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Abstract Runtime enforcement and control system

synthesis are two verification techniques that automate

the process of transforming an erroneous system into a

valid one. As both techniques can modify the behaviour

of a system to prevent erroneous executions, they are

both ideal for ensuring safety. In this paper, we inves-

tigate the interplay between these two techniques and
identify control system synthesis as being the static

counterpart to suppression-based runtime enforcement,
in the context of safety properties.
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1 Introduction

Our increasing reliance on software systems is raising

the demand for ensuring their reliability and correct-
ness. Several verification techniques help facilitate this

task by automating the process of deducing whether the
system under scrutiny (SuS) satisfies a predefined set

of correctness properties. Properties are either verified

pre-deployment (statically), using techniques such as

model checking (MC) [3, 13], or post-deployment (dy-

namically), as per runtime verification (RV) [12, 21, 28].
In both cases, any error discovered during the verifica-

tion serves as guidance for identifying the invalid parts
of the system that require adjustment.

Other post-deployment techniques, such as runtime

enforcement (RE), additionally attempt to automat-

ically transform the invalid system into a valid one.
Runtime enforcement [6, 16, 27, 29] adopts an intrusive

monitoring approach by which every observable action
executed by the SuS is scrutinized and modified as nec-

essary by a monitor at runtime. Monitors in RE may be

described in various ways, such as: transducers [6, 9, 33],

shields [27] and security automata [18, 29, 35]. They

may opt to replace the invalid actions by valid ones, or

completely suppress them, thus rendering them imma-

terial to the environment interacting with the SuS; in

certain cases, monitors can even insert actions that may

directly affect the environment. Different enforcement

strategies are applied depending on the property that

needs to be enforced.

A great deal of effort [7, 14, 23, 24, 26] has been

devoted to studying the interplay between static and

dynamic techniques, particularly to understand how the

two can be used in unison to minimise their respective

weaknesses. It is well established that runtime verifi-

cation is the dynamic counterpart of model checking,
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which means that a subset of the properties verifiable

using MC can also be verified dynamically via RV. In

fact, multi-pronged verification approaches often use RV

in conjunction with MC. For instance, system verifica-

tion based on MC is often carried out with respect to a

model of the environment in which the studied system

operates. This makes the sole use of model-checking tech-

niques problematic in settings, such as mobile robotics,

where the precise conditions in which systems operate
are often known only at runtime and may change over

time. Here RV can be used to check post-deployment
the environmental conditions used to validate systems

at design time [14]. Sometimes, MC is used to statically

verify the parts of the SuS which cannot be verified dy-

namically (e.g., due to inaccessible code or high impact

on the performance of the SuS), while RV is then used

to verify other parts dynamically in order to minimise

the state explosion problem inherent to MC.

A natural question to ask is which technique can be

considered as the static counterpart to runtime enforce-
ment, i.e., a technique that can statically achieve the

same (or equivalent) results as per runtime enforcement.

Identifying such a technique is quite desirable as it would

allow for properties to be enforced statically when dy-
namic verification is not ideal, e.g., when the monitor’s

runtime overheads are infeasible, and vice versa e.g., to

mitigate state explosions during static analysis. Such a

technique therefore enables the possibility of adopting

a multi-pronged enforcement approach that is similar

to the one used for verification with RV and MC, but

from an enforcement perspective. One promising static
technique that has several aspects in common with run-

time enforcement is controlled system synthesis (CSS)

[10, 15, 25, 31]. This approach analyses the state space

of the SuS and reformulates it pre-deployment to remove
the system’s ability of executing erroneous behaviour.

As a result, a restricted (yet valid) version of the SuS is
produced; this is known as a controlled system.

The primary aim of both RE and CSS is to force

the resulting monitored/controlled system to adhere to

the respective property − this is known as soundness

in RE and validity in CSS. Further guarantees are also

generally required to ensure minimal disruption to valid

systems − this is ensured via transparency in RE and

maximal permissiveness in CSS. As both techniques may

adjust systems by omitting their invalid behaviours, they

are ideal for ensuring safety. These observations, along
with other commonalities, hint at the existence of a re-

lationship between runtime enforcement and controlled
system synthesis, in the context of safety properties.

In this paper we conduct a preliminary investigation

on the interplay between the above mentioned two tech-

niques with the aim of establishing a static counterpart

for runtime enforcement. We intend to identify a set

of properties that can be enforced either dynamically,

via runtime enforcement, or statically via controlled

system synthesis. In this first attempt, we however limit

ourselves to study this relationship in the context of

safety properties. As a vehicle for this comparison, we

choose the recent work on CSS by van Hulst et al. [25],

and compare it to our previous work, presented in [6],

on enforcing safety properties via action suppressions.
We chose these two bodies of work as they are accu-

rate representations of the two techniques. Moreover,
they share a number of commonalities including their

choice of specification language, modelling of systems,

etc. To further simplify our comparison, we formulate

both techniques in a core common setting and show that

there are subtle differences between them even in that

scenario. Specifically, we identify a common core within

the work presented in [6, 25] by:

– working with respect to the Safe Hennessy Milner
Logic with invariance (sHMLinv), that is, the inter-

section of the logics used by both works, namely, the

Safe Hennessy Milner Logic with recursion (sHML)

in [6] and the Hennessy Milner Logic with invariance

and reachability (HMLreach
inv ) in [25],

– removing constructs and aspects that are supported

by one technique and not by the other, and by

– taking into account the assumptions considered in

both bodies of work.

To our knowledge, no one has yet attempted to

identify a static counterpart to RE, and an insightful

comparison of RE and CSS has not yet been conducted.

As part of our investigation we offer the following con-
tributions:

(i) We prove that the monitored system obtained from

instrumenting a suppression monitor derived from

a formula, and the controlled version of the same

system (by the same formula) are trace (language)

equivalent, that is, they can execute the same set of

traces, Theorem 2.

(ii) When restricted to safety properties, controlled sys-

tem synthesis is the static counterpart (Definition 3)

to runtime enforcement, Theorem 3.

(iii) In spite of (i) and (ii), both of the obtained systems

need not be observationally equivalent, Theorem 4.

Although (i) suffices to deduce (ii) since it is well known

that trace equivalent systems satisfy the exact same set

of safety properties, Theorem 1, (iii) entails that a very

powerful external observer can, at least in principle, tell

the difference between these two resultant systems [1].

Structure of the paper. This article is an extended ver-

sion of [8]; it includes improved and more expanded
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explanations and examples, along with the complete

proofs for our theorems.

The rest of the paper is structured as follows. Sec-

tion 2 provides the necessary preliminary material de-

scribing how we model systems as labelled transition
systems and properties via the chosen logic. In Sec-

tion 3 we give an overview of the simplified versions

of the enforcement model presented in [6] and the con-

trolled system synthesis rules of [25]. In Section 4 we

then present our first set of contributions consisting of

a mapping function that derives enforcement monitors

from logic formulas, and the proof that the obtained

monitored and controlled versions of a given system

are trace equivalent. Section 5 then presents a deeper

comparison of the differences and similarities between

the two models, followed by our second contribution

which disproves the observational equivalence of the two

techniques. This allows us to establish that controlled

system synthesis is the static counterpart to enforcement
when it comes to safety properties. Section 6 overviews

related work, and Section 7 concludes.

