently compute the RT, the collector samples
10 % of the total number of messages exchanged between the master and slaves,
step ®, and calculates the mean using Welford’s [47] online algorithm.

3 Evaluation

We evaluate the synthetic benchmarking tool developed in Sec. 2 in a number
of ways. Sec. 3.1 discusses sanity checks for its measurement collection mecha-
nisms and assesses the repeatability of the obtained results from the synthetic
system executions. Importantly, it provides evidence that the benchmarking tool
is expressive enough to cover a number of execution profiles, that are also shown
to emulate realistic scenarios. Sec. 3.2 demonstrates the utility of the features
offered by the tool for the purposes of assessing RV tools.

Ezxperiment set-up. We define an experiment to consist of ten benchmarks, each
performed by running the system set-up with incremental loads. Our experiments
were conducted on an Intel Core i7 M620 64-bit machine with 8GB of memory,
running Ubuntu 18.04 and Erlang/OTP 22.2.1.

3.1 Benchmark Expressivity and Veracity

The benchmark parameters from sec. 2.1 can be configured to model a range of
master-slave scenarios. However, not all of these configurations are meaningful in
practice. For example, setting Pr(send)=0 does not enable the master to allocate
work requests to slaves; with Pr(send)=1, this allocation is enacted sequentially,
defeating the purpose of a concurrent master-slave set-up. We therefore establish
a set of parameter values that model experiment set-ups whose behaviour approz-
imates that of systems typically found in practice. Experiments in this section
are conducted with n =500k slaves and w = 100 work requests per slave. This
generates ~=n X w X2 (work requests and responses) =100M messages exchanges
between the master and slave processes. We initially fix Pr(send)=Pr(recv)=0.9,
and choose a Steady (i.e., Poisson process) load model with A =5k; this model
is selected since it features in popular application load testing tools such as
Tsung [38], Gatling [18] and JMeter [20]. The total loading time is set to t=100s.

Measurement precision. A series of trials were conducted to select the appro-
priate sampling window size for the RT. This step is crucial because it directly
affects the capability of the benchmark to scale in terms of its number of slave
processes and work requests. Our RT sampling algorithm was validated by tak-
ing various sampling window sizes over numerous runs for different load models

On Benchmarking for Concurrent Runtime Monitoring 9

of ~ 1M slaves. The results were compared to the actual mean calculated on
all work request and response messages exchanged between master and slaves.
Values close to 10 % yielded the best outcomes (~41.4% drift from the expected
RT). Smaller window sizes produced excessive drift; larger sizes induced notice-
ably higher system loads. We also cross-checked the precision of our scheduler
utilisation sampling method our benchmark against readings obtained via the
Erlang Observer tool to confirm that these coincide [13].

Ezperiment repeatability. Data variability affects the measurement repeatability.
It also plays a role when determining the number of repeated readings, ¢, required
before the data measured is deemed sufficiently representative. Choosing the
lowest 4 is crucial when experiment runs are time consuming. The coefficient of
variation (CV), i.e., the ratio of the standard deviation to the mean, CV = £ x
100, is often used to establish the value of 7 empirically, as follows. Initially, the
CV for one batch of experiments for some number of repetitions ¢ is calculated.
The result is then compared to the CV for the next batch of repetitions i’ =i+b,
where b is the step size. When the difference between successive CV metrics ¢’ and
i is sufficiently small (for some percentage €), the value of 7 is chosen, otherwise
the procedure described is repeated with ¢/. Crucially, the CV condition must
hold for all variables measured in the experiment before i can be fixed. For
the results presented next, the CV values were calculated manually; we plan to
implement the mechanism that determines the CV automatically later on.

Data variability. The data variability between experiments can be reduced by
seeding the Erlang pseudorandom number generator (parameter r in sec. 2.2)
with a constant value. This, in turn, tends to require fewer repeated runs before
the metrics of interest—scheduler utilisation, memory consumption, RT, and
execution duration—converge to an acceptable CV. We conduct experiments set
with three, six and nine repetitions. For the majority of cases, the CV for the
data variables considered is lower when a constant seed is used, by comparison
to its unseeded counterpart (refer to fig. 9 in app. A). In fact, very low CV values
for the scheduler utilisation, memory consumption, RT, and execution duration,
0.17%, 0.15 %, 0.52 % and 0.47 % respectively, were obtained with three repeated
runs. Consequently, we set the number of repetitions to three for all experiment
runs in the sequel. Note that fixing the seed still allows the system to exhibit
a modicum of variability: this stems from the inherent interleaved execution of
components resulting from process scheduling.

