
Noname manuscript No.
(will be inserted by the editor)

An Operational Guide to Monitorability

Luca Aceto · Antonis Achilleos · Adrian

Francalanza · Anna Ingólfsdóttir · Karoliina

Lehtinen

Received: date / Accepted: date

Abstract Monitorability underpins the technique of Runtime Verification because
it delineates what properties can be verified at runtime. Although many moni-
torability definitions exist, few are defined explicitly in terms of the operational
guarantees provided by monitors, i.e., the computational entities carrying out the
verification. We view monitorability as a spectrum, where the fewer guarantees
that are required of monitors, the more properties become monitorable. Accord-
ingly, we present a monitorability hierarchy based on this trade-off. For regular
specifications, we give syntactic characterisations in Hennessy–Milner logic with
recursion for its levels. Finally, we map existing monitorability definitions into our
hierarchy. Hence our work gives a unified framework that makes the operational
assumptions and guarantees of each definition explicit. This provides a rigorous
foundation that can inform design choices and correctness claims for runtime ver-
ification tools.

Keywords Runtime Verification · Monitors · Monitorability · Logical Fragments

This research was supported by the Icelandic Research Fund projects “TheoFoMon: Theoretical
Foundations for Monitorability” (№:163406-051) and “Epistemic Logic for Distributed Run-
time Monitoring” (№:184940-051), the EPSRC project “Solving parity games in theory and
practice” (№:EP/P020909/1), project BehAPI, funded by the EU H2020 RISE programme
under the Marie Sk lodowska-Curie grant agreement №:778233, and the Italian MIUR project
PRIN 2017FTXR7S IT MATTERS “Methods and Tools for Trustworthy Smart Systems”.

L. Aceto
Gran Sasso Science Institute, L’Aquila, Italy

L. Aceto · A. Achilleos · Ingólfsdóttir
Reykjavik University, Reykjavik, Iceland

A. Francalanza
University of Malta, Msida, Malta

K. Lehtinen
University of Liverpool, Liverpool, UK

2 Luca Aceto et al.

1 Introduction

Runtime Verification (RV) [15] is a lightweight verification technique that checks
for a specification by analysing the current execution exhibited by the system
under scrutiny. Despite its merits, the technique is limited in certain respects:
any sufficiently expressive specification language contains properties that cannot
be monitored at runtime [2, 5, 22, 29, 35, 45, 47]. For instance, the satisfaction of a
safety property (“bad things never happen”) cannot, in general, be determined by
observing the (finite) behaviour of a program up to the current execution point; its
violation, however, can. Monitorability [15, 47] concerns itself with the delineation
between properties that are monitorable and those that are not.

Besides its importance from a foundational perspective, monitorability is para-
mount for a slew of RV tools, such as those described in [12, 20, 27, 46, 48], that
synthesise monitors from specifications expressed in a variety of logics. These
monitors are executed with the system under scrutiny to produce verdicts con-
cerning the satisfaction or violation of the specifications from which they were
synthesised. Monitorability is crucial for a principled approach to the construc-
tion of RV tools: It defines, either explicitly or implicitly, a notion of monitor

correctness [32, 33, 36, 44], which then guides the automated synthesis of monitors
from specifications. It also delimits the monitorable fragment of the specifica-
tion logic on which the synthesis is defined; monitors need not be synthesised for
non-monitorable specifications. In some settings, a syntactic characterisation of
monitorable properties can be identified [1, 5, 35], and used as a core calculus for
studying optimisations of the synthesis algorithm. More broadly, monitorability
boundaries may assist in the design of the monitoring set-up, and guide the de-
sign of hybrid verification strategies, which combine RV with other verification
techniques (see the work in [2] for an example of this approach). We therefore
emphasize the separation of concerns between the specification of a correctness
property on the one hand, and the method(s) used to verify it on the other [35].

In spite of its importance, there is no generally accepted notion of monitora-
bility to date. The literature contains a number of definitions, such as the ones
proposed in [5,17,30,35,37,47]. These differ in aspects such as the adopted specifi-
cation formalism, e.g., LTL, Street automata, recHML etc., the operational model,
e.g., testers, automata, process calculi etc., and the semantic domain, e.g., infinite
traces, finite and infinite (finfinite) traces or labelled transition systems. Even
after these differences are normalised, many of these definitions are not in agree-
ment: there are properties that are monitorable according to some definitions but
not monitorable according to others. More alarmingly, as we will show, frequently
cited definitions of monitorability by Falcone et al. [30] contain serious errors.

Example 1.1 Consider the runtime verification of a system exhibiting (only) three
events over finfinite traces: failure (f), success (s) and recovery (r). One property
we may require is that “failure never occurs and eventually success is reached”, oth-
erwise expressed in LTL fashion as (G¬f) ∧ (F s). According to the definition of
monitorability attributed to Pnueli and Zaks [47] (discussed in Sec. 7), this prop-
erty is monitorable. However, it is not monitorable according to others, including
Schneider [50], Viswanathan and Kim [53], and Aceto et al. [5], whose definition
of monitorability coincides with some subset of safety properties. �

An Operational Guide to Monitorability 3

This discrepancy between definitions raises the question of which one to adopt
when designing and implementing an RV tool, and what effect this choice has on
the behaviour of the resulting tool. A difficulty in informing this choice is that
few definitions make explicit the relationship between the operational model, i.e.,
the behaviour of a monitor, and the monitored properties. In other words, it is
not clear what the guarantees provided by the various monitors mentioned in the
literature are, and how they differ from each other. Yet, this is key in designing
a monitoring set-up. For example, if a monitor is used to check that the input of
a critical component, produced by an untrusted third-party component, satisfies
some boundary conditions, then it is important that all violations are identified.
On the other hand, if runtime monitoring is used as a best-effort attempt to catch
bugs without model checking, then weaker guarantees can suffice.

Contributions. To our mind, this state of the art is unsatisfactory for tool con-
struction. More concretely, an RV tool broadly relies on the following ingredients:

1. the input of the tool in terms of the formalism used to describe the specification
properties;

2. the executable description of monitors that are the tool’s output and
3. the mapping between the inputs and outputs, i.e., the synthesis function of

monitors from specifications.

Any account on monitorability should, in our view, shed light on those three
aspects, particularly on what it means for the synthesis function and the moni-
tors it produces to be correct. This involves establishing the relationship between
the truth value of a specification, given by a two-valued semantics, and what the

runtime analysis tells us about it, given by the operational behaviour exhibited by
the monitor; ideally, the specification and operational descriptions should also be
described independently of one another, in order to ensure the aforementioned
separation of concerns.1 In addition, any account on monitorability should also
be flexible enough to incorporate a variety of relationships between specification
properties and the expected behaviour of monitors. This is essential for it be of use
to the tool implementors, acting as a principled foundation to guide their design
decisions.

For these reasons, we take the view that monitorability comes on a spectrum.
There is a trade-off between the guarantees provided by monitors and the proper-
ties that can be monitored with those guarantees. We argue that considering dif-
ferent requirements gives rise to a hierarchy of monitorability—depicted in Fig. 1.1
(middle)—which classifies properties according to what types of guarantees RV
can give for them. At one extreme, anything can be monitored if the only require-
ment is for monitors to be sound, that is, their verdicts should not contradict the
monitored specification. However, monitors that are just sound give no guarantees
of ever giving a verdict. More usefully, informatively monitorable properties enjoy
monitors that reach a verdict for some finite execution; arguably, this is the min-
imum requirement for making monitoring potentially worthwhile. Informatively

1 In RV, it is commonplace to see the expected monitor behaviour described via an inter-
mediary n-valued logic semantics [16,17,37] (e.g., mapping finite traces into the three verdicts
called accepting, rejecting and inconclusive). Although convenient in certain cases, the ap-
proach goes against our tenet for the separation of concerns.

4 Luca Aceto et al.

Regular

∃PZ

∀PZ

Safe ∪ CoSafe

CoSafe Safe

Safe ∩ CoSafe

Sound

Informative

Satisfaction i. Violation i.

