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Abstract. This paper investigates monitorability in the context of prob-
abilistic systems. We specify how monitor verdicts, reached over finite
(partial) traces can be given a probabilistic interpretation. For monitors
that are used to runtime-verify properties, we also relate their probabilis-
tic verdicts to the probability that the corresponding completed trace
satisfies the property of interest. This leads us to define probabilistic
monitor soundness and completeness, which are then used to formulate
probabilistic monitorability. Surprisingly, we show that this coincides
with classical monitorability from the literature. This allows us to carry
over prior results from the classical setting to the probabilistic realm.

1 Introduction

Monitors are passive computational entities that observe the execution of a sys-
tem, i.e., a finite trace, to determine properties about it [7,10,11]. The systems
observed are occasionally equipped with probabilistic information about their
branching behaviour and, due to their passivity, monitors intrinsically inherit
this probabilistic behaviour. It is then natural, and fairly straightforward to
ascribe this probabilistic measurement to monitor verdicts. However, when re-
lating monitors to (linear-time) specifications, it is unclear whether the resulting
probabilistic verdicts, reached by the monitor over finite trace observations, are
still in accordance with the probability that the completed trace (which may be
infinite) satisfies the specification being monitored at runtime. This constitutes
a monitorability problem that, to wit, has not been studied in the literature.

This paper investigates monitorability for probabilistic systems. Our result
are modelled on the monitorability definition given in [2,11] which, opportunely,
teases apart the monitor behaviour from the semantics of the properties being
monitored, and relates them in terms of standard soundness and completeness
criteria; it has also been formally related to other variants in the literature [3]
and used for branching-time settings [1,12]. Our contributions are:
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1. We define probabilistic versions of monitor soundness and completeness re-
lating the probability of verdicts reached from finite trace prefixes to the
probability that the complete trace satisfies the property, Definitions 8 and 9.

2. We show a surprising correspondence between probabilistic monitorability
and its classical variant, Theorem 1, which allows us to inherit prior results
such as syntactic characterisations of monitorable properties.

3. We show how this framework is general enough to be adapted to probabilistic
settings that consider a margin of error, Definition 11 and Theorem 2.

4. Section 4 concludes with an application of these results to estimate proba-
bilities in settings that allow for repeated monitored runs while still being
treated as a black box.

2 Preliminaries

We introduce the core concepts of measure and probability theory. We refer the
interested reader to [4,6,8] for a more in-depth presentation.

Definition 1 (σ-algebra [6, p. 754]). For a set X, a σ-algebra on X is a set
Σ ⊆ 2X such that X ∈ Σ, if A ∈ Σ then X \A ∈ Σ, and if A1, A2, . . . ∈ Σ then⋃
n≥1An ∈ Σ (closure under complement and countable union).

A pair (X,Σ) of a set X together with a σ-algebra Σ on X is known as a
measurable space. If Σ is a σ-algebra and A ∈ Σ, we say that A is measurable
for Σ, and if Σ is evident from the context, we simply say that A is measurable.
With a σ-algebra on X in hand, we can define a probability measure on X.

Definition 2 (Probability measure [6, p. 754]). Given a measurable space
(X,Σ), a probability measure is a function P : Σ → [0, 1] such that P(X) = 1
and P(

⋃
i∈I Ai) =

∑
i∈I P(Ai) for any countable, pairwise disjoint collection

{Ai}i∈I ⊆ Σ. We denote by D(X) the set of all probability measures on X.

A probabilistic system is one in which the evolution of the system is governed
by some probability distribution. We use here one of the simplest probabilistic
systems, namely (generative) Markov chains. Assume a finite set of actions Act.

Definition 3 (Markov chain). A Markov chain is a tuple M = (S, s∗, ∆),
where S is a countable set of states, s∗ ∈ S is the start state, and ∆ : S →
D(Act× S) is the transition function assigning to each state a distribution over
actions and states.

A Markov chain M = (S, s∗, ∆) currently in state s ∈ S evolves by choosing
action a and state s′ with probability ∆(s)(a, s′), moving to s′ while outputting
the action a. In this paper we consider the trace-based behaviour of Markov
chains. A trace is an infinite sequence of actions a1a2 · · · ∈ Actω. We let π, π′

range over traces. A finite trace is a sequence of actions a1a2 . . . an ∈ Act∗ which
we range over by w,w′, and sets of finite traces are ranged over by F . We denote
by ε the empty trace. Given two finite traces w and w′, we write w � w′ if w is
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a prefix of w′, meaning that there exists a finite trace w′′ such that ww′′ = w′.
For a trace π = a1a2 . . . , we let π〈i〉 = ai, π|i = a1 . . . ai and π|i = ai+1, . . . .