System reactivity. The reactivity of the master-slave system correlates with the
idle time of each slave which, in turn, affects the capacity of the system to ab-
sorb overheads. This can skew the results obtained when assessing overheads,
and it was imperative for our benchmarking tool to provide methods to control
this aspect. Parameters Pr(send) and Pr(recv) regulate the speed with which
the system reacts to load. We study how these parameters affect the overall
performance of system models set up with Pr(send)=Pr(recv) € {0.1,0.5,0.9}.
The results are shown in fig. 3, where each metric (e.g. memory consumption)
is plotted against the total number of slaves. At Pr(send)=Pr(recv)=0.1, the
system has the lowest RT out of the three configurations, as indicated by the

10 L. Aceto et. al.

— Pr(send)=Pr(recv)=0.1 Pr(send)=Pr(recv)=0.5 — Pr(send)=Pr(recv)=0.9

Scheduler Memory
50 5.00 o
—~
- an)]
S ®)
= ~ 4.00
=
]
g L 2
2]
< S e - E‘ 3.00
i 7
5 <
)
O 200 /*’//‘
0 T T T T T T T T T 1
100 200 300 400 500 100 200 300 400 500
Response Execution
2500 4
3000 §
—
=~ 2000 w
E =
= 1500 { S 2000 {
o e
g ©
21000 1 =
& 3
A 1000 {
500 1
01

100 200 300 400 500 100 200 300 400 500
Total slaves (K) Total slaves (K)

Fig. 3: Performance benchmarks of system models for Pr(send) and Pr(recv)

gentle linear increase of the respective plot. One may expect the RT to be lower
for the system models configured with probability values of 0.5 and 0.9. How-
ever, we recall that at Pr(send)=0.1, work requests are allocated infrequently
by the master, such that slaves are often idle, and can readily respond to (low
numbers of) incoming work requests. The slow rate with which the master al-
locates work requests prolongs the overall execution duration, when compared
to that of the system for Pr(send) =Pr(recv) € {0.5,0.9}. Meanwhile, the ef-
fect of idling can be gleaned from the relatively low scheduler utilisation. Idling
also increases memory consumption, since slaves created by the master typically
remain alive for extended periods. By contrast, the system model plots with
Pr(send)=Pr(recv) €{0.5,0.9} exhibit markedly lower gradients in the memory
consumption and execution duration charts, and slightly steeper slopes in the
RT chart. This indicates that values between 0.5 and 0.9 generate system mod-
els that: (i) consume reasonable amounts of memory, (ii) execute in respectable
amounts of time, and, (774) maintain tolerable RT. Since the master-slave archi-
tecture is typically employed in settings where high throughput is demanded,
choosing values that are less than 0.5 goes against this notion. In what follows,
we opt for Pr(send)=Pr(recv)=0.9.

Load profiles. When judging the scalability of a monitoring set-up, one should
consider its behaviour under varying forms of stress loads. Our tool is expressive
enough to generate the load profiles introduced in sec. 2.1 (see fig. 4). These make
it possible to mock specific system scenarios to test different implementation

On Benchmarking for Concurrent Runtime Monitoring 11

Steady Pulse Burst

—~
N 5.00 fAwrh Y WVfJx,,\W.,f\¢,\,V~A,\ 8.00 AR N
~— ! \
\

B 4.00 FAm A A A ARAAA N AN
> 6.00 1
3
=
1}
-l 4.00
13
-
5
3 2.00 4
<
5
O T T T A 0.00 T T T

0 25 50 75 100 25 50 75 100 25 50 75 100

Timeline (s) Timeline (s) Timeline (s)

Fig. 4: Steady, Pulse and Burst load distributions of 500k slaves in 100s

aspects. For example, a test that subjects the system to load surges could uncover
buffer overflows in certain monitor implementations that arise when the length
of the request queue exceeds some pre-set length.