Persistently Informative

Satisfaction p. i. Violation p. i.

Partially complete

Satisfaction c. Violation c.

Complete

recHML

iHML

ciHML siHML

pHML

cpHML spHML

cHML ∪ sHML

cHML sHML

{tt,ff}

Fig. 1.1 The Monitorability Hierarchy of Regular Properties

monitorable properties can be further categorised into those informatively moni-
torable for violations and those informatively monitorable for satisfaction. More
stringent requirements can demand this capability to be invariant over monitor
executions, i.e., a monitor never reaches a state where it cannot provide a verdict;
then we speak of persistently informative monitors. Requiring a specific verdict to
always be reachable further refines this class into into persistently rejecting and
persistently accepting monitors. Adding completeness requirements of different
strengths, such as the requirement that a monitor should be able to identify all
failures and/or satisfactions, yields stronger definitions of monitorability: partial,
satisfaction or violation complete, and complete.

Our first contribution is to define this hierarchy of monitorability, depicted in
Fig. 1.1 (middle). In order not to favour a specific operational model, the hier-
archy is cast in terms of abstract behavioural requirements for monitors, and is
not restricted to regular properties. We then provide an instantiation that con-
cretises those requirements into an operational hierarchy, establishing operational
counterparts for each type of monitorability over regular properties. To this end,
we use the operational framework developed in [5], that uses finite-state monitors
and in which partial and complete monitorability were already defined. We show
this framework to be, in a suitable technical sense, maximally general (Thm. 4.4)
for regular properties. This shows that our work is equally applicable to other
operational models for monitoring regular properties.

In order for a tool to synthesise monitors from specifications, it is useful to have
syntactic characterisations of the properties that are monitorable with the required
guarantees: synthesis can then directly operate on the syntactic fragment. Our
second contribution is to provide monitorability characterisations as fragments of

An Operational Guide to Monitorability 5

recHML [8, 43] (a variant of the modal µ-calculus [40]) interpreted over finfinite
traces—see Fig. 1.1 (right). This logic is expressive enough to capture all regu-
lar properties—the focus of nearly all existing definitions of monitorability—and
subsumes more user-friendly but less expressive specification logics such as LTL.
Partial and complete monitorability already enjoy monitor synthesis functions and
neat syntactic characterisations in recHML [5]; related synthesis functions based
on syntactic characterisations for a branching-time setting [34, 35] have already
been implemented in a tool [11, 12]. Here, we provide the missing syntactic char-
acterisations for informative and persistently informative monitorability as well as
their violation and satisfaction refinements.2 Note that we work in the finfinite
domain, where executions can be finite or infinite, like Falcone et al. did in [30].
This setting is a natural one when it comes to monitoring, as it does not make the
potentially unrealistic assumption that executions never stall, deadlock, or other-
wise remain silent with respect to the events that are monitored. This gives our
result more generality than restricting ourselves to the infinite domain.

Finally, we show that the proposed hierarchy accounts for existing notions of
monitorability. See Fig. 1.1 (left). Safety, co-safety and their union correspond
to partial monitorability and its two components, satisfaction- and violation-
monitorability; Pnueli and Zaks’s definition of monitorability can be interpreted
in two ways, of which one (∃pz) maps to informative monitorability, and the other
(∀pz) to persistently informative monitorability. We also show that the definitions
of monitorability proposed by Falcone et al. [30], contrary to their claim, do not

coincide with safety and co-safety properties. To summarise, our principal contri-
butions are:

1. A unified operational perspective on existing notions of monitorability, clari-
fying what operational guarantees each provides, see Thms. 3.1, 6.1 and 7.1;

2. An extension of the syntactic characterisations of monitorable classes from [5],
mapping all of these classes to fragments in recHML, which can be viewed as
a target byte-code for higher-level logics, see Thms. 5.2 and 5.3.

This article extends the conference version [6]. The main technical novelty here
is the logical characterisation of persistently informative monitorability. Further-
more, we refine the monitorability hierarchy by treating informative monitorability
and persistently informative monitorability for satisfaction and violation as moni-
torability classes in their own right (with corresponding logical characterisations).
Furthermore, we have added detailed proofs, extended examples and improved
explanations.

Roadmap. We start with defining notation for traces and properties in the finfinite
domain in Sec. 2. We then define the monitorability hierarchy for properties over
finfinite traces in Sec. 3, and instanciate it with concrete operational semantics
in Sec. 4 for regular properties. In Sec. 5 we give syntactic characterisations of
each level of our hierarchy. In Secs. 6 and 7 we show how existing notions of mon-
itorability embed into our hierarchy and discuss a serious error in Falcone et al.’s
notion of monitorability. Finally, before concluding, in Sec. 8 we discuss other no-
tions of monitorability and how changing various aspects of the framework, such as

2 We not that, as depicted in Fig. 1.1, partial monitorability does not imply any of these
refinements.

6 Luca Aceto et al.

the trace domain or the definition of monitors affects the resulting monitorability
hierarchy.

2 Preliminaries

Traces. We assume a finite set of actions, a, b, . . . ∈ Act. The metavariables t, u ∈
Actω range over infinite sequences of actions. Finite traces, denoted as s, r ∈ Act∗,
represent finite prefixes of system runs. We also find it useful to denote sets of
finite traces, S ⊆ Act∗. Collectively, finite and infinite traces in the set Act∞ =
Actω∪Act∗ are called finfinite traces. We use f, g ∈ Act∞ to range over finfinite
traces and F ⊆ Act∞ to range over sets of finfinite traces. A (finfinite) trace with
action a at its head is denoted as af . Similarly, a (finfinite) trace with a prefix
s and continuation f is denoted as sf . We write s � f to denote that the finite
trace s is a prefix of f , i.e., there is a g such that f = sg. We use the notation
f [k] to denote the action at position k in f : for f = ag, f [0] = a, and for k ≥ 0,
f [k + 1] = g[k].

Properties. A property over finfinite (resp., infinite) traces, denoted by the variable
P , is a subset of Act∞ (resp., of Actω). In general, a property refers to a finfinite
property, unless stated otherwise. A finite trace s positively determines a property
P ⊆ Act∞ when sf ∈ P for every continuation f ∈ Act∞; analogously, s negatively

determines P when sf /∈ P for every f ∈ Act∞. The same terms apply similarly
when P ⊆ Actω. We say that P is suffix-closed when for all s, r ∈ Act∗, s ∈ P
implies sr ∈ P — notice that we only quantify over finite traces. For a given
P ⊆ Act∞ we identify the following two sets of finite traces:

D−P = { s ∈ Act∗ | s negatively determines P };

D+
P = { s ∈ Act∗ | s positively determines P }.

We say that a finfinite property is regular if it is the union of a regular property
Pfin ⊆ Act∗ and an ω-regular property Pinf ⊆ Actω [52].

Example 2.1 Recall the system discussed in Example 1.1 with actions failure (f),
success (s) and recovery (r). A trace that contains at least two occurrences of r

positively determines the property described by the LTL syntax F
(
r ∧ X(F r)

)
. A

finite trace that contain the action s negatively determines the property G (f∨r)∧F r.
Note, however, that not all violating traces have a prefix that contains the action
s. Indeed, the infinite fω does not satisfy this property, but none of its prefixes
contain s. �

3 A Monitor-Oriented Hierarchy

From a tool-construction perspective, it is important to give concrete, imple-
mentable definitions of monitors; we do so in Sec. 4. To understand the guarantees
that these monitors will provide, we first discuss the general notion of monitor and
monitoring system. We then identify, already in this abstract setting, the various
requirements that give rise to the hierarchy of monitorability, depicted in the mid-
dle part of Fig. 1.1. Sec. 4 will then provide operational semantics to this hierarchy,
in the setting of regular properties.