For a Markov chain M = (S, s∗, ∆) we obtain a measurable space of traces
(Actω, Σ) using the cylinder construction (see e.g. [6, pp. 757–758]) as follows.
Given a finite trace a1 . . . an, we define the cylinder of that trace as

C(a1 . . . an) = {π ∈ Actω | π|n = a1 . . . an}.

Thus C(a1 . . . an) is the set of infinite traces that all agree on the finite prefix
a1 . . . an. In the following, we fix the σ-algebra Σ on Actω, defined as the smallest
σ-algebra containing all cylinders. For a given state s, we define a probability
measure PsM on the measurable space (Actω, Σ) inductively as PsM (C(ε)) = 1
and

PsM (C(a1a2 . . . an)) =
∑
s′∈S

∆(s, a1)(s′) · Ps
′

M (C(a2 . . . an)).

Although we only define PsM on cylinders, the probability extends uniquely to
the whole σ-algebra Σ using the Hahn-Kolmogorov theorem [14, Theorem 1.7.8].
Thus for any measurable set A ∈ Σ, the probability PsM (A) is well-defined.

3 Monitoring

Runtime verification employs monitors to observe the behaviour of the system,
typically as a black box; the system emits sequences of events/actions from some
set Act. A monitor accepts if the (finite) observations lead it to conclude that the
system satisfies a property of interest, and rejects if it observes enough events
to conclude that the property is violated. Our objective is to give an account
of monitoring in the case where the system being monitored is a probabilistic
system. In this case, the monitor itself is still non-probabilistic, and can only
observe the actions emitted by the probabilistic system. Thus the monitored
system is still a black box, and the monitor has no way of knowing the internal
state or the transition probabilities of the system.

Definition 4 (Monitor). A monitor m = (Facc, Frej) is a pair of sets of finite
traces Facc, Frej ⊆ Act∗ satisfying: (i) Facc ∩ Frej = ∅; (ii) for i ∈ {acc, rej}:

if w ∈ Fi then for any w′ ∈ Act∗ where w ≤ w′ we also have w′ ∈ Fi (1)

The traces in Facc denote the finite observations accepted by the monitor
whereas those in Frej are the traces the monitor rejects. Condition (1) ensures
that verdicts (i.e., acceptances and rejections) are irrevocable. For a set F ⊆ Act∗
we define C(F ) =

⋃
w∈F C(w), so that C(F ) is the union of the cylinders gener-

ated by each string in F . Since each cylinder C(w) is measurable by definition,
C(F ) is also measurable, being a countable union of measurable sets.

Example 1. Consider a monitor whose accepting set is

Facc = {π ∈ Act∗ | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)},
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s1

s2 s3

a, 0.2 c, 0.6

a, 0.2b, 0.3

b, 0.2
a, 0.5

c, 0.7

a, 0.3

Fig. 1. A Markov chain with three states, the initial state being s1. The symbol and
number above each transition indicates which action is taken and with what probability.

and let M = (S, s1, ∆) be the Markov chain describing the system depicted in
Figure 1. In order to calculate the probability of the monitor accepting when
monitoring this system, we first note that C(Facc) = C(aa) ∪ C(c). Since these
are disjoint sets, we can calculate the probability as

Ps1
M (C(Facc)) = Ps1

M (C(aa)) + Ps1
M (C(c)) = (0.2 · Ps2

M (C(a)) + 0.2 · Ps3
M (C(a))) + 0.6

= (0.2 · 0.5 + 0.2 · 0.3) + 0.6 = 0.76.

Properties of the system will be described in the linear-time µ-calculus [2,16].

ϕ,ψ ::= tt | ff | X | ϕ ∧ ψ | ϕ ∨ ψ | [a]ϕ | 〈a〉ϕ | µX.ϕ | νX.ϕ
Formulas are interpreted over infinite traces using an interpretation ρ : S →
2Act

ω

for variables. The semantics is standard; we present here the modal cases.

J[a]ϕKρ = {π ∈ Actω | π|1 ∈ JϕKρ whenever π〈1〉 = a}
J〈a〉ϕKρ = {π ∈ Actω | π〈1〉 = a and π|1 ∈ JϕKρ}

For closed formulas, we may omit the subscript and simply write JϕK. Since the
logic is closed under complement, we define negation as complement, meaning
that J¬ϕK = Actω \ JϕK. We next prove that each formula is measurable.