2 Preliminaries

The Model: We assume systems described as labelled

transition systems (LTSs), which are triples �Sys, (Act∪
{τ}),→� defining a set of system states, s, r, q ∈Sys, a

finite set of observable actions, α,β ∈Act, and a dis-

tinguished silent action τ /∈Act, along with a transi-

tion relation, −→ ⊆ (Sys×Act ∪ {τ} × Sys). We let

µ∈Act∪ {τ} and write s
µ−−→ r in lieu of (s, µ, r) ∈→.

We use s
α
=⇒ r to denote weak transitions representing

s(
τ−→)∗· α−−→ r and refer to r as an α-derivative of s.

Traces t, u ∈ Act∗ range over (finite) sequences of ob-

servable actions, and we write s
t
=⇒ r for a sequence of

weak transitions s
α1==⇒ . . .

αn==⇒ r where t = α1, . . . ,αn

for some n ≥ 0; when n = 0, t is the empty trace ε

and s
ε
=⇒ r means s

τ−→*r. For each µ∈Act∪ {τ}, the
notation µ̂ stands for ε if µ= τ and for µ otherwise.

We write traces(s) for the set of traces executable from

system state s, that is, t ∈ traces(s) iff s
t
=⇒ r for some

r. We use the syntax of the regular fragment of CCS [30]

to concisely describe LTSs in our examples. We also as-

sume the classic notions for trace (language) equivalence

and observational equivalence, that is, weak bisimilarity

[30, 34].

Definition 1 (Trace Equivalence) Two LTS system

states s and r are trace equivalent iff they produce the

same set of traces, i.e., traces(s) = traces(r).

Definition 2 (Observational Equivalence) A rela-

tion R over a set of system states is a weak bisimulation

Syntax

ϕ,ψ ∈ sHML ::= tt (truth) | ff (falsehood)

| ϕ∧ψ (conjunction) | [α]ϕ (necessity)

| maxX.ϕ (greatest fp.) | X (fp. variable)

Semantics

�tt, ρ� def

= Sys �ff, ρ� def

= ∅ �X, ρ� def

= ρ(X)

� [α]ϕ, ρ� def

=
�
s | ∀r · s if s

α
=⇒ r then r ∈ �ϕ, ρ�

�

�ϕ∧ψ, ρ� def

= �ϕ, ρ� ∩ �ψ, ρ�
�maxX.ϕ, ρ� def

=
��

S | S ⊆ �ϕ, ρ[X �→ S]�
�

We also encode �ϕ as maxX.ϕ∧�
β∈Act[β]X where X is a

fresh variable.

Fig. 1 The syntax and semantics for sHML.

iff whenever (s, r) ∈ R the following transfer properties

are satisfied, for every action µ:

– s
µ−−→ s� implies there exists a transition r

µ̂
=⇒ r�

such that (s�, r�) ∈ R; and

– r
µ−−→ r� implies there exists a transition s

µ̂
=⇒ s�

such that (s�, r�) ∈ R.

Two system states s and r are observationally equivalent,

denoted by s ≈ r, iff there exists a weak bisimulation
that relates them.

The Logic: The safety logic sHML [2, 3] is defined

as the set of formulas generated by the grammar of
Figure 1. It assumes a countably infinite set of logical

variables X,Y ∈LVar and provides the standard con-
structs of truth, tt, falsehood, ff, and conjunctions, ϕ∧ψ.
As a shorthand, we occasionally denote conjunctions

as
�

i∈I ϕi, where I is a finite set of indices, and when

I = ∅, �i∈∅ ϕi stands for tt. The logic is also equipped
with the necessity (universal) modality, [α]ϕ, and allows

for defining recursive properties using greatest fixpoints,

maxX.ϕ, which bind free occurrences of X in ϕ. We

additionally encode the invariance operator, �ϕ, requir-

ing ϕ to be satisfied by every reachable system state, as

the recursive property, maxX.ϕ∧�
β∈Act[β]X, where

X is not free in ϕ.

Formulas in sHML are interpreted over the system

powerset domain where S∈P(Sys). The semantic def-

inition of Figure 1, �ϕ, ρ�, is given for both open and

closed formulas. It employs a valuation from logical vari-

ables to sets of states, ρ ∈ (LVar → P(Sys)), which

permits an inductive definition on the structure of the
formulas. In that definition, ρ� = ρ[X �→ S] denotes

the valuation where ρ�(X)=S and ρ�(Y )= ρ(Y ) for all

other Y �= X. We assume closed formulas, i.e., without

free logical variables, and write �ϕ� in lieu of �ϕ, ρ� since
the interpretation of a closed formula ϕ is independent

of the valuation ρ. A system (state) s satisfies formula

ϕ whenever s∈ �ϕ�.
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ϕ,ψ ∈ sHMLinv ::= tt | ff | ϕ∧ψ | [α]ϕ | �ϕ

Fig. 2 The syntax for sHMLinv.

Example 1 Consider two systems (a good system, sg,

and a bad one, sb) implementing a server that repeatedly

accepts requests, answers them in response, and logs

the serviced request. It also terminates upon accepting

a close request. Whereas sg outputs a single answer

(ans) for every request (req), sb occasionally produces

multiple answers for a given request (see the underlined

branch in the description of sb below). Both systems

terminate with cls.

sg = recx.req.
�
ans.log.x+ cls.nil

�

sb = req.recx.(ans.(ans.x+ log.req.x) + cls.nil)

We can specify that a request followed by two consecu-
tive answers indicates invalid behaviour via the sHML

formula ϕ0.

ϕ0
def

= � [ans][ans]ff
def

= maxX.[ans][ans]ff∧�
α∈Act [α]X

where Act
def

= {ans, req, cls}. The above formula defines

an invariant property requiring that, at every reach-

able state, whenever the system produces an answer, it

cannot produce a subsequent answer i.e., [ans]ff. Using
the semantics in Figure 1, one can check that sg∈�ϕ0�,
whereas sb �∈�ϕ0� since it exhibits the violating trace

sb
req−−→ · ans−−−→ · ans−−−→ . . ., amongst others.

3 Controlled System Synthesis and Suppression

Enforcement

We present the simplified models for suppression en-

forcement and controlled system synthesis adapted from

[6] and [25], respectively. Both models describe the com-

posite behaviour attained by the respective techniques.

In suppression enforcement, the composite behaviour

describes the observable behaviour obtained when the

monitor and the SuS interact at runtime, while in con-

trolled system synthesis, it describes the structure of
the resulting controlled system obtained statically prior

to deployment.

To enable our comparison between both approaches,

we standardise the logics used in both works and restrict

ourselves to sHMLinv, defined in Figure 2. sHMLinv is

a strict subset of sHML which results from the intersec-

tion of sHML, used for suppression enforcement in [6],

and HMLreach
inv , used for controlled system synthesis in

[25].