An Operational Guide to Monitorability 7

3.1 Monitoring Sytems

It is important to agree up-front on what properties are common to any reasonable
monitoring framework. We consider a monitor to be an entity that analyses finite
traces and (at the very least) identifies a set of finfinite traces that it accepts

and a set of finfinite traces that it rejects. We consider two postulates. Firstly,
an acceptance or rejection verdict has to be based on a finite prefix of a trace,
Def. 3.1.1: verdicts are thus given for incomplete traces. Secondly, verdicts must be
irrevocable, Def. 3.1.2. These postulates make explicit two features shared by most
monitorability definitions in the literature.

Definition 3.1 A monitoring system consists of a triple 〈M,acc, rej〉, where M is
a nonempty set of monitors, acc, rej ⊆M×Act∞, and for every m ∈M :

1. For every finfinite trace f∈Act∞:
– acc(m, f) implies ∃s ∈ Act∗ ·

(
s � f and acc(m, s)

)
and

– rej(m, f) implies ∃s ∈ Act∗ ·
(
s � f and rej(m, s)

)
;

2. For every finite trace s ∈ Act∗:
– acc(m, s) implies ∀f∈Act∞·acc(m, sf) and
– rej(m, s) implies ∀f∈Act∞·rej(m, sf).

�

Remark 3.1 Finite automata do not satisfy the requirements of a monitoring sys-
tem as defined in Def. 3.1 since their judgement can be revoked. Standard Büchi
automata are not good candidates either, since they need to read the entire infinite
trace to accept or reject. �

We define a notion of maximal monitoring system for a collection of properties;
for each property P in that set, such a system must contain a monitor that reaches
a verdict for all traces that have some prefix that determines P .

Definition 3.2 A monitoring system (M,acc, rej) is maximal for a collection of
properties C ⊆ 2Act∞ if for every P ∈ C there is a monitor mP ∈M such that

(i) acc(mP , f) iff trace f∈Act∞ has a prefix that positively determines P ;
(ii) rej(mP , f) iff trace f∈Act∞ has a prefix that negatively determines P . �

In Sec. 4, we present an instance of such a maximal monitoring system for
regular properties. This shows that, for regular properties at least, the maximality
of a monitoring system is a reasonable requirement. Unless otherwise stated, we
assume a fixed maximal monitoring system (M,acc, rej) throughout the rest of
the paper. For a monitor m ∈ M to monitor for a property P , it needs to satisfy
some requirements. The most important such requirement is soundness.

Definition 3.3 (Soundness) Monitor m is sound for property P if for all f :

– acc(m, f) implies f ∈ P , and
– rej(m, f) implies f /∈ P . �

Remark 3.2 The definition of a monitoring system, Def. 3.1, does not preclude
inconsistent monitors i.e., there could be an m ∈ M and an f ∈ Act∞ such
that acc(m, f) and rej(m, f). Soundness for a property P does however prohibit
inconsistences; in the instance above, it would imply both f ∈ P and f 6∈ P , which
is not possible. �

8 Luca Aceto et al.

Lemma 3.1 If monitor m is sound for property P then

– if acc(m, s), then s positively determines P , and

– if rej(m, s), then s negatively determines P .

Proof Fix a s ∈ Act∗ where acc(m, s) and pick some f ∈ Act∞. By Def. 3.1.2 and
acc(m, s) we know that acc(m, sf) and by soudness we obtain sf ∈ P . ut

Lemma 3.2 For every property P ⊆ Act∞ and monitor mP in a maximal monitoring

system (M,acc, rej):

1. mP is sound for P ; and

2. if m is a sound monitor for P then

– acc(m, f) implies acc(mP , f)
– rej(m, f) implies rej(mP , f).

Proof The first item is immediate from Defs. 3.2 and 3.3. For the second clause,
pick a finfinite trace f such that acc(m, f). By Def. 3.1 we know there exists
some finite s � f such that acc(m, s) and by Lem. 3.1 we know that s positively
determines P . By Def. 3.2 we deduce that acc(mP , s) and by s � f and Def. 3.1
we obtain acc(mP , f). The case for rej(m, f) is analogous. ut

3.2 Shades of completeness

We are now ready to define monitorability in terms of the guarantees that the
monitors are expected to give. Soundness is not negotiable. The dual requirement
to soundness, i.e., completeness, entails that the monitor detects all violating and
satisfying traces.

Definition 3.4 (Completeness) Monitor m is satisfaction-complete for P if f∈P
implies acc(m, f) and violation-complete for P if f /∈P implies rej(m, f). It is com-

plete for P if it is both satisfaction- and violation-complete for P and partially-

complete if it is either satisfaction- or violation-complete. �

However, as shown now in Prop. 3.1, completeness is only possible for triv-
ial properties in the finfinite domain; in the infinite domain more properties are

completely monitorable—see Sec. 8.

Proposition 3.1 If m is sound and complete for P then P=Act∞ or P=∅.

Proof If ε ∈ P , then acc(m, ε), so from Def. 3.1, ∀f ∈ Act∞. acc(m, f). Due to the
soundness of m, P = Act∞. Similarly, P = ∅ when ε /∈ P . ut

Given the consequences of requiring completeness, as evidenced by Prop. 3.1,
we also consider weaker forms of completeness. The weaker the completeness guar-
antee, the more properties can be monitored.

Definition 3.5 (Complete Monitorability) Property P is completely moni-
torable when there exists a monitor that is sound and complete for P . It is mon-

itorable for satisfactions (resp., violations) when there exists a monitor m that is
sound and satisfaction (resp., and violation) complete for P . It is partially moni-
torable when it is monitorable for satisfactions or violations.

An Operational Guide to Monitorability 9

A class of properties C ⊆ 2Act∞ is satisfaction, violation, partially, or com-
pletely monitorable, when every property P∈C is, respectively, satisfaction, viola-
tion, partially or completely monitorable. We denote the class of all satisfaction,
violation, partially, and completely monitorable properties by maximal monitoring
systems as SCmp, VCmp, PCmp, and Cmp, respectively. �

The following lemma explicits the relation between the monitorability classes
of Def. 3.5 and finite prefixes that determine a property, which are also called good
and bad prefixes [41].

Lemma 3.3 If P ⊆ Act∞ is monitorable for satisfaction (resp., for violation) by any

monitoring system, then every f ∈ P (resp., f ∈ Act∞ \ P) has a finite prefix that

positively (resp., negatively) determines P .

Proof We treat the case for satisfaction, as the case for violation is dual. Let f ∈ P
and m be a monitor that is sound and satisfaction-complete for P . Then, due to
satisfaction-completeness, acc(m, f), and by the requirements of Def. 3.1, there is
a finite prefix s of f , such that acc(m, s). Therefore, by the same requirements, for
every g ∈ Act∞, acc(m, sg). As we know that m is sound for P , this yields that s
positively determines P . ut

Since even partial monitorability, the weakest form in Def. 3.5, renders a sub-
stantial number of properties unmonitorable [5], one may consider even weaker
forms of completeness that only flag a subset of satisfying (or violating) traces.
Sound denotes monitorability without completeness requirements. Arguably, how-
ever, the weakest guarantee for a sound monitor of a property P to be of use is the
one that pledges to flag at least one trace. One may then further strengthen this
requirement and demand that this guarantee is invariant throughout the analysis
of a monitor: for every observed prefix the monitor is still able to reach a verdict
(possibly after observing more actions).

Definition 3.6 (Informative Monitors3) A monitor m is:

– informatively accepting if there is trace that m accepts: ∃f ∈ Act∞ ·acc(m, f);
– informatively rejecting if there is a trace that m rejects: ∃f ∈ Act∞ · rej(m, f);
– informative when it either accepts or rejects a trace:
∃f ∈ Act∞ · rej(m, f) or acc(m, f);

– persistently accepting if it remains informatively accepting for all finite traces:
∀s ∈ Act∗ · ∃f · acc(m, sf);

– persistently rejecting if it remains informatively rejecting for all finite traces:
∀s ∈ Act∗ · ∃f · rej(m, sf);

– persistently informative when it remains informative for all finite traces:
∀s ∈ Act∗ · ∃f · rej(m, sf) or acc(m, sf). �

Definition 3.7 (Informative Monitorability) We say that:

– A property P is informatively monitorable for satisfaction (resp., for violation)
if there is an informatively accepting (resp., informatively rejecting) monitor
that is sound for P .