Emulation veracity. Our benchmarks can be configured to closely model real-
istic web server traffic where the request intervals observed at the server are
known to follow a Poisson process [28,34,30]. The probability distribution of
the RT of web application requests is generally right-skewed, and approximates
log-normal [28,17] or Erlang distributions [30]. We conduct three experiments
using Steady loads fixed with n=10k; Pr(send)=Pr(recv) are varied through
0.1, 0.5 and 0.9 to establish whether the RT in our system set-ups resembles
the aforementioned probability distributions. Our results, summarised in fig. 5,
were obtained by estimating the parameters for a set of candidate probability
distributions (e.g. normal, log-normal, gamma, etc.) using Maximum Likelihood
Estimation [42] on the RT obtained from each experiment. We then performed
goodness-of-fit tests on these parametrised distributions, selecting the most ap-
propriate RT fit for each of the three experiments using the Kolmogorov-Smirnov
test. The fitted distributions in fig. 5 indicate that the RT of our system models
follows the findings reported in [28,17,30]. Our benchmarking tool thus gives
us the best of both worlds: the realism of benchmarks based on OTS programs
coupled with the control that is characteristic of synthetic benchmarks.

Pr(send)=Pr(recv)=0.1 Pr(send)=Pr(recv)=0.5 Pr(send)=Pr(recv)=0.9

_4;’ — Log-normal — Log-normal — Gamma
4 — Mean: 50.88 0.015 — Mean: 55.43 0.015 — Mean: 77.32
[
o -- Mode: 13 -- Mode: 33 -- Mode: 17
ki 0.010
= |
g 0.005 § :
= |
5 |
Z, |
. 0.000 Ly ; -~
0 100 200 0 100 200 0 100 200 300 400
Mean response time (ms) Mean response time (ms) Mean response time (ms)

Fig. 5: Fitted probability distributions on RT for Steady loads for n=10k

12 L. Aceto et. al.

3.2 Case Study

We demonstrate how our benchmarking tool can be used to assess the runtime
overhead more comprehensively via a concurrent RV case study. By controlling
the benchmark parameters and subjecting the system to various workloads, we
are able to induce certain overhead behaviour.

The RV tool. The tool used for our case study [3,4] synthesises automata-like
monitors from sHML [22] specifications. It instruments them into the target sys-
tem via code injection by manipulating the program abstract syntax tree (see
app. B). sHML is a fragment of the Hennesy-Milner logic with recursion [33]
that can express all regular safety properties [22]. Our tool augments it to han-
dle pattern matching and data dependencies for three kinds of event patterns,
namely send and receive actions, denoted by ! and ? respectively, and process
crash, denoted by x. This logic suffices to specify properties of both the mas-
ter and slave processes, resulting in the set-up depicted in fig. 6a. For instance,
the recursive property (ExSpec) below describes an invariant of the master-slave
communication protocol (from the slave’s perspective), stating that ‘a slave pro-
cess processing integer successor requests should not crash’:

maxX.([\Slv*]ff A \Slw?\Req] ([Slox]fEA[SIvl(Req+1)] X)) (ExSpec)

The key construct in sHML is the modal formula [p]p, stating that whenever a
satisfying system produces an event e matching pattern p, its continuation must
satisfy . More concretely, (ExSpec) is an invariant, denoted by recursion binder
max X, specifying that a slave cannot crash immediately, via the subformula
[\Slv *]ff. In addition, whenever it receives a request carrying a payload Req,
denoted by [\Slv?\Reg]..., this same slave still cannot crash, [Slv«]ff, and if this
slave answers the request correctly by carrying payload Req+ 1, the property
recurses, [Slv!(Req+1)]X. Action patterns employ two types of value variables:
binders, \z, that are pattern-matched to concrete values learnt at runtime, and
variable instances, z, that are bound by the respective binders and instantiated
to concrete data via pattern matching at runtime. This induces the usual notion
of free and bound value variables; we assume closed terms. For example, when
checking (ExSpec) against the trace event pid?42, the analysis would unfold
the recursion and pattern match the event against \Slv?\ Reg, substituting the
variables Slv and Req with pid and 42 respectively, leaving the residual formula:

[\ Stu %]fF A)

[pid]ffA[pid!(42+1)maxX. ([\Sh’? \ Req] ([Slox]ff A[SIvV (Req + 1)]X)