Although the work on CSS in [25] assumes that sys-

tems do not perform internal τ actions and that output

labels may be associated to system states, the work on

RE assumes the converse. We therefore equalise the sys-

tem models by working with respect to LTSs that do not

associate labels to states, and do not perform τ actions.

We however assume that the resulting monitored and

controlled systems may still perform τ actions.

Since we do not focus on state-based properties, the

removal of state labels is not a major limitation as we

are only forgoing additional state information from the
SuS. Although the removal of τ actions requires the SuS

to be fully observable, this does not impose significant
drawbacks as the work on CSS can easily be extended

to allow such actions.

Despite the fact that controlled system synthesis dif-

ferentiates between system actions that can be removed

(controllable) and those which cannot (uncontrollable),

the work on enforcement does not. This is also not a

major limitation since enforcement models can easily be

adapted to make such a distinction. However, in our first

attempt at a comparison, we opt to simplify the models

as much as possible, and so to enable our comparison we

assume that every system action is controllable and can

be removed and suppressed by the respective techniques.

Finally, since we do not liberally introduce constructs

that are not present in the original models of [6, 25],

the simplified models are just restricted versions of the
original ones. Hence, the results proven with respect

to these simplified models should either apply to the

original ones or can be extended easily to the more

general setting.

3.1 A Model for Suppression Enforcement

We use a simplified version of the operational model of

enforcement presented in [6], which uses the transducers

m,n ∈ Trn defined in Figure 3. Transducers define

transformation pairs, �β, µ�, which intuitively state that

β actions performed by the system should be trans-

formed into µ actions. A transformation pair thus acts

as a function that takes as input a system action α and

transforms it into µ whenever α = β. As a shorthand,
we sometimes write �β� in lieu of �β,β� to signify that

actions equal to β will remain unmodified.

The transition rules in Figure 3 yield an LTS with la-

bels of the form α�µ. Intuitively, a transition m
α�µ−−−→ n

denotes the fact that the transducer in state m trans-

forms the visible action α (produced by the system) into

action µ and transitions into state n. In this sense, the

transducer action α�α denotes the identity transforma-

tion, while α�τ encodes the suppression transformation
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Syntax

m,n ∈ Trn ::= �α, µ�.m (where µ∈ {α, τ})
| �

i∈I mi | recx.m | x

Dynamics

eSel
mj

α�µ−−−−→ nj

�
i∈I mi

α�µ−−−−→ nj

j∈I

eRec
m{recx.m/x} α�µ−−−→ n

recx.m
α�µ−−−→ n

eTrn
�α, µ�.m

α�µ−−−−→ m

Instrumentation

iTrn s
α−→ s� m

α�µ−−−→ n

m[s]
µ−→ n[s�]

iDef
s

α−→ s� m �α−→
m[s]

α−→ id[s�]

where id
def

= recx.
�

β∈Act

�β�.x and m �α−→ def

= �m�, µ · m α�µ−−−−→
m�.

Fig. 3 A model for transducers.

of action α. The key transition rule is eTrn. It states

that the transformation-prefix transducer �α, µ�.m can

transform action α into µ, as long as the specifying

action α is the same as the action performed by the

system. In this case, the transformed action is µ, and
the transducer state that is reached is m.

The remaining rules eSel and eRec respectively

define the standard selection and recursion operations.

A sum of transducers
�

i∈I mi (where I is a finite set)
can reduce via eSel to some nj over some action α�µ,

whenever there exists a transducer mj in the summation
that reduces to nj over the same action. Rule eRec

enables a recursion transducer recx.m to reduce to some

n when its unfolded instance m{recx.m/x} reduces to

n as well. We encode the identity monitor, id, and the

suppression monitor, sup, as recx.
�

β∈Act �β�.x and

recx.
�

β∈Act �β, τ �.x respectively, i.e., as recursive mon-

itors respectively defining an identity and suppression

transformation for every possible action β ∈ Act that
can be performed by the system.

Figure 3 also describes an instrumentation relation,

which composes the behaviour of the SuS s with the

transformations of a transducer monitor m that agrees

with the (observable) actions Act of s. The term m[s]

thus denotes the resulting monitored system whose tran-
sitions are labelled with actions in Act∪ {τ} from the

system’s LTS. Concretely, rule iTrn states that when

a system s transitions with an observable action α to

s� and the transducer m can transform this action into

µ and transition to n, the instrumented system m[s]

transitions with action µ to n[s�]. Rule iDef is anal-

ogous to standard monitor instrumentation rules for

ms[sb] ms[s1b]

m�
s[s

2
b]ms[nil]

ms[s3b] sup[nil] sup[s3b]

sup[s1b] sup[s2b]

req

cls
τ

τ τ

τ
τ

τ

ans log

req

where sb
def

= req.s1b s1b
def

= ans.s2b + cls.nil

s2b
def

= ans.s1b + log.s3b s3b
def

= req.s1b.

Fig. 4 The runtime execution graph of the monitored system.

premature termination of the transducer [5, 19, 20, 22],
and accounts for underspecification of transformations.

Thus, if a system s transitions with an observable action

α to s�, and the transducer m does not specify how to

transform that action (m �α−→), the system is still allowed

to transition while the transducer defaults to acting like

the identity monitor, id, from that point onwards.

Example 2 Consider the suppression transducer ms be-

low:

ms
def

= recx.(�ans�.m�
s + �req�.x+ �cls�.x+ �log�.x

m�
s

def

= �ans, τ �.sup+ �req�.x+ �cls�.x+ �log�.x

where sup recursively suppresses every action β ∈Act

that can be performed by the system from that point

onwards. When instrumented with system sb from Ex-
ample 1, the monitor prevents the monitored system

ms[sb] from answering twice in a row by suppressing
the second answer and every subsequent visible action:

ms[sb]
req.ans
====⇒ · τ−→ sup[sb].

When equipped with this dynamic action suppression

mechanism, the resulting monitored systemms[sb] never
violates formula ϕ0 at runtime − this is illustrated by

the runtime execution graph in Figure 4.

3.2 Synthesising Controlled Systems

Figure 5 presents a synthesis function that takes a sys-

tem �Sys,Act,→� and a formula ϕ∈ sHML and con-

structs a controlled version of the system that satis-

fies the formula. The new system is synthesised in two

stages. In the first stage, a new transition relation �−→⊆
(Sys× sHML)×Act× (Sys× sHML) is constructed

over the state-formula product space, (Sys × sHML).
Intuitively, a state (s,ϕ) represents a version of state s

that is controlled according to the constraints required

by ϕ. A µ-transition (s,ϕ)
µ−−→ (s�,ϕ�) represents a

reduction from one controlled state to another. The

transition relation associates a sHML formula to the

initial system state and defines how this changes when

the system transitions to other subsequent states. The
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Static Composition

cBool
s

α−−→ s� b ∈ {tt,ff}
(s, b)

α�−−→ (s�, b)

cNec1 s
α−−→ s�

(s, [α]ϕ)
α�−−→ (s�,ϕ)

cNec2
s

β−−→ s� β �= α

(s, [α]ϕ)
β�−−→ (s�, tt)

cAnd
(s,ϕ)

α�−−→ (s�,ϕ�) (s,ψ)
α�−−→ (s�,ψ�)