3 These are not related to the informative prefixes from [41] or to persistence from [49].

10 Luca Aceto et al.

– A property P is informatively monitorable if there is a informative monitor
that is sound for P .

– A property P is persistently informatively monitorable for satisfaction (resp.,
for violation) if there is a persistently accepting (resp., persistently rejecting)
monitor that is sound for P .

– A property P is persistently informatively monitorable if there is a persistently
informative monitor that is sound for P .

– A class of properties C⊆2Act∞ is informatively (resp., persistently informa-
tively) monitorable, when all its properties are informatively (resp., persistently
informatively) monitorable— the class of all informatively (resp., persistently
informatively) monitorable properties by maximal monitoring systems is de-
noted as ICmp (resp., PICmp). �

Example 3.1 Recall the property “f never occurs and eventually s is reached” from
Example 1.1 (expressible in LTL as (G¬f)∧ (F s)). Given any maximal monitoring
system, this property is not partially monitorable: a monitor cannot accept the
satisfying infinite trace s(r)ω by just observing a finite prefix, nor can it reject the
violating trace rω by observing one of its finite prefixes. It is, however, persistently
informatively monitorable for violation: every finite prefix that is not yet violating
can be extended to produce the action f which would be enough evidence for a
monitor to reject the trace. �

Example 3.2 The property requiring that “r only appears a finite number of times” is
not informatively monitorable. If it were, the respective sound informative monitor
m in the maximal system should at least accept or reject one trace. If it accepts
a trace f , by Def. 3.1, it must accept some prefix s � f . Again, by Def. 3.1, all
continuations, including srω, must be accepted by m. This makes it unsound, which
is a contradiction. A dual argument can also be made for rejections. If m rejects
some f , it must reject some finite s � f that necessarily contains a finite number
of r actions, making it unsound. �

Theorem 3.1 (Monitorability Hierarchy) In any maximal monitoring system,

the monitorability classes given in Defs. 3.5 and 3.7 form the inclusion hierarchy de-

picted in Fig. 1.1(middle).

Proof The only non-trivial inclusion to show from Fig. 1.1(middle) is

PCmp = SCmp∪VCmp ⊆ PICmp.

Pick a property P ∈ VCmp. Pick also a finite trace s ∈ Act∗. If sf /∈ P for some f ,
then by Def. 3.4 we have rej(mP , sf). Otherwise, sf ∈ P for each f , meaning that
s positively determines P , and by Def. 3.2 we have acc(mP , sf). By Def. 3.6, we
deduce that mP is persistently informative since ∀s∃f ·acc(mP , sf) or rej(mP , sf).
Thus, by Def. 3.7, it follows that P ∈ PICmp. The case for P ∈ SCmp is dual. ut

Remark 3.3 We note that a property being partially monitorable does not imply
that it is also persistently informatively monitorable for satisfaction or for vio-
lation. Furthermore, not all persistently informatively monitorable properties are
also informatively monitorable for satisfaction, and they are not all informatively
monitorable for violation. To see why this is the case, simply observe that tt is not
informatively monitorable for violation. �

An Operational Guide to Monitorability 11

ϕ,ψ ∈ recHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ
| 〈a〉ϕ | [a]ϕ | minX.ϕ | maxX.ϕ | X

Jtt, σK def
= Act∞ Jff, σK def

= ∅
Jϕ1∨ϕ2, σK def

= Jϕ1, σK ∪ Jϕ2, σK Jϕ1∧ϕ2, σK def
= Jϕ1, σK ∩ Jϕ2, σK

J[a]ϕ, σK def
= {f | f = ag implies g ∈ Jϕ, σK} J〈a〉ϕ, σK def

= {af | f ∈ Jϕ, σK}
JminX.ϕ, σK def

=
⋂
{F | Jϕ, σ[X 7→ F]K ⊆ F }

JmaxX.ϕ, σK def
=

⋃
{F | F ⊆ Jϕ, σ[X 7→ F]K } JX,σK def

= σ(X)

Fig. 4.1 recHML Syntax and (finfinite) Linear-Time Semantics

4 An Instantiation for Regular Properties

We now provide a concrete maximal monitoring system for regular properties.
This monitoring system gives an operational interpretation to the levels of the
monitorability hierarchy, and enables us to find syntactic characterisations for
them in the next section.

We use the logic recHML to represent regular properties. This is a reformula-
tion of the modal µ-calculus [40], and embeds other specification formalisms such
as LTL, (ω-)regular expressions, Büchi automata, and Street automata, used in
the state of the art on monitorability.

We begin by recalling the syntax and semantics of recHML and the monitoring
system for regular properties from [5]. We then argue that this monitoring system
is maximal for regular properties, in the sense of Def. 3.2, and show that this
means that it subsumes all other monitoring systems for regular properties. This
both demonstrates that the framework proposed in Sec. 3 is realistic and allows
us to work with a fixed monitoring system in the sequel without loss of generality.

4.1 The Logic.

The syntax of recHML is defined by the grammar in Fig. 4.1, which assumes a
countable set of logical variables X,Y ∈ LVar. Apart from the standard constructs
for truth, falsehood, conjunction and disjunction, the logic is equipped with exis-
tential (〈a〉ϕ) and universal ([a]ϕ) modal operators, and two recursion operators
expressing least and greatest fixpoints (resp., minX.ϕ and maxX.ϕ). The seman-
tics is given by the function J−K defined in Fig. 4.1. It maps a (possibly open)
formula to a set of (finfinite) traces [5] by induction on the formula structure, us-
ing valuations that map logical variables to sets of traces, σ : LVar → P(Act∞),
where σ(X) is the set of traces assumed to satisfy X. An existential modality
〈a〉ϕ denotes all traces with a prefix action a and a continuation that satisfies ϕ,
whereas a universal modality [a]ϕ denotes all traces that are either not prefixed
by a or are of the form ag for some g that satisfies ϕ. The sets of traces satisfying
least and greatest fixpoint formulae, say minX.ϕ and maxX.ϕ, are the least and
the greatest fixpoints, respectively, of the function induced by the formula ϕ. For
closed formulae, we use JϕK in lieu of Jϕ, σK (for some σ). Formulae are generally

12 Luca Aceto et al.

assumed to be closed and guarded [42]. In the discussions we occasionally treat
formulae, ϕ, as the properties they denote, JϕK.

LTL [23] is the specification logic of choice for many RV approaches. As a
consequence, it is also the logic used by a number of studies on monitorability
(e.g., see [16, 17, 37]). Our choice of logic, recHML, is not limiting in this regard
because it is well known [40,54] that LTL can be translated into recHML.

Example 4.1 The characteristic LTL operators can be encoded in recHML as:

Xϕ
def

=
∨
a∈Act 〈a〉ϕ ϕUψ

def

= minY.
(
ψ ∨ (ϕ∧X Y)

)
Fϕ

def

= tt Uϕ

ϕRψ
def

= maxY.
(
(ψ ∧ϕ)∨ (ψ ∧X Y)

)
Gϕ

def

= ff Rϕ

In the following examples, atomic propositions a and ¬a resp., denote 〈a〉tt and
[a]ff respectively. �

The use of recHML allows us to consider monitorable properties that may be
missed by previous approaches. For instance, it is well known that logics such as
the modal µ-calculus (and variants such as recHML) can describe properties that
are not expressible in popular specification languages like LTL [54].