Specifications produce embedded monitor code that executes in the same process
space of a system component, inducing the lowest possible amount of runtime
overhead. This enables us to scale our benchmarks to considerably high loads.
Our case study experiments focus on correctness properties that are paramet-
ric w.r.t. to system components [4,16,41,37]; with this approach, monitors need
not interact with one another and can reach verdicts independently. Verdicts

On Benchmarking for Concurrent Runtime Monitoring 13

pidg!dy when pidy # pidg
or when dy #dy +1,
pidg x when pidy # pidy

pidy ldy +1

E:D JEE D R S
.,

I ST

(a) Monitor inlining (b) Synthesised monitor from (ExSpec)

Fig. 6: Synthesised monitors instrumented with master and slave processes

are communicated by monitors to a central monitor that records the expected
number of verdicts in order to determine when the experiment can be stopped.
The set of properties used in our benchmarks translate to monitors that loop
continually to exert the maximum level of runtime overhead possible. Fig. 6b
shows the monitor synthesised from (ExSpec), consisting of states Sy, S, the
rejection state X and inconclusive state 7. The rejection state corresponds to a
violation of the property, i.e., ff, whereas the inconclusive state is reached when
the trace events analysed do not contain enough information to enable the mon-
itor to transition to any other state. In fig. 6b, the rejection and inconclusive
states are depicted as sinks, modelling the irrevocability of verdicts [21,22].

The modality [\ Slv?\ Reg] in (ExSpec) corresponds to the transition between
So and Sy in fig. 6b. The monitor follows this transition when it analyses the
trace event pid; 7d; exhibited by the slave with PID pid; when it receives work
chunk payload d; from the master; as a side effect, the transition binds the
variable Slv to pid; and Reg to d; in state S;. From S, the monitor transitions
to Sp only when the event pid;!d, is analysed, where dy =d; +1 and pid; is
the slave PID previously assigned to Slv. From Sy and Sy, the rejection state X
can be reached when a crash event is analysed. In the case of Sy, the transition
to X is followed for any crash event _x (_ denotes the anonymous variable). By
contrast, the monitor reaches X from S; only when the slave with PID pid,
crashes, otherwise it transitions to the inconclusive state 7. Other transitions
from Sy and S; leading to 7 follow a similar reasoning.

Case study set-up. Our benchmarks are set with n=20k for moderate loads and
n =500k for high loads; Pr(send) =Pr(recv) is fixed at 0.9 as in sec. 3.1. These
configurations generate &~ n X w x 2 (work requests and responses) = 4M and
100M messages respectively, producing 8 M and 200M analysable trace events
per run. We seed the pseudorandom number generator with a constant value,
and perform three experiment repetitions for the load profiles of fig. 4. A loading

14 L. Aceto et. al.

— Steady baseline -- monitors Pulse baseline monitors — Burst baseline -~ monitors
Scheduler Memory
50
—_
- g 1.594 1
> =z
- = 1.592 1
S 2
9] ie)]
g 2 £ 1.590
] g
= = 1.588 4
ey n
=3
P S 1.586]
]
0 4 T T T T T T T 1.584
2 5 7 10 12 15 17 20
Response
5.0 4 101.5 1
—~ 4.0 4 “» 101.4 4
7 N
é 30 5 101.3 {
o =y
g S 101.2]
g 20 5
A 101.1 4
1.0 § s/ e
101.0 4 /-
T
2 5 7 10 12 15 17 20 2 5 7 10 12 15 17 20
Total slaves (k) Total slaves (k)

Fig. 7: Mean runtime overhead for master and slave processes (20k slaves)

time of t=100s is used. The results are summarised in figs. 7 and 8. Each of the
four chart in these figures plots the particular performance metric (e.g. memory
consumption) for the system without monitors, i.e., the baseline, together with
the overhead induced by runtime monitors for our three load profiles (fig. 4).