Lemma 1. For each ϕ, JϕK is measurable.

Proof. Since the linear-time µ-calculus and Büchi automata are equivalent [9],
[15, Proposition 2.3], which states that the set of traces recognisable by a given
Büchi automaton is measurable, shows that JϕK is measurable. ut

Lemma 1 means that the probability PsM (JϕK) of a property is well-defined.

Example 2. The property ϕ = [a]〈a〉tt ∧ [b]ff states that a trace cannot start
with b, and whenever it starts with a, it must be followed by another a. The
probability that M = (S, s1, ∆), from Figure 1, does not satisfy ϕ is

Ps1
M (J¬ϕK) = Ps1

M (C(b) ∪ C(ab) ∪ C(ac))

= Ps1
M (C(b)) + Ps1

M (C(ab)) + Ps1
M (C(ac))

= 0 + (0.2 · Ps2
M (C(b)) + 0.2 · Ps3

M (C(b))) + (0.2 · Ps2
M (C(c)) + 0.2 · Ps3

M (C(c)))

= 0 + (0.2 · 0.5 + 0.2 · 0) + (0.2 · 0 + 0.2 · 0.7) = 0.24.
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3.1 Soundness, completeness, and monitorability

In the non-probabilistic setting [2], soundness ensures that any trace accepted
by the monitor also satisfies the property of interest, and that any trace rejected
by the monitor does not satisfy the property. In other words, soundness means
that the monitor is an underapproximation of the property.

Definition 5 (Soundness). A monitor m = (Facc, Frej) is sound for a for-
mula ϕ if C(Facc) ⊆ JϕK and C(Frej) ⊆ J¬ϕK.

Dually, completeness requires the monitor to overapproximate the property
being monitored: if a trace satisfies the property, the monitor must accept that
trace, and if a trace violates the property, the monitor should reject the trace.

Definition 6 (Completeness). A monitor m = (Facc, Frej) is complete for
a formula ϕ if JϕK ⊆ C(Facc) and J¬ϕK ⊆ C(Frej).

Together, Definitions 5 and 6 require a monitor to fully agree with the prop-
erty being monitored, i.e. C(Facc) = JϕK and C(Frej) = J¬ϕK. A property is said
to be monitorable if there exists a monitor which fully agrees with it.

Definition 7 (Monitorability). A formula ϕ is monitorable if there exists a
monitor that is sound and complete for ϕ.

In the probabilistic setting, we do not change either the monitors or the
properties, but we interpret them over probabilistic systems. Hence, whereas
non-probabilistic soundness and completeness range over satisfaction of the prop-
erty in all models, the probabilistic version will range over the probability of the
property in all probabilistic models. In order to extend the notions of soundness
and completeness to the probabilistic setting, we impose two criteria: (1) the
extension should be conservative, so that if m is sound and complete for ϕ, it is
also probabilistically sound and complete for ϕ; (2) the extension should preserve
the idea of soundness being an underapproximation and completeness being an
overapproximation, but in a probabilistic setting.

Definition 8 (Probabilistic soundness). A monitor m = (Facc, Frej) is
probabilistically sound for ϕ if Ps∗M (C(Facc)) ≤ Ps∗M (JϕK) and Ps∗M (C(Frej)) ≤
Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).

Definition 8 fulfills criterion (1), since the monotonicity property of proba-
bility measures, which states that if A ⊆ B, then P(A) ≤ P(B), gives us that
if C(Facc) ⊆ JϕK, then Ps∗M (C(Facc)) ≤ Ps∗M (JϕK), and likewise for rejection. It
also fulfills criterion (2), since probabilistic soundness ensures that the probabil-
ity of the monitor accepting is an underapproximation of the probability of the
property being satisfied, and likewise for rejection.

Example 3. Assume Act = {a, b, c}. Let ϕ = [a]〈a〉tt∧ [b]ff, Facc = {π ∈ Act∗ |
(π〈1〉 = a = π〈2〉)} or (π〈1〉 = c) and Frej = ∅. For any M = (S, s∗, ∆), we have

Ps∗M (C(Facc)) = Ps∗M ({π ∈ Actω | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)}) = P(JϕK)

and 0 = Ps∗M (∅) = Ps∗M (Frej) ≤ Ps∗M (J¬ϕK), so m = (Facc, Frej) is sound for ϕ.
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Definition 9 (Probabilistic completeness). A monitor m = (Facc, Frej)
is probabilistically complete for a formula ϕ if Ps∗M (C(Facc)) ≥ Ps∗M (JϕK) and
Ps∗M (C(Frej)) ≥ Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).