Example 4.2 Recall the system discussed in Example 1.1 where Act = {f, s, r}.
Consider the property requiring that “success (s) occurs on every even position”.
Although this is not expressible in LTL [54], it can be expressed in recHML as:

ϕeven = maxX.
(∨

a∈{f,s,r}〈a〉〈s〉X
)

Note that LTL properties such as ¬s ∧ G(s ⇔ ¬s) do not express the aforemen-
tioned property; the LTL property given is in fact too strict (it describes ”s at
even positions only”) and rules out traces of the form fω which clearly satisfy the
property ϕeven. The weaker property “success (s) occurs on every even position un-

til the execution ends” still cannot be expressed in LTL, but can be expressed in
recHML:

ϕevenW = maxX.
(∧

a∈{f,s,r}[a] ([s]X ∧ [f]ff ∧ [r]ff)
)

�

More broadly, recHML captures all (ω-)regular properties, while LTL can only
express properties recognised by counter-free Büchi automata [28]. Our logic of
choice has several other advantages over LTL:

– recHML semantics adapt easily to the finite, infinite and finfinite domains.
LTL semantics are only standard on infinite traces; there is no canonical finite
or finfinite semantics. (See, however, [26] for a finite-trace semantics for LTL
and Linear Dynamic Logic.). In particular, to specify whether a property holds
or not on a finite trace, we would need to add to the syntax of LTL modalities
corresponding to the box and diamond of recHML that indicate whether a
continuation is allowed or required, thus moving away from standard LTL.

– recHML is closer to the underlying automata models, and to the process al-
gebras describing our monitors. For instance, given a monitor, it is straight-
forward to deduce the recHML formula for which it is sound and complete;
however, it is nontrivial to even decide whether such an LTL formula exists.

An Operational Guide to Monitorability 13

m,n ∈Mon ::= v | a.m | m+ n | m⊗n | m⊕n | recx.m | x
v, u ∈ Verd ::= end | no | yes

mAct
a.m

a−−→ m
mVer

v
a−−→ v

mRec
m[recx.m/x]

a−−→ n

recx.m
a−−→ n

mSelL m
a−−→ m′

m+ n
a−−→ m′

mPar m
a−−→ m′ n

a−−→ n′

m�n a−−→ m′�n′

mTauL m
τ−−→ m′

m�n τ−−→ m′�n
mVrE

end�end
τ−−→ end

mVrC1
yes⊗m τ−−→ m

mVrC2
no⊗m τ−−→ no

mVrD1
no⊕m τ−−→ m

mVrD2
yes⊕m τ−−→ yes

Fig. 4.2 Monitor Syntax and Labelled-Transition Semantics

Therefore, to study monitorability, we prefer to use recHML, as it can express all
regular properties, allowing for clearer distinctions between monitorability classes.
Furthermore, when synthesizing a monitor, one can use a specification in LTL, em-
bed it to recHML in a straightforward manner, and then use a monitor synthesis
that relies on recHML, thus gaining all advantages these logics offer. For the sake
of better readability, and in the light of its familiarity to the RV community, we
use LTL for the examples that can be encoded in that logic. Note that, since we
operate in the finfinite domain, X should be read as a strong next operator, in line
with Example 4.1.

In the sequel, we use the following classical result for recHMLB-like specifica-
tion logics (see [10] for more on the µ-calculus and recHML):

Lemma 4.1 If ϕ ∈ recHML, then JϕK ∩Act∗ is regular.

Lemma 4.2 If ϕ ∈ recHML, then D+
ϕ and D−ϕ are regular.

Proof We know that JϕK∩Act∗ is regular (Lem. 4.1) and JϕK∩Actω, the infinite-
trace interpretation of ϕ, is ω-regular. Therefore, there are a DFA DF that recog-
nizes JϕK∩Act∗ and a deterministic ω-automaton DI that recognizes JϕK∩Actω.
Let AF = {s ∈ Act∗ | ∀r ∈ Act∗. sr ∈ JϕK} and AI = {s ∈ Act∗ | ∀t ∈ Actω. st ∈
JϕK}. Let QF (resp., QI) be the set of states in DF (resp., in DI) that can be
reached reading some trace s ∈ AF (resp.,AI). By construction, for each s ∈ Act∗,
we have that s ∈ AF (resp., s ∈ AI) if and only if s does not end in QF (resp.,
QI). Therefore, there are DFAs D′F and D′I for AF and AI , respectively, and thus
D+
ϕ = AF ∩AI is regular. The case for D−ϕ is similar. ut

4.2 The Monitors.

We consider the operational monitoring system of [5, 35], summarised in Fig. 4.2
(symmetric rules for binary operators are omitted). Monitors are states of a tran-
sition system where m+ n denotes an (external) choice and m�n denotes a com-
posite monitor where � ∈ {⊕,⊗}. There are three distinct verdict states, yes, no,

14 Luca Aceto et al.

and end, although only the first two are relevant to monitorability. The syntax in
Fig. 4.2 assumes a countably infinite set of variables x, y, . . . ∈ Vars; see [5] for a
comprehensive discussion.

The monitoring system (Mon,acc, rej) is given by a labelled transition system

(LTS) based on Act, which is comprised of the monitor states, or monitors, and
a transition relation. The set of monitor states, Mon, and the monitor transi-
tion relation, −→⊆ (Mon × (Act ∪ {τ}) × Mon), are defined in Fig. 4.2. The

suggestive notation m
µ−−→ n denotes (m,µ, n) ∈−→; we also write m 6 µ−−→ to de-

note ¬(∃n. m µ−−→ n). We employ the usual notation for weak transitions and

write m =⇒ n in lieu of m(
τ−−→)∗n and m

µ
=⇒ n for m =⇒ · µ−−→ · =⇒ n, where

µ ∈ (Act ∪ {τ}). We write sequences of transitions m
a1=⇒ · · · ak=⇒ n as m

s
=⇒ n,

where s = a1 · · · ak. A monitor that does not use any parallel operator is called
a regular monitor. The full monitoring system and regular monitors were defined
and used in [1, 4, 5, 32, 33, 35]. We refer the interested reader to these studies for
explanations and motivations.

This semantics gives an operational account of how a monitor in state m in-
crementally analyses a sequence of actions s = a1 . . . ak to reach a new monitor
state n; the monitor m accepts (resp., rejects) a trace f , written acc(m, f) (resp.,
rej(m, f)), when it can transition to the verdict state yes (resp., no) while analysing
a prefix s � f .

Definition 4.1 (Acceptance and Rejection) For a monitor m ∈Mon, we define

rej(m, s) (resp., acc(m, s)) and say that m rejects (resp., accepts) when m
s

=⇒ no

(resp., m
s

=⇒ yes). Similarly, for t ∈ Actω, we write rej(m, t) (resp., acc(m, t)) if
there exist s ∈ Act∗ and u ∈ Actω such that t = su and m rejects (resp., accepts)
s. �

For a finite nonempty set of indices I, we use
∑
i∈I mi to denote any com-

bination of the monitors in {mi | i ∈ I} using the operator +. For each j ∈ I,∑
i∈I mi is called a sum of mj , and mj is called a summand of

∑
i∈I mi. The

following Lem. 4.3 assures us that regular monitors satisfy the conditions to be a
monitoring system, given in Def. 3.1.

Lemma 4.3 (Verdict Persistence, [5, 35]) v
s

=⇒ m implies m = v.

We will use the following definitions and results in our proofs. We define de-
terminism for regular monitors.

Definition 4.2 ([3,4]) A closed regular monitor m is deterministic iff every sum
of at least two summands that appears in m is of the form

∑
α∈A α.mα, where

A ⊆ Act. �

Definition 4.3 (Verdict Equivalence) Monitors m and n are called verdict equiv-

alent when for every f ∈ Act∞, acc(m, f) iff acc(n, f) and rej(m, f) iff rej(n, f).
�

Theorem 4.1 ([4,5]) Every monitor in Mon is verdict equivalent to a deterministic

regular monitor.

Due to Thm. 4.1, we can assume that every monitor in Mon is a regular, or
deterministic regular monitor. We often do so in the following proofs.

An Operational Guide to Monitorability 15

Theorem 4.2 ([3,4]) If L,L′ ⊆ Act∗ are regular and suffix-closed, and L∩L′ = ∅,
then there is a regular monitor m, such that acc(m, s) iff s ∈ L and rej(m, s) iff s ∈ L′.