(s,ϕ∧ψ) α�−−→ (s�,min(ϕ�∧ψ�))

cMax
(s,ϕ{maxX.ϕ/X}) α�−−→ (s�,ψ)

(s,maxX.ϕ)
α�−−→ (s�,min(ψ))

Synthesizability Test

ψ ∈ {tt, X, [α]ϕ}
(s,ϕ) ↓ ψ

(s,ϕ) ↓ ψ1 (s,ϕ) ↓ ψ2

(s,ϕ) ↓ (ψ1∧ψ2)

(s,ϕ) ↓ ψ

(s,ϕ) ↓ maxX.ψ

Invalid Transition Removal

cTr
(s,ϕ)

α�−−→ (s�,ϕ�) (s�,ϕ�) ↓ ϕ�

(s,ϕ)
α−→ (s�,ϕ�)

Fig. 5 The Controlled System Synthesis.

composite behaviour of the formula and the system is

statically computed using the first five rules in Figure 5.

cBool adds a transition from (s, b) when the for-

mula is b∈
�
tt,ff

�
if that transition is possible in s.

Rules cNec1 and cNec2 add a transition from [α]ϕ

to ϕ when s has a transition over α, and to tt if it

reduces over β �= α. cAnd adds a transition for con-

junct formulas, ϕ∧ψ, when both formulas can reduce

independently to some ϕ� and ψ�, with the formula of

the end state of the new transition being min(ϕ�∧ψ�).
Finally, cMax adds a fixpoint maxX.ϕ transition to

min(ψ), when its unfolding can reduce to ψ. In both
cAnd and cMax, min(ϕ) stands for a minimal logically

equivalent formula of ϕ. This is an oversimplification

of the syntactic manipulation techniques used in [25]

to avoid synthesising an infinite LTS due to invariant

formulas and conjunctions, see [25] for more details.

Example 3 Formulas ϕ�∧tt, ϕ�∧ff and ϕ∧ψ∧ψ are logi-

cally equivalent to (and can thus be minimized into) ϕ�,
ff and ϕ∧ψ respectively.

Instead of defining a rule for fixpoints, the authors

of [25] define a synthesis rule directly for invariance

stating that when (s,ϕ)
α�−−→ (s�,ϕ�), then (s,�ϕ)

α�−−→

(s�,min(�ϕ∧ϕ�)). We, however, opted to generalize this

rule to fixpoints to simplify our comparison, while still

limiting ourselves to sHMLinv formulas. This is possible

since by encoding �ϕ as maxX.ϕ∧�
β∈Act[β]X, we get

that (s,maxX.ϕ∧�
β∈Act[β]X)

α�−−→ (s�,min(ψ)) when

(s,ϕ)
α�−−→(s�,ϕ�) where ψ

def

=(maxX.ϕ∧�
β∈Act[β]X)∧ϕ�

and min(ψ) is the encoded version of min(�ϕ∧ϕ�).
The second stage of the synthesis involves using rule

cTr to remove invalid transitions that lead to violating

states; this yields the required transition function for the

controlled system. This rule relies on the synthesizability
test rules to tell whether a controlled state, (s,ϕ), is valid

or not. Intuitively, the test rules fail whenever the current

formula ϕ is semantically equivalent to ff, e.g., formulas
maxX.([α]X∧ff) and ϕ∧ff both fail the synthesizability

test rules as they are equivalent to ff. Concretely, the
test is vacuously satisfied by truth, tt, logical variables,
X, and guarded formulas, [α]ϕ, as none of them are

logically equivalent to ff. Conjunct formulas, ψ1∧ψ2,

pass the test when both ψ1 and ψ2 pass independently.

A fixpoint, maxX.ϕ�, is synthesisable if ϕ� passes the
test.

Transitions that lead to a state that fails the test are

therefore removed, and transitions outgoing from failing
states become redundant as they are unreachable. The

resulting transition function is then used to construct

the controlled LTS �(Sys× sHMLinv),Act,→�.

Example 4 From ϕ0 and sb of Example 1 we can syn-

thesise a controlled system in two stages. In the first

stage we compose them together using the composition

rules of Figure 5. We start by generating the composite

transition (sb,ϕ0)
req�−−→ (s1b,ϕ0) via rules cMax and

cNec since sb
req−−→ s1b, and keep on applying the re-

spective rules to the rest of sb’s transitions until we

obtain the LTS of Figure 6. The (grey) ans transition
leading to the test failing state, (sb,ff) �↓, is then re-

moved in the second stage along with its outgoing (grey)

transitions, therefore generating the required (black)

controlled system.

4 Establishing a static counterpart to

enforcement

To be able to establish whether CSS is a static counter-

part to suppression enforcement, we must first formalise

the meaning of a “static counterpart”. We thus define

it as Definition 3.

Definition 3 (Static Counterpart) A static verifica-

tion technique S is the static counterpart of suppression

enforcement (in the context of safety properties) when,

for every LTS �Sys,Act,→�, formula ϕ∈ sHMLinv and
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(sb,ϕ0) (s1b,ϕ0) (s3b,ϕ0) (s2b,ff)

(nil,ϕ0) (s2b,ϕ0∧[ans]ff) (s1b,ff)

(s3b,ff)

(nil,ff)

req

cls log

req

ans

ans cls

ans

log

reqans

Fig. 6 The LTS obtained from controlling sb via ϕ5.

s ∈ Sys, there exists a transducer m so that m[s] ∈ �ϕ�
iff S(s) ∈ �ϕ� (where S(s) is a statically reformulated

version of s obtained from applying S).

Determining that CSS is the static counterpart of

suppression enforcement (as stated by Definition 3) is

inherently difficult as it requires showing that every
sHMLinv formula (of which there is an infinite amount)

can be enforced using both techniques. Despite this, Ex-

amples 2 and 4 already provide the intuition that there

exists some level of correspondence between these two

techniques. In fact, from the monitored execution graph

of Figure 4 and the controlled LTS in Figure 6 one can

notice that they both execute the same set of traces,

and are therefore trace equivalent. Since trace equiva-

lent systems satisfy the same set of safety properties

(Theorem 1), establishing trace equivalence suffices to

conclude that the controlled LTS is statically achieving

the same result obtained dynamically by the monitored

one, and that it is therefore its static counterpart.

We thus begin by showing that trace equivalent

systems satisfy the same set of safety properties. As the

(recursion-free) subset of sHML characterises regular

safety properties [22], this means that systems sharing

the same traces also satisfy the same sHML formulas.

Theorem 1 Let s and r be system states in an LTS.

Then traces(s) = traces(r) iff s and r satisfy exactly the

same sHML formulas.

The proof for this theorem we present relies on the

work on detection (runtime verification) monitors by

Francalanza et al. in [22]. Detection monitors d in [22]
can reject a trace t at runtime by issuing the verdict no
whenever they detect that an sHML formula has been

violated by t, i.e., d
t
=⇒ no. In respect to these detection

monitors, Francalanza et al. prove the following results.

– Detection Soundness: For every sHML formula

ϕ, system s, trace t and detection monitor d, if s
t
=⇒

and d
t
=⇒ no then s /∈ �ϕ�.