Moderate loads. The loads considered in the first benchmark (n=20k) are compa-
rable to those used by the state-of-the-art to evaluate component-based runtime
monitoring, e.g. [43,4,7,19,37] (ours are slightly higher). None of the benchmarks
used in these works employ different load profiles: they either model load on a
Poisson process, or fail to specify the kind of load used. Fig. 7 shows the plots
for the system set with n =20k. The execution duration chart (bottom right)
shows that, regardless of the load profile used, the running time of each experi-
ment is comparable to the baseline (within 500 ms). We deem these results to be
inconclusive. Despite the broad benchmark coverage provided by the three load
profiles, this trend is again mirrored in the scheduler utilisation plot (top left),
where both the baseline and monitored system induce a constant load of ~17.5%.
The load profiles however induce different overheads for the RT (bottom left),
and, to a lesser degree, the memory consumption plots (top right). Specifically,
when the system is subjected to a Burst load, it exhibits a surge in the RT for
both the baseline and monitored system, at ~ 16k. While this does not occur
in the memory consumption plot, we note that the aforementioned Burst plots
exhibit a larger, albeit linear, rate of increase in memory when compared to the
Steady and Pulse plots. The latter plots once again display analogous trends,

On Benchmarking for Concurrent Runtime Monitoring 15

— Steady baseline -- monitors Pulse baseline monitors — Burst baseline -~ monitors
Scheduler Memory
50
~ 2.60
- m
S @)
S Z 240
[=]
o
o
i} S22
F 25 femmae g 220
E g
12}
2 E 200
ey n
) 5 1.80
]
0 T T T T T 1.60 T T T T T
100 200 300 400 500 100 200 300 400 500
Response Execution

1400 A

8000 4 1200 4

6000 1 1000 A

800 4

4000 4
600 1

Time (ms)
Duration (s)

2000 1 400 4

200 { 2

100 200 300 400 500
Total slaves (k) Total slaves (k)

Fig. 8: Mean runtime overhead for master and slave processes (500k slaves)

suggesting that Steady and Pulse loads have similar memory requirements, and
exhibit comparable responsiveness under the respectable load of 20k slaves. Im-
portantly, our data plots do not allow us to confidently extrapolate our results.
The RT metric Burst plots raise the question of whether the trend observed
remains consistent when the number of slave processes exceeds 20k.

High loads. We increase the number of slaves to n =500k, to determine whether
the benchmark set-up can adequately scale to reveal how the monitored system
performs under stress. The RT chart in fig. 8 shows that for Burst loads, it
grows linearly in the number of slaves. This confirms our earlier assertion that
moderate loads provide scant empirical evidence to extrapolate to general con-
clusions. However, for memory consumption, Burst plots exhibit similar trends
to the ones in fig. 7. Subjecting the system to high loads renders discernible the
discrepancy between the RT and memory consumption gradients for the Steady
and Pulse plots; these appeared to be similar for moderate loads (fig. 7). Per-
haps deceivingly, the execution duration plots of fig. 8 induce virtually identical
overhead to those in fig. 7, notwithstanding the distinct load profiles. But this
erroneous observation is clearly refuted by the RT and memory consumption
plots. This highlights the importance of gathering multi-faceted performance
metrics to better assist in the interpretation of runtime overhead results.

We extend the argument for multi-faceted views to the scheduler utilisation
metric in fig. 8 that reveals a subtle aspect of our concurrent set-up. Specifically,
the charts show that while the the execution duration, RT and memory con-

16 L. Aceto et. al.

sumption plots grow in the number of slave processes, scheduler utilisation sta-
bilises at ~22.7%. This is partly caused by the master-slave design that becomes
susceptible to bottlenecks when the master is overloaded with requests [46]. In
addition, the preemptive scheduling of the EVM [13] ensures that the master
shares the computational resources of the same machine with the rest of the
slaves. We conjecture that, in a distributed set-up where the master resides on
a dedicated node, the overall system throughput may be further pushed. Fig. 8
also attests to the utility of having a benchmarking framework that scales con-
siderably well to increase the chances of detecting likely trends. For instance,
the evidence gathered in fig. 7 could have misled one to assert that the RV tool
under inspection scales poorly under Burst loads of moderate size.

4 Conclusion

We presented a benchmarking framework that targets RV tools for concurrent
settings. Our set-up emulates various system models via configurable parameters,
and can scale considerably to reveal behaviour that only emerges when software is
pushed to its limit. We show that, despite its synthetic nature, our chosen master-
slave architecture faithfully approximates the behaviour observed in realistic
web server traffic. The benchmark harness gathers different metrics, providing a
multi-faceted view of runtime overhead that, to wit, other state-of-the-art tools
do not currently offer. Our experiments demonstrate that these metrics benefit
the interpretation of results, providing assistance when forming conclusions that
may otherwise, lack generality or in certain cases, be erroneously drawn. Our
tool source code can be found at https://github.com/duncanatt/detecter.