We use the formula synthesis function from regular monitors to formulae de-
fined in [5, 35] (we assume a bijection between logical and monitor variables that
we leave implicit):

f(no) = ff f(end) = f(yes) = tt f(x) = X

f(m+ n) = f(m)∧f(n) f(a.m) = [a]f(m) f(recX.m) = maxX.f(m)

Theorem 4.3 ([5])Every regular monitor m is sound and violation-complete for f(m).

From properties such as Lem. 4.3 is not hard to see that this operational frame-
work satisfies the conditions for a monitoring system of Def. 3.1. The monitoring
system of Fig. 4.2 is also maximal for regular properties, according to Def. 3.2. This
concrete instance thus demonstrates the realisability of the abstract definitions in
Sec. 3.

Theorem 4.4 For all ϕ∈recHML, there is a regular monitor m that is sound for ϕ

and accepts all finite traces that positively determine ϕ and rejects all finite traces that

negatively determine ϕ.

Proof By Lem. 4.2, D+
ϕ and D−ϕ , the sets of finite traces that (respectively) pos-

itively or negatively determine ϕ are regular. It is also not hard to see that they
are suffix-closed. Therefore the theorem follows from Thm. 4.2. ut

As a corollary of Thm. 4.4, from Lem. 3.1 we deduce that for any arbitrary
monitoring system (M,acc, rej), if m ∈ M is sound for some ϕ ∈ recHML, then
there is a monitor n ∈ Mon from Fig. 4.2 that accepts (resp., rejects) all traces f
that m accepts (resp., rejects).

Corollary 4.1 If m is a sound monitor for ϕ ∈ recHML, then there is a regular

monitor n that is sound for ϕ, and such that for every s ∈ Act∗, acc(m, s) implies

acc(n, s), and rej(m, s) implies rej(n, s).

Proof By Thm. 4.4, there is a regular monitor n that is sound for ϕ, and accepts
all finite traces that positively determine ϕ, and rejects all the finite traces that
negatively determine ϕ. If acc(m, s) (resp., rej(m, s)) for some finite trace s, then,
due to the soundness of m, s ∈ JϕK (resp., s /∈ JϕK), and therefore, from Lem. 3.1,
s positively (resp., negatively) determines ϕ. By the properties of n, we have that
acc(n, s) (resp., rej(n, s)). ut

In the sequel, we thus assume (Mon,acc, rej) from Fig. 4.2 as our fixed moni-
toring system, as it subsumes all others.

5 A Syntactic Characterisation of Monitorability

We present syntactic characterisations for the various monitorability classes as
fragments of recHML. We begin by recalling the syntactic characterisation of
partial monitorability by Aceto et al. from [5], and then proceed to provide the

16 Luca Aceto et al.

corresponding syntactic characterisations for informative and persistently informa-
tive monitorability. The fragments we provide are maximal in the sense that they
not only guarantee that any property expressible within the fragment is mon-
itorable with the corresponding guarantees, but also conversely, every property
that is monitorable with respect to the corresponding notion of monitorability is
expressible in the fragment.

5.1 Partial Monitorability, syntactically.

In [5], Aceto et al. identify a maximal partially monitorable syntactic fragment of
recHML.

Theorem 5.1 (Partially-Complete Monitorability [5]) Consider the syntactic

fragments:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ∧ψ | maxX.ϕ | X and

ϕ,ψ ∈ cHML ::= tt | ff | 〈a〉ϕ | ϕ∨ψ | minX.ϕ | X.

The fragment sHML is monitorable for violation whereas cHML is monitorable for

satisfaction. Furthermore, if ϕ ∈ recHML is monitorable for satisfaction (resp., for

violation) by some m∈Mon, it is expressible in cHML(resp., sHML), i.e., ∃ψ∈cHML

(resp., ψ∈sHML), such that JϕK=JψK.

Observe that for every regular monitor m, f(m) ∈ sHML.
As a corollary of Thm. 5.1 we obtain maximality: any ϕ ∈ recHML that is

monitorable for satisfaction (resp., for violation) can also be expressed as some
ψ ∈ cHML (resp., ψ ∈ sHML) where JϕK = JψK. For this fragment, the following
automated synthesis function, which is readily implementable, is given in [5].

m(ff)
def

= no m(ϕ1∧ϕ2)
def

= m(ϕ1)⊗m(ϕ2) m(maxX.ϕ)
def

= recx.m(ϕ)

m(tt)
def

= yes m(ϕ1∨ϕ2)
def

= m(ϕ1)⊕m(ϕ2) m(minX.ϕ)
def

= recx.m(ϕ)

m([a]ϕ)
def

= a.m(ϕ) +
∑
b∈Act\{a} b.yes m(X)

def

= x

m(〈a〉ϕ)
def

= a.m(ϕ) +
∑
b∈Act\{a} b.no

5.2 Informative monitorability, syntactically.

We proceed to identify syntactic fragments of recHML that correspond to infor-
mative monitorability. Intuitively, a sHML formula is informatively monitorable
for violation if ff appears in it: there is a trace that falsifies the formula. Further-
more, the conjunction of any such formula with an arbitrary formula is still falsified
by the same trace. Dually, cHML formulas in which tt occurs are informatively
monitorable for satisfaction, and so are their disjunctions with arbitrary formulas.
We now formalise this intuition.

Definition 5.1 The informative fragment is iHML = siHML ∪ ciHML where

siHML = {ϕ1 ∧ ϕ2 ∈ recHML | ϕ1 ∈ sHML and ff appears in ϕ1},
ciHML = {ϕ1 ∨ ϕ2 ∈ recHML | ϕ1 ∈ cHML and tt appears in ϕ1}. �

An Operational Guide to Monitorability 17

We define the depth of ff in an sHML formula in a recursive way: dff(ff) = 0;
dff(tt) = dff(X) =∞; dff(ψ1∧ψ2) = min{dff(ψ1), dff(ψ2)}+1; dff([α]ψ) = dff(ψ)+1;
and dff(maxX.ψ) = dff(ψ) + 1.

Lemma 5.1 For all possibly open ϕ,ψ ∈ sHML dff(ϕ[ψ/X]) ≤ dff(ϕ).

Proof Straightforward induction on ϕ. ut

Lemma 5.2 If ϕ ∈ siHML (resp., ciHML), then there is a regular monitor that is

sound and informatively rejecting (resp., informatively accepting) for ϕ. If ϕ ∈ iHML,

then there is a regular monitor that is sound and informative for ϕ.

Proof We assume that ϕ ∈ siHML, as the case for ϕ ∈ ciHML is similar. Let
ϕ = ϕ1 ∧ ϕ2, where ϕ1 ∈ sHML and ff appears in ϕ1. First of all, we prove by
strong numerical induction on dff(ψ) that for all ψ ∈ sHML, if dff(ψ) < ∞, then
there is a finite trace that negatively determines ψ. If dff(ψ) = 0, then ψ = ff,
and we are done, as ε negatively determines ff. Otherwise, dff(ψ) = k + 1 and we
consider the following cases:

ψ = ψ1 ∧ ψ2 In this case, either dff(ψ1) = k or dff(ψ2) = k, so by the inductive
hypothesis, there is a finite trace that negatively determines one of the two
conjuncts, and therefore also ψ.

ψ = [α]ψ′ In this case, dff(ψ′) = k, so, by the inductive hypothesis, there is a finite
trace s that negatively determines ψ′, so αs negatively determines ψ.

ψ = maxX.ψ′ In this case, dff(ψ′) = k. Therefore, from Lem. 5.1, dff(ψ′[ψ/X]) ≤
dff(ψ′) = k, so, by the inductive hypothesis, there is a finite trace s that
negatively determines ψ′[ψ/X], so it also negatively determines ψ, because
Jψ′[ψ/X]K = JψK.