– Detection Completeness: For every sHML for-

mula ϕ, system s, if s /∈ �ϕ� then there exists a

trace t and a detection monitor d such that s
t
=⇒

and d
t
=⇒ no.

Detection soundness states that if a system state s

executes a trace t that gets rejected by a detection

monitor d, then s violates ϕ. Completeness states the

converse. Using this framework we can now easily prove

Theorem 1 as follows.

Proof for Theorem 1. Assume that

traces(s) ⊆ traces(r) and that (1)

s /∈ �ϕ�. (2)

Knowing (2) and Detection Completeness from [22],

we can infer that there exists a trace t, and detection

monitor d, such that when s executes t, d rejects it for

being invalid, i.e., d
t
=⇒ no. Hence, since from (1) we

know that the invalid trace t can also be executed by r,

by Detection Soundness from [22] we can also conclude

that r /∈ �ϕ� as required, and we are done.

Hence, since trace equivalent systems satisfy the
same set of safety properties (Theorem 1), it suffices to

conclude that the controlled LTS can produce the same

set of traces as that generated by a monitored one at

runtime.

Theorem 2 (Trace Equivalence) For every formula

ϕ ∈ sHMLinv, there exists a monitor m such that for
every s∈Sys, traces(m[s]) = traces((s,ϕ)).

The existential quantification on the monitor m in
Theorem 2 entails the need of using some sort of mapping

that maps sHMLinv formulas to suppression monitors.

To be able to prove this result, we thus define a function

that maps sHMLinv formulas to enforcement trans-

ducers. We reduce the complexity of this mapping by

defining it over the normalised sHML formulas instead.

Definition 4 (sHML normal form) The set of nor-

malised sHML formulas is defined as:

ϕ,ψ ∈ sHMLnf ::= tt | ff | �
i∈I [αi]ϕi

| X | maxX.ϕ.

In addition, a normalised sHML formula ϕ must satisfy

the following conditions:

1. In each subformula of ϕ of the form
�

i∈I [αi]ϕi, the

αi’s are pairwise different, denoted as #i∈I αi, i.e.,

∀i, j ∈ I · if i �= j then αi �= αj .

2. For every maxX.ϕ we have X ∈ fv(ϕ).

3. Every logical variable is guarded by a modal necessity.

8



In previous work [4, 6] we proved that, despite be-

ing a syntactic subset of sHML, sHMLnf is semanti-

cally equivalent to sHML. Hence, since sHMLinv is a

(strict) subset of sHML, for every sHMLinv formula

we can always find an equivalent sHMLnf formula. This

means that by defining our mapping function in terms

of sHMLnf, we can still map every formula in sHMLinv

to the respective monitor.

We proceed to define our mapping function over
normalised sHML formulas.

Definition 5 We inductively define the mapping func-

tion �− � : sHMLnf �→Trn as follows:

�X � def

= x � tt � def

= id �ff � def

= sup

�maxX.ϕ � def

= recx.�ϕ � �
�

i∈ I

[αi]ϕi � def

=
�

i∈I

mi

where mi
def

=

�
�αi,αi�.�ϕi � if ϕi �=ff
�αi, τ �.�ff � otherwise

The function is compositional. It assumes a bijec-

tive mapping between fixpoint variables and monitor

recursion variables and converts logical variables X ac-
cordingly, whereas maximal fixpoints, maxX.ϕ, are con-

verted into the corresponding recursive monitor. The

function also converts truth and falsehood formulas, tt
and ff, into the identity monitor id and the suppres-

sion monitor sup respectively. Normalized conjunctions,�
i∈ I [αi]ϕi, are mapped into a summation of monitors,�
i∈I mi, where every branch mi can be either prefixed

by an identity transformation when ϕi �= ff, or by a

suppression transformation otherwise.
Notice that the requirement that ϕi �= ff in Defi-

nition 5 is in some sense analogous to the pruning of
transitions applied by the CSS rule cTr of Figure 5 to

retain the valid transitions only. In this mapping func-

tion, this requirement is essential to ensure that only

the actions that do not lead to violations of the input

formula remain unsuppressed by the resulting monitor.

Example 5 Recall formula ϕ0 from Example 1 which
can be normalised as:

ϕ0
def

= maxX.[ans]ϕ�
0∧[req]X∧[log]X∧[cls]X

ϕ�
0

def

= [ans]ff∧[req]X∧[log]X∧[cls]X.

Using the mapping function defined in Definition 5, we

generate monitor

�ϕ0 � = recx.�ans�.�ϕ�
0 � + �req�.x+ �log�.x+ �cls�.x

�ϕ�
0 � = �ans, τ �.sup+ �req�.x+ �log�.x+ �cls�.x

which is identical to ms from Example 2.

With this mapping function in hand, we are able to

prove Theorem 2 as a corollary of Proposition 1.

Proposition 1 For every LTS �Sys,Act,→�, sHMLnf

formula ϕ, s ∈ Sys and trace t, it holds that t ∈
traces(m[s]) iff t ∈ traces((s,ϕ)) where �ϕ � = m.

In our proof we rely on Lemma 1.

Lemma 1 For every system s and r, sHMLnf formula

ϕ and action α, if �ϕ �[s] α
=⇒ r then �ϕ �[s] α−−→ r.

The proof for this lemma is provided after that of Propo-

sition 1. We now proceed to prove the if and only-if

cases separately as follows.

Proof for the only-if case. We proceed by induction on

the length of t.

Case t = ε. This case holds vacuously since the

empty trace can be executed by every system, that is,

ε ∈ traces((s,ϕ)) as required.

Case t = αt�. Assume that αt� ∈ traces(�ϕ �[s]) and
so by the definition of traces we know that there exists

a system r such that

t� ∈ traces(r) (3)

and that �ϕ �[s] α
=⇒ r. Hence, by Lemma 1 we get that

�ϕ �[s] α−−→ r. (4)

We now proceed by case analysis on ϕ.

– ϕ ∈ {X,ff}: These cases do not apply since they

contradict assumption (4), namely since �m · �X � =
m, and since ∀t ∈ Act · �ff �[s] � t=⇒ where �ff � = sup.

– ϕ = tt: Since � tt � = id, by rule iTrn, from (4) we get
that

s
α−−→ s� (5)

and that r = id[s�] = � tt �[s�] which in conjunction

with (3) and the inductive hypothesis we can deduce

that

t� ∈ traces((s�, tt)). (6)

Since ϕ = tt and knowing (5) we can synthesise the

controlled transition (s, tt)
α−−→ (s�, tt) so that from

(6) we conclude that αt� ∈ traces((s, tt)) as required.

– ϕ =
�

i∈I [αi]ϕi: Since ��i∈I [αi]ϕi � synthesises the

monitor
��

i∈I

�
�αi,αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise

�
, we must

explore the instrumentation rules that permit for the
α-reduction in (4).