Future work. We plan to transition to a distributed set-up where master and
slaves reside on different nodes, using the network simulator Kollaps [26], that
can be used to induce unreliable network conditions such as latency and packet
loss. Our tool can also be extended to support peer-to-peer architectures.

Related work. There are other less popular benchmarks that are specific to the
JVM besides those mentioned in sec. 1. Renaissance [40] employs workloads
that leverage the concurrency primitives exposed by the JVM, targeting the
performance of compiler optimisations similar to DaCapo and ScalaBench. These
benchmarks collect metrics that measure software quality and complexity, as
opposed to metrics that gauge runtime overhead. The CRV benchmark suite [5]
was developed to standardise the evaluation of RV tools. It mainly focusses on
RV for monolithic programs that run on the JVM and programs written in C.
We are not aware of any RV-centric benchmarks for concurrent systems such
as ours that target the JVM or EVM platforms. In [34], the authors propose
a queueing model to analyse web server traffic, and develop a benchmarking
tool to validate it. Their model coincides with our master-slave architecture,
and considers loads based on a Poisson process. A study of message-passing
communication on parallel computers conducted in [28] uses systems loaded
with different numbers of processes; this is similar to our approach. Importantly,
we were able to confirm the findings presented in both [34] and [28] (see sec. 3.1).

https://github.com/duncanatt/detecter

On Benchmarking for Concurrent Runtime Monitoring 17

References

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.
21.

22.

Aceto, L., Achilleos, A., Francalanza, A., Ing6lfsdéttir, A., Kjartansson, S.0.: De-
terminizing Monitors for HML with Recursion. JLAMP 111, 100515 (2020)

. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor Com-

putation. JEP 7(1), 1-72 (1997)

Attard, D.P., Francalanza, A.: A Monitoring Tool for a Branching-Time Logic. In:
RV. LNCS, vol. 10012, pp. 473-481 (2016)

Attard, D.P., Francalanza, A.: Trace Partitioning and Local Monitoring for Asyn-
chronous Components. In: SEFM. LNCS, vol. 10469, pp. 219-235 (2017)
Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First International Competition on Runtime Verifi-
cation: Rules, Benchmarks, Tools, and Final Results of CRV 2014. Int. J. Softw.
Tools Technol. Transf. 21(1), 31-70 (2019)

Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to Runtime
Verification. In: Lectures on RV, LNCS, vol. 10457, pp. 1-33 (2018)

Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime Verification with Min-
imal Intrusion through Parallelism. FMSD 46(3), 317-348 (2015)

Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T,
von Dincklage, D., Wiedermann, B.: The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In: OOPSLA. pp. 169-190 (2006)

Blessing, S., Fernandez-Reyes, K., Yang, A.M., Drossopoulou, S., Wrigstad,
T.: Run, Actor, Run: Towards Cross-Actor Language Benchmarking. In:
AGERE!@QSPLASH. pp. 41-50 (2019)

Bodden, E., Hendren, L.J., Lam, P., Lhotak, O., Naecem, N.A.: Collaborative Run-
time Verification with Tracematches. J. Log. Comput. 20(3), 707-723 (2010)
Bonakdarpour, B., Finkbeiner, B.: The Complexity of Monitoring Hyperproperties.
In: CSF. pp. 162-174 (2018)

Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing: Principles and
Paradigms (2011)

Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Soft-
ware Development (2009)

Chappell, D.: Enterprise Service Bus: Theory in Practice (2004)

Chen, F., Rosu, G.: Mop: An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA. pp. 569-588 (2007)

Chen, F., Rosu, G.: Parametric Trace Slicing and Monitoring. In: TACAS. LNCS,
vol. 5505, pp. 246-261 (2009)

Ciemiewicz, D.M.: What Do You mean? - Revisiting Statistics for Web Response
Time Measurements. In: CMG. pp. 385-396 (2001)

Corp., G.: Gatling (2020), https://gatling.io

El-Hokayem, A., Falcone, Y.: Monitoring Decentralized Specifications. In: ISSTA.
pp. 125-135 (2017)

Foundtation, A.S.: Jmeter (2019), https://jmeter.apache.org

Francalanza, A.: A Theory of Monitors (Extended Abstract). In: FoSSaCS. LNCS,
vol. 9634, pp. 145-161 (2016)

Francalanza, A., Aceto, L., Ingdlfsd6ttir, A.: Monitorability for the Hennessy-
Milner Logic with Recursion. FMSD 51(1), 87-116 (2017)

https://gatling.io
https://jmeter.apache.org

18

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.
40.