This definition also fulfills both of the stated criteria. Criterion (1) is satisfied
for the same reason as for probabilistic soundness, and criterion (2) is satisfied
because the probability that the monitor accepts is an overapproximation of the
probability that the property is satisfied, and likewise for rejection.

Example 4. Recall Act = {a, b, c} and ϕ from Example 3 with

Facc = {π ∈ Act∗ | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)}, and

Frej = {π ∈ Act∗ | (π〈1〉 = b) or (π〈1〉 = a and (π〈2〉 = b or π〈2〉 = c))}.

Then, for any system described by a Markov chain M = (S, s∗, ∆), we get

Ps∗
M (C(Facc)) = P({π ∈ Actω | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)}) = Ps∗

M (JϕK), and

Ps∗
M (C(Frej)) = Ps∗

M ({π ∈ Actω | (π〈1〉 = b) or (π〈1〉 = a and (π〈2〉 = b or π〈2〉 = c))})
= Ps∗

M ({π ∈ Actω | (π〈1〉 6= a or π〈2〉 6= a) and (π〈1〉 6= c)}) = Ps∗
M (J¬ϕK),

so the monitor m = (Facc, Frej) is both sound and complete for ϕ.

Soundness and completeness together would then imply Ps∗M (C(Facc)) =
Ps∗M (JϕK) and Ps∗M (C(Frej)) = Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).
This describes the probabilistic monitorability of a formula.

Definition 10 (Probabilistic monitorability). A formula ϕ is probabilisti-
cally monitorable if there exists a monitor m that is probabilistically sound and
probabilistically complete for ϕ.

It is interesting to consider the connections between the probabilistic and
non-probabilistic version of soundness and completeness. Because probabilistic
soundness and completeness are conservative extensions of their non-probabilistic
counterparts, if m monitors soundly for ϕ in the non-probabilistic setting, then
m should also monitor soundly for ϕ in the probabilistic setting. Likewise for
completeness. Surprisingly, it turns out that the reverse implication also holds.

Theorem 1. Monitor m is sound for ϕ if and only if m is probabilistically sound
for ϕ; m is complete for ϕ if and only if m is probabilistically complete for ϕ.

Proof. Soundness and completeness imply their probabilistic counterparts by
monotonicity of probability measures. For the other direction, we prove the con-
trapositive, so assume that m is not sound for ϕ. Assume without loss of gen-
erality that C(macc) 6⊆ JϕK. This means that there exists a trace π ∈ C(macc)
such that π /∈ JϕK. Since ϕ describes an ω-regular property, there must exist
a trace π′ ∈ C(macc) and a Markov chain M such that Ps∗M (C(macc)) = 1 but
Ps∗M (JϕK) = 0 by constructing M such that it generates only the trace π′. Then
1 = Ps∗M (C(macc)) 6≤ Ps∗M (JϕK) = 0, so m is not probabilistically sound for ϕ. A
similar argument works for the case of completeness. ut
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A corollary of Theorem 1 is that the probabilistically monitorable formu-
las are exactly those that are also non-probabilistically monitorable. In [2] it
was shown that the largest fragment of the linear-time µ-calculus for which all
formulas are monitorable is the Hennessy-Milner logic [13].

Corollary 1. The logical fragment ϕ,ψ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | [a]ϕ | 〈a〉ϕ
is probabilistically monitorable and maximally expressive.

3.2 Other Monitor Requirements

Theorem 1 may seem to imply that Definitions 8 and 9 are very restrictive.
However, the theorem holds for other, more relaxed interpretations of soundness
and completeness in a probabilistic setting. Fix two parameters c, d > 0.

Definition 11 (Probabilistic soundness and completeness with a mar-
gin of error). A monitor m = (Facc, Frej) is probabilistically sound for ϕ with
margin of error c if Ps∗M (C(Facc)) ≤ c ·Ps∗M (JϕK) and Ps∗M (C(Frej)) ≤ c ·Ps∗M (J¬ϕK)
for all Markov chains M = (S, s∗, ∆). Likewise, m is probabilistically complete
with margin of error d for ϕ if Ps∗M (C(Facc)) ≥ d · Ps∗M (JϕK) and Ps∗M (C(Frej)) ≥
d · Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).

The two parameters, when c > 1 and d < 1, allow the monitor to occasionally
give more or fewer verdicts than it should, but always within a set margin of error.
Another candidate for soundness and satisfaction-completeness, parameterized
with respect to c and d, is conditional soundness and completeness.