– iTrn: By applying rule iTrn to (4) we have that

s
α−−→ s� (7)

r = m[s�] (8)
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and that
��

i∈I

�
�αi,αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise

�
α�α−−−−→

m so that by rules eSel and eTrn we know that

∃j ∈ I · αj = α (9)

m = �ϕj � (where ϕj �= ff). (10)

Knowing (7), (9) and that ϕj �= ff we can synthesise

the controlled transition

(s, [αj ]ϕj)
α�−−→ (s�,ϕj). (11)

Moreover, since the conjunct modal necessities are

pairwise disjoint, from (9) we infer that for every

i ∈ I \ {j}, αi �= α and so we can synthesise the

controlled transition (s, [αi]ϕi)
α�−−→ (s�, tt) which

in conjunction with (11) can be synthesised as the

transition

(s,
�

i∈I [αi]ϕi)
α−−→ (s�,ϕj) (12)

since min(ϕj∧
�

i∈I\{j} tt) = ϕj . Finally, since by

(3), (8), (10) and the inductive hypothesis we have

that t� ∈ traces((s�,ϕj)), from (12) we conclude that
αt� ∈ traces((s,

�
i∈I [αi]ϕi)) as required.

– iDef: By rule iDef we get that

s
α−−→ s� (13)

r = id[s�] (14)

and that
��

i∈I

�
�αi,αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise

�
�α−−→ from

which we can infer that for every i ∈ I, αi �= α. With

this result, from (13) we can thus synthesise the con-

trolled transition (s,
�

i∈I [αi]ϕi)
α−−→ (s�, tt) and so

since � tt � = id and by (3), (14) and the inductive

hypothesis we have that t� ∈ traces((s�, tt)). Hence,
we can conclude that αt� ∈ traces((s,

�
i∈I [αi]ϕi))

as required.

– ϕ = maxX.ϕ�: Since X ∈ fv(ϕ�) we can deduce that
ϕ� /∈ {tt,ff}, and also that ϕ� �= X since logical vari-

ables are required to be guarded in sHMLnf. We can
thus infer that ϕ� adheres to a specific structure, that

is, maxY0...Yn.
�

i∈I [αi]ϕi (where maxY0...Yn. is an

arbitrary number of fixpoint declarations, possibly

none). Hence, since from (4) we can also infer that

�maxX.maxY0...Yn.
�

i∈I [αi]ϕi �[s] α−−→ r, and since

fixpoint unfolding preserves semantics, we get that

��i∈I [αi]ϕi{..} �[s] α−−→ r

where {..} def

= {maxXY0...Yn.
�

i∈I [αi]ϕi/X, . . .} (15)

After reaching the point where we know (15), the

proof proceeds as per the previous case (i.e., when ϕ =�
i∈I [αi]ϕi). We thus skip this part of the proof and

simply deduce that αt� ∈ traces((s,
�

i∈I [αi]ϕi{..})).
Hence, since unfolded recursive formulas are equiva-

lent to their folded versions, and since ϕ� is defined

as maxY0...Yn.
�

i∈I [αi]ϕi, we can thus deduce that

αt� ∈ traces((s,maxX.ϕ�)) as required, and so we are

done.

Proof for the if case. We again proceed by induction on

the structure of t.

Case t = ε. This case holds vacuously since ε ∈
traces(�ϕ �[s]) as required.

Case t = αt�. Assume that αt� ∈ traces((s,ϕ)) and so

by the definition of traces we know that there exists a

system r such that

(s,ϕ)
α−−→ r (16)

t� ∈ traces(r). (17)

We proceed by case analysis on ϕ.

– ϕ ∈ {ff, X}: These cases do not apply because state

(s,ϕ) is invalid.

– ϕ = tt: Since (s, tt)
α−−→ (s�, tt) this case holds trivially

since r = (s�, tt) and so by (17) and the inductive

hypothesis we get that t� ∈ traces(� tt �[s�]) and since

� tt � = id, by rules iTrn and eTrn we have that

� tt �[s] α−−→ � tt �[s�] which allows us to conclude that
αt� ∈ traces(� tt �[s]).

– ϕ =
�

i∈I [αi]ϕi and #i∈I αi: In this case we have

that

(s,
�

i∈I [αi]ϕi)
α�−−→ r (18)

∃ψ · r = (s�,min(ψ)) (19)

and so since the branches of the conjunction are dis-

joint, we only need to further investigate the following

cases:

– ∀i∈ I · αi �=α: Hence, from (18) and by rule cNec2

we can infer that for every i ∈ I we have that

(s, [αi]ϕi)
α�−−→ (s�, tt) and that

s
α−−→ s� (20)

min(ψ) = tt (since ψ =
�

i∈I tt). (21)

Therefore, as we know (20) and that for every i ∈ I

then αi �= α, by rules eTrn and eSel we can infer

that
��

i∈I

�
�αi,αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise

�
�α−−→ and so

by the definition of �− � and rule iDef we conclude

that

��i∈I [αi]ϕi �[s] α−−→ � tt �[s�]. (22)
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Finally, from (17), (19), (21) and by the inductive

hypothesis we have that t� ∈ traces(� tt �[s�]) and so

from (22), we infer that αt� ∈ traces(��i∈I [αi]ϕi �[s]).
– ∃j ∈ I · ηj =α but ∀i∈ I \ {j} · αi �=α: In this case,

from the controlled synthesis rules and from (18) and

(19) we can infer that ∃j ∈ I · (s, [αj ]ϕj)
α�−−→ (s�,ϕj)

and that ∀i ∈ I \ {j} · (s, [αi]ϕi)
α�−−→ (s�, tt) and

finally that

s
α−−→ s� (23)

min(ψ) = min(ϕj∧
�

i∈I tt) = ϕj (24)

where ϕj �= ff, as otherwise, if ϕj =ff the resulting
state (s�,min(ff)) would be invalid and thus removed

by the synthesis along with any transitions leading to

it (including (18)). Knowing that there exists j ∈ I

so that αj �= α and by rule eTrn we can also deduce

that �αj ,αj�.�ϕj � α�α−−−−→ �ϕj � and so by rule eSel

we have that
��

i∈I

�
�αi,αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise

�
α�α−−−−→

�ϕj �. This means that by (23), rule iTrn and the

definition of �− � we conclude that

��i∈I [αi]ϕi �[s] α−−→ �ϕj �[s�]. (25)

Finally, since from (17), (19), (24) and the inductive

hypothesis we know that t� ∈ traces(�ϕj �[s�]), from
(25) we can infer that αt� ∈ traces(��i∈I [αi]ϕi �[s])
as required.

– ϕ = maxX.ϕ� and X ∈ fv(ϕ�): We now have that
(s,maxX.ϕ�)

α−−→ (s�,ψ) because

(s,ϕ�{maxX.ϕ�/X}) α�−−→ (s�,ψ) (26)

and so since ϕ� can neither be X (since sHMLnf

requires fixpoint variables to be guarded) nor ff or tt
(since X ∈ fv(ϕ�)) we can deduce that ϕ� must have

the form maxY0...Yn.
�

i∈I [αi]ϕi and so since fixpoint

unfolding preserves formula semantics, from (26) we

can subsequently deduce that (s,
�

i∈I [αi]ϕi{..}) α�−−→
(s�,ψ) where {..} def

= {maxXY0...Yn.
�

i∈I [αi]ϕi/X, . . .}.
From this point onwards the proof proceeds as per

the previous case (ϕ =
�

i∈I [αi]ϕi), we thus skip this

part of the proof and safely conclude that

αt� ∈ traces(��i∈I [αi]ϕi{..} �[s]). (27)

Since fixpoint folding preserves semantics and ϕ� =
maxY0...Yn.