41.

42.

43.

44.

45.

46.
47.

L. Aceto et. al.

Francalanza, A., Pérez, J.A., Sdnchez, C.: Runtime Verification for Decentralised
and Distributed Systems. In: Lectures on RV, LNCS, vol. 10457, pp. 176-210 (2018)
Francalanza, A., Xuereb, J.: On Implementing Symbolic Controllability. In: CO-
ORDINATION. LNCS, vol. 12134, pp. 350-369 (2020)

Ghosh, S.: Distributed Systems: An Algorithmic Approach (2014)

Gouveia, P., Neves, J., Segarra, C., Liechti, L., Issa, S., Schiavoni, V., Matos, M.:
Kollaps: Decentralized and Dynamic Topology Emulation. In: EuroSys. pp. 23:1—
23:16 (2020)

Gray, J.: The Benchmark Handbook for Database and Transaction Processing
Systems (1993)

Grove, D.A., Coddington, P.D.: Analytical Models of Probability Distributions
for MPI Point-to-Point Communication Times on Distributed Memory Parallel
Computers. In: ICA3PP. LNCS, vol. 3719, pp. 406-415 (2005)

Imam, S.M., Sarkar, V.: Savina - An Actor Benchmark Suite: Enabling Empirical
Evaluation of Actor Libraries. In: AGERE!@QSPLASH. pp. 67-80 (2014)

Kayser, B.: What is the expected distribution of website re-
sponse times? (2017), https://blog.newrelic.com/engineering/
expected-distributions-website-response-times

Kshemkalyani, A.D.: Distributed Computing: Principles, Algorithms, and Systems
(2011)

Kuhtz, L., Finkbeiner, B.: LTL Path Checking is Efficiently Parallelizable. In:
ICALP (2). LNCS, vol. 5556, pp. 235-246 (2009)

Larsen, K.G.: Proof systems for satisfiability in hennessy-milner logic with recur-
sion. Theor. Comput. Sci. 72(2&3), 265-288 (1990)

Liu, Z., Niclausse, N., Jalpa-Villanueva, C.: Traffic Model and Performance Eval-
uation of Web Servers. Perform. Evaluation 46(2-3), 77-100 (2001)

Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An Overview of the MOP
Runtime Verification Framework. STTT 14(3), 249-289 (2012)

Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing (2011)
Neykova, R., Yoshida, N.: Let it Recover: Multiparty Protocol-Induced Recovery.
In: CC. pp. 98-108 (2017)

Niclausse, N.: Tsung (2017), http://tsung.erlang-projects.org

Nielsen, J.: Usability Engineering (1993)

Prokopec, A., Rosa, A., Leopoldseder, D., Duboscq, G., Tuma, P., Studener, M.,
Bulej, L., Zheng, Y., Villazén, A., Simon, D., Wiirthinger, T., Binder, W.: Renais-
sance: Benchmarking Suite for Parallel Applications on the JVM. In: PLDI. pp.
31-47 (2019)

Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at Runtime with QEA.
In: TACAS. LNCS, vol. 9035, pp. 596-610 (2015)

Rossi, R.J.: Mathematical Statistics: An Introduction to Likelihood Based Infer-
ence (2018)

Scheffel, T., Schmitz, M.: Three-Valued Asynchronous Distributed Runtime Veri-
fication. In: MEMOCODE. pp. 52-61 (2014)

Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: DaCapo con Scala: design and
analysis of a Scala benchmark suite for the JVM. In: OOPSLA. pp. 657-676 (2011)
SPEC: Specjvm2008 (2008), https://www.spec.org/jvm2008

Tarkoma, S.: Overlay Networks: Toward Information Networking (2010)

Welford, B.P.: Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics 4(3), 419-420 (1962)

https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
http://tsung.erlang-projects.org
https://www.spec.org/jvm2008

On Benchmarking for Concurrent Runtime Monitoring 19

Coefficient of variation

o
¥ 5.0
5 2.5 4 5
o 2.0] Metrics
o} s + Scheduler utilisation
2 1.5 J , Memory consumption
E = » Round-trip time
o 1.0 4 » Execution duration
_g .
0.5 4
5] %
F 0.0 iy

0.0 05 1.0 1.5 2.0 2.5 3.0
Fixed seed CV (%)

Fig.9: CV for unfixed and fixed randomisation seeds for 3,6,9 repetitions

A Model System Parameters

Further to the model system parameters discussed in sec. 3.1, the following
supporting empirical measurements were also taken.