As ff appears in ϕ1, dff(ϕ) <∞, so there is a finite trace that negatively determines
ϕ1, and therefore also ϕ. The lemma follows from Thm. 4.4. ut

Lemma 5.3 If ϕ ∈ recHML and there is a monitor that is sound and informatively

accepting (resp., informatively rejecting) for ϕ, then there is some ψ ∈ ciHML (resp.,

siHML) such that JψK = JϕK.

Proof If m is sound and informatively accepting for ϕ, then by Lem. 3.1, there is a
finite trace s that positively determines ϕ. We can then easily construct a formula
ψ1(s) that is satisfied exactly by s and all its extensions, recursively on s: let
ψ1(ε) = tt, and let ψ1(αs) = 〈α〉ψ1(s). Then, let ψ = ψ1(s) ∨ ϕ. Thus, ψ ∈ ciHML

and JψK = JϕK. The case for informatively rejecting monitors is similar. ut

Theorem 5.2 For ϕ ∈ recHML, ϕ is informatively monitorable for violation (resp.,

satisfaction) if and only if there is some ψ ∈ siHML (resp., ciHML) such that JψK =
JϕK. ϕ is informatively monitorable if and only if there is some ψ ∈ iHML, such that

JψK = JϕK.

Proof A consequence of Lems. 5.2 and 5.3. ut

The maximality results of Thms. 5.1 and 5.2 permit tool constructions to
concentrate on the syntactic fragments identified when synthesizing monitors. To
achieve the corresponding monitorability guarantees, one would have to first work

18 Luca Aceto et al.

on the given formula and find an appropriate equivalent form in the right fragment.
Thms. 5.1 and 5.2 also serve as a syntactic check to determine when a property
is monitorable (according to the monitorability classes in Fig. 1.1). We note that
these syntactic characterisations may not always yield monitors that detect as
many satisfactions or violations as they could. However, Thm. 4.4 assures us that
for each recHML formula ϕ, there is a monitor m that detects all traces that
positively or negatively determine ϕ, and therefore that monitor will satisfy all
guarantees that are possible when monitoring ϕ, and therefore the knowledge that
ϕ is in a certain fragment informs us of a certain good behaviour of m.

Example 5.1 The property ϕevenW from Example 4.2 is monitorable for violation;
this can be easily determined since it is expressible in sHML. By contrast, ϕeven

from Example 4.2 cannot be expressed in either sHML or cHML. In fact, it is not

partially-complete monitorable: it cannot be monitored completely for satisfaction
because the trace (rs)ω ∈ JϕevenK but none of its prefixes can be accepted by a sound
monitor since they all violate the property; it cannot be monitored completely
for violation either, since the trace ε 6∈ JϕevenK but is can be extended by (rs)ω

which makes (persistent) rejection verdicts unsound. The property (G¬f) ∧ F s

from Example 3.1 (expressed here in LTL) is a siHML property, as G¬f can be
written in sHML as maxX.[f]ff∧[s]X∧[r]X. In contrast, FG¬r cannot be written in
iHML since it is not informatively monitorable. �

Remark 5.1 In siHML and ciHML, ϕ1 describes an informative part of the formula,
that is, a formula with at least one path to tt (or ff), which indicates that the
corresponding finite trace determines the property. Monitor synthesis from these
fragments can use this part of the formula to synthesize a monitor that detects the
finite traces that satisfy (violate) ϕ1. The value of the synthesised monitor then
depends on ϕ1. It is therefore important to have techniques to extract some ϕ1

that will retain as much monitoring information as possible. One obvious choice
is a formula describing D+, the set of finite traces that positively determines a
property, and dually the formula describing Act∞ \D−, the set of traces that do
not negatively determine the property. See Kupferman and Vardi’s construction
in [41] for how to construct these formulae; this method has to be adapted a little
in the finfinite domain, but this is outside the scope of the present work. �

5.3 Persistently informative monitorability for satisfaction and violation,
syntactically.

As the requirements for persistently informative monitors are subtler than for
informative monitors, the fragments we present are more involved than those for
informative monitorability.

We begin by characterising persistently informative monitorability for satis-
faction and for violation separately. The following definition of explicit formulae
forces modal subformulae to explicitly list every action. Observe that a disjunction
of existential modalities requires there to be a successor while the conjunction of
universal modalities holds if there is no successor.

An Operational Guide to Monitorability 19

Definition 5.2 We define eHML, the explicit fragment of recHML:

ϕ ∈ eHML ::= tt | ff | minX.ϕ | maxX.ϕ | X

| ϕ∨ψ | ϕ∧ψ |
∨

α∈Act

〈α〉ϕα |
∧

α∈Act

[α]ϕα. �

Example 5.2 Formula [f][s]ff is not explicit, but, assuming that Act = {f, s, r}, it
can be rewritten as the explicit formula [f]([s]ff ∧ [f]tt ∧ [r]tt) ∧ [s]tt ∧ [r]tt. �

Roughly, the following definition captures whether tt and ff are reachable from
subformulae (where the binding of a variable is reachable from the variable).

Definition 5.3 Let ϕ be a closed recHML formula and let ψ be a subformula of
ϕ. We say that:

– ψ can refute (resp., verify) in ϕ in 0 unfoldings, when ff (resp., tt) appears in
ψ, and that

– ψ can refute (resp., verify) in ϕ in k + 1 unfoldings, when it can refute (resp.,
verify) in k unfoldings, or X appears in ψ and ψ is in the scope of a subformula
maxX.ψ′ or minX.ψ′ that can refute (resp., verify) in k unfoldings.

We simply say that ψ can refute (resp., verify) in ϕ when it can refute (resp., verify)
in ϕ in k unfoldings, for some k ≥ 0. We may also simply say that ψ can refute
(resp., verify) when ϕ is evident or not relevant. �

Example 5.3 For formula maxX.[s]X ∧ [f]ff ∧ [r]ff, subformula [s]X ∧ [f]ff ∧ [r]ff can
refute in 0 unfoldings. In contrast, [s]X cannot refute in 0 unfoldings, but it can
refute in 1, because X appears in it and maxX.[s]X ∧ [f]ff ∧ [r]ff can refute in 0
unfoldings. Therefore, all subformulae of maxX.[s]X ∧ [f]ff ∧ [r]ff can refute. �

We can define a similar notion for monitors.

Definition 5.4 Let m be a closed monitor and let n be a submonitor of m. We
say that:

– n can reject (resp., accept) in m in 0 unfoldings, when no (resp., yes) appears
in n, and that

– n can reject (resp., accept) in m in k + 1 unfoldings, when it can reject (resp.,
accept) in k unfoldings, or x appears in n and n is in the scope of a submonitor
recX.n′ that can reject (resp., accept) in k unfoldings.

We simply say that n can reject (resp., accept) in m when it can reject (resp.,
accept) in m in k unfoldings, for some k ≥ 0. We may also simply say that n can
reject (resp., accept) when m is evident or not relevant. �

We now define the fragments of recHML corresponding to recHML properties
that are persistently informatively monitorable for satisfaction or violation. The
intuition is similar to the one underlying the definition of the informative fragment,
except here the reachability condition is quantified universally over subformulae,
and we need the informative part of the formula to be explicit.

20 Luca Aceto et al.

Definition 5.5 We define the fragments spHML and cpHML as:

spHML =

{
ϕ1 ∧ ϕ2 ∈ recHML

∣∣∣ ϕ1 ∈ sHML ∩ eHML and every
subformula of ϕ1 can refute

}
cpHML =

{
ϕ1 ∨ ϕ2 ∈ recHML

∣∣∣ ϕ1 ∈ cHML ∩ eHML and every
subformula of ϕ1 can verify

}
�

We now make explicit two (obvious) lemmas used in the sequel.

Lemma 5.4 Let ϕ = maxX.ψ or ϕ = minX.ψ. If ϕ can refute (resp., verify) in ϕ,

then it is also the case that ψ[ϕ/X] can refute (resp., verify) in ψ[ϕ/X].