�
i∈I [αi]ϕi, from (27) we thus conclude

that αt� ∈ traces(�maxX.ϕ� �[s]) as required, and so

we are done.

We now prove the auxiliary lemma Lemma 1 as

follows. The reader may safely skip the following proofs

upon first reading and proceed from Page 12.

Proof for Lemma 1. We must prove that for every sys-

tem state s and r, sHMLnf formula ϕ and action α, if

�ϕ �[s] α
=⇒ r then �ϕ �[s] α−−→ r.

Since we assume that the SuS s does not perform τ

actions, by the rules in our enforcement model we know

that the only case when a τ reduction is part of a mon-

itored execution occurs when the monitor suppresses

a (visible) action of s. We proceed by case analysis on ϕ.

Case ϕ ∈ {X,ff}. These cases do not apply since

�m · �X � = m and since �ff � = sup and so �β ∈
Act · sup[s] β

=⇒.

Case ϕ = tt. Since � tt � = id cannot suppress any ac-
tion, we deduce that the weak transition in (� tt �, s) α

=⇒
r is in fact a strong one and so that (� tt �, s) α−−→ r as
required.

Case ϕ =
�

i∈I [αi]ϕi. Assume that

(
�

i∈I

�
�αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise )[s]

α
=⇒ r. (28)

From the weak reduction in (28) we infer that the system

must perform some action β which is then suppressed by

one of the monitor’s branches, and so there must exist

an index j ∈ I so that αj = β and �αj , τ �.�ff � β�τ
===⇒

�ff �. However, since �ff � = sup, we know that if any

invalid action β were to be executed by s and, as a

consequence, suppressed by the monitor, any subsequent
action (including α) would also be suppressed by sup,
in which case the instrumented system in (28) would

be unable to eventually execute α and thus yield a

contradiction. Therefore, the only way that transition

(28) can happen is when the monitor does not suppress

any action prior to executing α, which thus means that

the weak reduction in (28) is in fact a strong one, i.e.,

(
�

i∈I

�
�αi�.�ϕi � if ϕi �= ff
�αi, τ �.�ff � otherwise )[s]

α−−→ r as required.

Case ϕ = maxX.ϕ� where X ∈ fv(ϕ�). Assume that

�maxX.ϕ� �[s] α
=⇒ r and so since �maxX.ϕ�� is logically

equivalent to �ϕ�{maxX.ϕ�/X}� we can deduce that

�ϕ�{maxX.ϕ�/X} �[s] α
=⇒ r. (29)

Since ϕ�{maxX.ϕ�/X} ∈ sHMLnf, by the restrictions

imposed by sHMLnf we know that ϕ� cannot be X

because (bound) logical variables are required to be

guarded, and it also cannot be tt or ff since X is required

to be defined in ϕ, i.e., X ∈ fv(ϕ�). Hence, we know

that ϕ� can only have the form of

ϕ� = maxY0...Yn.
�

i∈I [αi]ϕi (30)
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where maxY0 . . . Yn. . . . represents an arbitrary number

of fixpoint declarations, possibly none. Hence, since

�ϕ�� is logically equivalent to ��i∈I [αi]ϕi{..}� where

{..} def

= {maxXY0...Yn.
�

i∈I [αi]ϕi/X, . . .}, from (29) and
(30) we have that

��i∈I [αi]ϕi{..} �[s] α
=⇒ r. (31)

Having reached the point where we know (31), the

proof becomes identical as per the previous case (ϕ =�
i∈I [αi]ϕi), we thus skip this part of the proof and

safely conclude that ��i∈I [αi]ϕi{..} �[s] α−−→ r. Hence,
knowing (30) and that �ϕ�� = ��i∈I [αi]ϕi{..}�, from
(29) and (30) we conclude that �maxX.ϕ� �[s] α−−→ r as

required, and so we are done.

Having concluded the proof of Theorem 2 and know-

ing Theorem 1, we can finally obtain our main result

with respect to Definition 3.

Theorem 3 Controlled system synthesis is the static

counterpart of suppression enforcement in the context
of safety properties.

5 Distinguishing between Suppression

Enforcement and CSS

Despite concluding that CSS is the static counterpart

to suppression enforcement, there are still a number of

subtle differences between these two techniques. For one,

since suppression enforcement is a dynamic technique,

the monitor and the system still remain two separate en-

tities, and the instrumentation between them is merely

a way for the monitor to interact with the SuS. In gen-
eral, the monitor does not affect the execution of the

SuS itself, but rather modifies its observable trace of

actions, such as its inputs and outputs. By contrast,

when a controlled system is synthesised, an existing

system is paired up with a formula and statically recon-

structed into a new (correct) system that is incapable

of executing the erroneous behaviour.

By removing invalid transitions entirely, controlled

system synthesis is more ideal to guarantee the property

compliance of the internal (less observable) behaviour of

a system. For example, this can be useful to ensure that

the system does not use a shared resource before locking
it. By contrast, the invalid actions are still executed by

the system in suppression enforcement, but their effect is

rendered invisible to any external observer. This makes

suppression enforcement more suitable to ensure that the

external (observable) behaviour of the system complies

with a desired property. For instance, one can ensure

that the system does not perform an output that is

innocuous to the system itself, but may be providing
harmful information to the external environment.

Moreover, it turns out that although both techniques

produce composite systems that are trace equivalent to

each other, an external observer may still be able to

tell them apart by merely observing them. One way of

formally assessing this is to use observational equivalence

(characterised by weak bisimilarity) as a yardstick, thus:

∀ϕ ∈ sHML, s ∈ Sys, ∃m ∈ Trn ·m[s]≈ (s,ϕ). (32)

We show by means of a counter example that (32) is in

fact false and as a result prove Theorem 4.

Theorem 4 (Observational Difference) There ex-

ist an sHMLinv formula ϕ, an LTS �Sys,Act,→� and a

system state s∈Sys such that for all monitors m∈Trn,

m[s]�≈(s,ϕ).

Proof sketch. Recall the controlled LTS with initial state

(sb,ϕ0) obtained in Example 4. To prove Theorem 4

we must show that for every action suppression mon-

itor m (that can only apply suppression and identity
transformations), one cannot find a weak bisimulation

relation R so that (m[sb], (sb,ϕ0)) ∈ R. An elegant way

of showing this claim, is by playing the weak bisimula-
tion games [3] starting from the pair (m[sb], (sb,ϕ0)),

for every possible m. The game is played between two

players, namely, the attacker and the defender. The at-

tacker wins the game by finding a sequence of moves
from the monitored state m[sb] (or the controlled state

(sb,ϕ0)), which the defender cannot counter, i.e., the

move sequence cannot be performed by the controlled

state (sb,ϕ0) (resp. monitored state m[sb]). Note that

the attacker is allowed to play a transition from either

the current monitored state or the controlled state at

each round of the game. A winning strategy for the
attacker entails that the composite systems are not ob-

servationally equivalent.