Definition 12 (Conditional soundness and completeness). A monitor
m = (Facc, Frej) is conditionally sound for ϕ with margin of error c if it holds
that Ps∗M (JϕK | C(Facc)) ≥ c and Ps∗M (J¬ϕK | C(Frej)) ≤ c for all Markov chains
M = (S, s∗, ∆). A monitor (Facc, Frej) is conditionally complete for ϕ with
margin of error d if Ps∗M (C(Facc) | JϕK) ≥ d and Ps∗M (C(Frej) | J¬ϕK) ≥ d for all
Markov chains M = (S, s∗, ∆).

We observe that for these variations of probabilistic soundness and complete-
ness as well, the arguments used in the proof of Theorem 1 can also be applied.

Theorem 2. All the variants of soundness and completeness are equivalent.
This means that Definitions 5, 8, 11, and 12 are equivalent, and that Definitions
6, 9, 11, and 12 are also equivalent.

Proof. The first two items, both for soundness and completeness are equivalent,
by Theorem 1. To show that each other item is equivalent to the first, we follow
the proof of Theorem 1. ut

Theorem 2 allows us to treat monitorability uniformly for all the approaches
described by Definitions 5, 6, 8, 9 and 11 to 12. For instance, the monitor synthe-
sis defined in [12,2] and implemented in [5] applies directly to the probabilistic
setting (with margins of error). We also remark that the approach of [2] allows
more fine-grained notions of completeness in terms of satisfaction- and violation-
completeness, which leads to more properties being monitorable [3]. Our results
straightforwardly extend to these notions.



8 A. Achilleos, E. Anastasiadi, A. Francalanza, K. Lehtinen, M. R. Pedersen

4 An application: estimating probabilities

M m
w

accept

reject

Fig. 2. A setup for estimating probabilities. M is a probabilistic system being moni-
tored by the monitor m, which reads the trace w emitted by S to provide a verdict.

The theory we have described in Section 3 allows us to estimate the proba-
bilities of properties over infinite traces, even if the system itself is a black box.
To see this, consider the setup depicted in Figure 2. Here we have a probabilistic
system M = (S, s∗, ∆), of which we do not know the internal workings, and
hence should be viewed as a black box. Using the synthesis from [2], we can
generate a monitor m = (Facc, Frej) which is both sound and complete for a
monitorable property ϕ, whose probability in M we are interested in estimating.
As m observes the behaviour of M given by a sequence of outputs w = a1 . . . an,
m will eventually, in finite time, produce either an accept or a reject verdict.
This is guaranteed because m is both sound and complete.

In a setting where a system is executed repeatedly (e.g. once every morning),
we can estimate the probability Ps∗M (JϕK). Concretely, every time the system
M is run (with passive monitor m), the verdict reached for an exhibited trace
is recorded (here we assume that we can reset the system to its initial state).
After some number of iterations, say n iterations, we will have observed some
number nacc of accept verdicts and some number nrej of reject verdicts. We
can then estimate the probabilities Ps∗M (C(Facc)) and Ps∗M (C(Frej)) by nacc

n and
nrej

n , respectively. By Theorem 1, the probability of satisfying the property is
equal to the probability of the monitor accepting, and likewise for not satisfying
the property and rejecting. This means that nacc

n and
nrej

n are also estimates
of Ps∗M (JϕK) and Ps∗M (J¬ϕK), respectively, so we can use these to estimate the
probability that ϕ is satisfied in M .

This approach to estimating only works for the monitorable fragment of
the logic (see Corollary 1). However, even for non-monitorable properties, we
can use the approach to give estimates of the probability in terms of lower
and upper bounds. For some non-monitorable property ϕ one could construct
a sound monitor m1 = (F 1

acc, F
1
rej) and a complete monitor m2 = (F 2

acc, F
2
rej).

Then Ps∗M (C(F 1
acc)) ≤ Ps∗M (JϕK) ≤ Ps∗M (C(F 2

acc)), and similarly for J¬ϕK and the
rejection parts of the monitors. Hence m1 gives a lower bound on the probability
of ϕ, and m2 gives an upper bound. Now we can use the approach from before
to estimate the probabilities of m1 accepting and rejecting and of m2 accepting
and rejecting, thus giving us estimates on lower and upper bounds on ϕ. The
downside is that in this case we have no guarantee that m1 will give a verdict
in finite time.
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framework for parameterized monitorability. In Christel Baier and Ugo Dal Lago,
editors, Foundations of Software Science and Computation Structures - 21st In-
ternational Conference, FOSSACS 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Sci-
ence, pages 203–220. Springer, 2018.

2. Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and
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