Data variability. Fig. 9 shows the relationship between different CV metrics
obtained for the system when executed with unfixed (y—axis) and fixed (z—axis)
pseudorandom number generator seeds. The experiments were performed for
three, six and nine repetitions, using the parameters fixed in sec. 3. For our four
chosen performance metrics, using a constant seed tends to induce less variability
in the experiments, i.e., a low CV, as indicated in fig. 9, where only two points
lie below the identity line y=x.

Load profiles. The load profiles presented in sec. 2.1 induce different performance
overhead on the system. Fig. 4 shows the plots for the performance metrics con-
sidered in our experiments under the loads in fig. 4, where n=500k. As antici-
pated, every load shape yields different results for the metrics considered, all of
which grow linearly in the size of the total number of slaves; scheduler utilisation
does not follow this trend, and plateaus at around 22 % in all three cases. The
Steady and Pulse plots coincide in the case of RT and share similar execution
duration gradients, but then exhibit a slight degree of divergence in the growth
rates of memory consumption. Steady loads yield the lowest and most consis-
tent overhead in all the performance metrics considered. This is attributable to
the regularity of the homogeneous Poisson process on which Steady loads are
modelled. By contrast, Bursts induce the highest levels of overheads, where the
growth rate factors for RT and memory consumption relative to Steady loads are
~2.8 and ~1.9 respectively. This load-inducing behaviour did not emerge for the
execution duration, where the plot for Burst is analogous to the one produced
the Steady load.

20 L. Aceto et. al.

— Steady Pulse — Burst

Scheduler Memory
50
2.40 1
—~
—_ m
S @)
> < 2.20 1
]
g g
] g
2 7
= 1.80 1
2
])
]
0 T T T T T 1.60 4y T T T T
100 200 300 400 500 100 200 300 400 500
Response Execution
1000 {
6000 1
5000 1 —~ 800 -
— &
g 4000 4 =
= 3 600 4
o s E
g 3000 =
[5 400 4
2000 1
& A
1000 {
000 200 /
0 15 T T T T T = T T T T T
100 200 300 400 500 100 200 300 400 500
Total slaves (K) Total slaves (K)

Fig. 10: Performance benchmarks of system models under the loads in fig. 4

On Benchmarking for Concurrent Runtime Monitoring 21

B Case Study

Monitor instrumentation. Our RV tool instruments monitors into the target sys-
tem via code injection by manipulating the program abstract syntax tree (AST).
Fig. 11 outlines how this process is carried out. In step @, the Erlang source
code of the system is parsed into the corresponding AST, step @. The Erlang
compilation process contains a parse transform phase [13], step ®), that provides
a hook to enable the AST to be post-processed. Our custom-built weaver lever-
ages this mechanism in step @, to embed into the program AST the AST of the
synthesised monitor, step ®. The weaver performs two types of transformations:

(i) Monitor bootstrapping. The function encoding the monitor is stored in the
process dictionary (a process-local key-value store) of the monitored process.

(i1) Instrumentation points. The program AST is instrumented with calls at the
points of interest: these calls constitute the extraction, and analysis of system
trace events by the monitor code.

The instrumented calls in transformation (%) retrieve the monitor function
stored in the process dictionary in transformation (i), and apply it to the system
trace event. The function application returns the monitor continuation function
that is used to replace the current monitor in the process dictionary. Our two-
step weaving procedure produces the instrumented program AST in step ®, that
can be subsequently compiled by the Erlang compiler into the system binary.

Erlang compiler passes

ASTs AST!, @
Preprocessing Y Parse ;
and transform | o ——
parsing hook Other passes
erl

Program AST, AST Instrumented
sources ’ N program

S s binary

@ [Weaver | o

@ Monitor
binary

Fig. 11: Instrumentation pipeline for inline monitors

	 On Benchmarking forConcurrent Runtime Monitoring