We start playing the game from the initial pair

(m[sb], (sb,ϕ0)) for every monitor m. Pick any monitor

that suppresses any action other than a second consecu-

tive ans, such as m0
def

= �req, τ �.m�
0. In this case, it is easy

to deduce that the defender always loses the game, that

is, if the attacker attacks with (sb,ϕ0)
req−−→ (s1b,ϕ0) the

defender is defenceless since m0[sb] �req==⇒. This remains

true regardless of the “depth” at which the suppression

of the first req transition occurs.

On the one hand, using the same game characteri-

sation, one can also deduce that by picking a monitor

that fails to suppress the second consecutive ans ac-

tion, such as m1
def

= �req�.�ans�.�ans�.m�
1, also prevents

the defender from winning. If the attacker plays with

m1[sb]
req.ans.ans
=======⇒ m�

1[sb], the defender loses since it can

only counter the first two transitions, i.e., (sb,ϕ0)
req.ans
====⇒

12



�ans==⇒. Again, this holds regardless of the “depth” of the

first such failed suppression.

On the other hand, any monitor that actually sup-

presses the second consecutive ans action, such as m2
def

=

�req�.�ans�.�ans, τ �.m�
2, still negates a win for the de-

fender. In this case, the attacker can play (sb,ϕ0)
req.ans
====⇒

(s2b,ϕ0∧[ans]ff) to which the defender must reply with

m2[sb]
req.ans
====⇒ �ans, τ �.m�

2[s
2
b]. The attacker can sub-

sequently play �ans, τ �.m�
2[s

2
b]

τ−→ m�
2[s

1
b], which can

only be countered by an inaction on behalf of the
defender, i.e., the controlled system remains in state

(s2b,ϕ0∧[ans]ff).
Since we do not know the form ofm�

2, we consider the

following two cases, namely, when m�
2 suppresses cls, and

the case when it does not. In the first case, the attacker

can attack with m�
2[s

1
b]

τ−→ m��
2 [nil] (for some m��

2) where

τ represents the suppression of the cls action. Once again

the defender can only counter with an inaction and stay

in state (s2b,ϕ0∧[ans]ff). At this point the attacker wins

the play by attacking with (s2b,ϕ0∧[ans]ff) log−−→ (s3b,ϕ0)

since m��
2 [nil] �log==⇒. In the second case, the attacker also

wins by attacking with m�
2[s

1
b]

cls−−→ m���
2 [nil] (for some

m���
2 ) since (s2b,ϕ0∧[ans]ff) �cls==⇒ .

The same result can be obtained using monitor ms

from Example 2. In this case, the attacker can play

(sb,ϕ0)
req.ans
====⇒ (s2b,ϕ0∧[ans]ff) to which the defender

can only reply with ms[sb]
req.ans
====⇒ m�

s[s
2
b]. The attacker

can subsequently play m�
s[s

2
b]

τ−→ sup[s1b], which can

only be countered by an inaction on behalf of the

defender, i.e., the controlled system remains in state
(s2b,ϕ0∧[ans]ff). However, the attacker can subsequently

play (s2b,ϕ0∧[ans]ff) log−−→ (nil,ϕ0) which is indefensible

since sup[sb] �log==⇒.

These cases therefore suffice to deduce that for every

possible monitor the attacker always manages to win
the game, and hence we conclude that Theorem 4 holds

as required.

This result is important since it proves that powerful

external observers, such as the ones presented by Abram-

sky in [1], can still distinguish between the resulting

monitored and controlled systems.

6 Related Work

Several works comparing formal verification techniques

can be found in the literature. In [25] van Hulst et al. ex-

plore the relationship between their work on controlled

system synthesis and the synthesis problem in Ramadge

and Wonham’s Supervisory Control Theory (SCT) [32].

The aim in SCT is to generate a supervisor controller

from the SuS and its specification (e.g., a formal prop-

erty). If successfully generated, the synchronous product

of the SuS and the controller is computed to obtain a su-

pervised system. To enable the investigation, van Hulst

et al. developed language-based notations akin to that

used in [32], and proved that Ramadge and Wonham’s

work can be expressed using their theory.

Ehlers et al. in [15] establish a connection between

SCT and reactive synthesis − a formal method that
attempts to automatically derive a valid reactive system

from a given specification. To form this connection, the
authors first equalise both fields by using a simplified

version of the standard supervisory control problem

and focus on a class of reactive synthesis problems that

adhere to the requirements imposed by SCT. They then

show that the supervisory control synthesis problem can

be reduced to a reactive synthesis problem.

Basile et al. in [11] explore the gap between SCT and

coordination of services, which describe how control and
data exchanges are coordinated in distributed systems.

This was achieved via a new notion of controllability

that allows one to reduce the classical SCT synthesis

algorithms to produce orchestrations and choreogra-
phies describing the coordination of services as contract

automata.

Falcone et al. made a brief, comparison between
runtime enforcement and SCT in [17] in the context of

K-step opacity, but established no formal results that
relate these two techniques.

7 Conclusion

We have presented a novel comparison between suppres-
sion enforcement and controlled system synthesis − two

verification techniques that automate system correction

for erroneous systems. We were able to conclude that

controlled system synthesis is the static counterpart

to suppression enforcement in the context of safety, as

defined by Definition 3. This required developing a func-

tion that maps logic formulas to suppression monitors,

Definition 5, and proving inductively that for every sys-

tem and formula, one can obtain a monitored and a

controlled system that execute the same set of traces at

runtime, Theorem 2. As trace equivalent systems satisfy

the same safety properties, Theorem 1, this result was

enough to reach our conclusion, Theorem 3. Using a

counter-example we however deduced that these two

techniques are different modulo observational equiva-

lence, Theorem 4. An Abramsky-type external observer

[1] can therefore tell the difference between a monitored

and controlled system resulting from the same formula

and SuS. To our knowledge this is the first formal com-

parison to be made between these two techniques.

13



Future Work Having established a connection between

suppression enforcement and control system synthesis

with respect to safety properties, it is worth expanding

this work at least along two directions and explore how:

(i) runtime enforcement and controlled system synthesis

are related with respect to properties other than

those representing safety, and how

(ii) suppression enforcement relates to other verification

techniques such as supervisory control theory, reac-

tive synthesis, etc.

Exploring (i) may entail looking into other work on en-

forcement and controlled system synthesis that explores

a wider set of properties. It might be worth investigating

how other enforcement transformations, such as action

replacements and insertions, can be used to widen the

set of enforceable properties, and how this relates to

controlled system synthesis. The connection established
by van Hulst et al. in [25] between control system syn-

thesis and supervisory control, along with the other
relationships reviewed in Section 6, may be a starting

point for conducting our future investigations on (ii).
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2. Aceto L, Ingólfsdóttir A (1999) Testing hennessy-

milner logic with recursion. In: Thomas W (ed)

Foundations of Software Science and Computation
Structures, Springer Berlin Heidelberg, Berlin, Hei-

delberg, pp 41–55
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