Lemma 5.5 – If all subformulae of [α]ϕ or ϕ ∧ ψ or ψ ∧ ϕ or 〈α〉ϕ or ϕ ∨ ψ or

ψ ∨ ϕ can refute (or, respectively, verify), then all subformulae of ϕ can refute (or

verify).

– Let ϕ = maxX.ψ or ϕ = minX.ψ. If all subformulae of ϕ can refute (resp., verify),

then all subformulae of ψ[ϕ/X] can refute (resp., verify).

We define the box-depth of a formula from eHML ∩ sHML recursively:

dB

 ∧
γ∈Act

[γ]ϕγ

 = dB(ff) = 0;

dB(X) = dB(tt) = ∞;

dB(ϕ1 ∧ ϕ2) = min{dB(ϕ1), dB(ϕ2)}+ 1; and

dB(maxX.ϕ′) = dB(ϕ′) + 1.

The box-depth of a formula measures how deep in the syntactic tree of the formula
one can find a box or ff.

Lemma 5.6 For all possibly open ϕ,ψ ∈ eHML ∩ sHML dB(ϕ[ψ/X]) ≤ dB(ϕ).

Proof Straightforward induction on ϕ. ut

Lemma 5.7 Let α ∈ Act.

– Let ϕ ∈ eHML ∩ sHML, where all subformulae of ϕ can refute. There is some

ψ ∈ eHML ∩ sHML, such that all subformulae of ψ can refute, and for every

f ∈ Act∞, αf ∈ JϕK implies that f ∈ JψK.

– Let ϕ ∈ eHML ∩ cHML, where all subformulae of ϕ can verify. There is some

ψ ∈ eHML ∩ cHML, such that all subformulae of ψ can verify, and for every

f ∈ Act∞, f ∈ JψK implies that αf ∈ JϕK.

Proof We assume that ϕ ∈ eHML ∩ sHML, as the case for ϕ ∈ eHML ∩ cHML is
similar. Since ϕ is a closed formula and can refute, ff appears in ϕ, and therefore
dB(ϕ) < ∞. We proceed to prove the lemma by strong numerical induction on
dB(ϕ), similarly to the proof of Lem. 5.2.

If ϕ = ff, then we are done immediately by taking ψ = ff.
If ϕ =

∧
γ∈Act [γ]ϕγ , then we can set ψ = ϕα.

An Operational Guide to Monitorability 21

If ϕ = ϕ1 ∧ ϕ2, then either da(ϕ1) < ∞ or da(ϕ2) < ∞, and we are done by the
inductive hypothesis on one of the two subformulae.

If ϕ = maxX.ϕ′, then ϕ′[ϕ/X] ∈ eHML ∩ sHML and all subformulae of ϕ′[ϕ/X]
can refute, by Lem. 5.5. Furthermore, JϕK = Jϕ′[ϕ/X]K, and we are done by the
inductive hypothesis. ut

Lemma 5.8 If ϕ ∈ spHML or ϕ ∈ cpHML, then there is a regular monitor that is

sound for ϕ and persistently rejecting, or, respectively, persistently accepting.

Proof We assume that ϕ ∈ spHML, as the case for ϕ ∈ cpHML is similar. Let
ϕ = ψ ∧ ψ∗, where ψ ∈ eHML ∩ sHML and all of its subformulae can refute, and
ψ∗ ∈ recHML. By Thm. 4.4, it suffices to prove that for every s ∈ Act∗, there is
some r ∈ Act∗, such that sr negatively determines ϕ. We prove this by structural
induction on s. If s = ε, then as in the proof of Lem. 5.2, we can show that there
is a finite trace that negatively determines ψ. If s = as′, then by Lem. 5.7. there is
some ψ′ ∈ eHML∩sHML, such that all subformulae of ψ′ can refute, and for every
f ∈ Act∞, af ∈ JψK implies that f ∈ Jψ′K. By the inductive hypothesis, there
is some r, such that s′r negatively determines ψ′, and therefore, sr negatively
determines ψ. ut

We define the depth of a variable x in a regular monitor m recursively:

dx(x) = 0;

dx(y) = d(no) = d(yes) = d(end) =∞, where y 6= x;

dx(m1 +m2) = min{dx(m1), dx(m2)}+ 1;

dx(α.m) = dx(m) + 1; and

dx(recx. m) = dx(rec y. m) = dx(m) + 1.

Lemma 5.9 Let m be a persistently rejecting, deterministic regular monitor. If A (
Act, then

∑
α∈A α.mα can only appear in m as a submonitor of a larger sum.

Proof Let a ∈ Act\A and let m′ be an open monitor and x a variable that does not

appear in m, such that m = m′[
∑
α∈A α.mα/x]. It is clear that

∑
α∈A α.mα 6

a
=⇒.

Therefore, it suffices to prove that for every deterministic n with free variable x,
if n′ 6 a=⇒, then there is a finite trace s, such that there is no regular monitor o
for which n[n′/x]

sa
==⇒ o. We proceed to prove this claim by induction on dx(n),

and the case for n = x is immediate. If n = n1 + n2, then, as n is deterministic,
n = b.n′1 +c.n′2, where b 6= c, and we are done by the inductive hypothesis on either
n′1 or n′2, and n′. If n = b.n1, then if the inductive hypothesis on n′1 and n′ gives
trace r, then we can set s = br. If n = rec y.n1, then we are done by the inductive
hypothesis on n1[n/y] (notice that dx(n1[n/y] < dx(m)) and n′[n/y]. ut

Here we call a regular monitor explicit when it is generated by the grammar:

m ::= end | no | x |
∑
α∈Act

α.mα | recx.m.

Corollary 5.1 Every persistently rejecting, deterministic regular monitor is explicit.

Proof From Lem. 5.9. ut

22 Luca Aceto et al.

Lemma 5.10 Let m be an explicit deterministic regular monitor, such that all of its

submonitors can reject. Then, f(m) ∈ eHML and all of its subformulae can refute.

Proof By induction on the construction of m. ut

Lemma 5.11 If ϕ ∈ recHML and there is a monitor that is sound for ϕ and persis-

tently rejecting or persistently accepting, then there is some ψ ∈ spHML, or, respec-

tively, ψ ∈ cpHML, such that JψK = JϕK.

Proof We treat the case where the monitor is persistently rejecting, as the case
for a persistently accepting monitor is similar. From Cor. 4.1, there is a regular
monitor, m, that is sound for ϕ and persistently rejecting. By Thm. 4.1, we can
assume that m is deterministic (Def. 4.2). From Cor. 5.1, m is explicit. If there is
a submonitor of m that cannot reject, then we can prove by induction on m that
there is a finite trace s, for which there is no finite trace r, such that m

sr
==⇒ no,

which is a contradiction. Observe that f(m) ∈ sHML. Then, from Lem. 5.10, the
sHML formula f(m) is in eHML, and all of its subformulae can refute. Since m

is sound for ϕ and sound and violation complete for f(m), it is the case that
Act∞ \Jf(m)K ⊆ Act∞ \JϕK, and therefore f(m)∧ϕ ∈ spHML and Jf(m)∧ϕK = JϕK.

ut

Theorem 5.3 For ϕ ∈ recHML, ϕ is persistently informatively monitorable for

violation (resp., for satisfaction) if and only if there is some ψ ∈ spHML (resp.,

ψ ∈ cpHML), such that JψK = JϕK.

Proof A consequence of Lems. 5.8 and 5.11. ut

5.4 Persistently informative monitorability, syntactically

We now give a syntactic characterisation of persistently informative monitorabil-
ity. The reasoning is rather different from the one we employed for the previous
fragments of recHML, and relies on a deterministic form for recHML.

We first introduce the deterministic fragment of recHML and argue that all
recHML formulas can be determinised. This is a simple consequence of the ex-
pressive completeness of deterministic finite automata and deterministic parity
automata in the domains of regular and ω-regular languages, respectively [39,52].

We start by defining the deterministic fragment of recHML (Def. 5.6). We
continue by giving background on deterministic automata over finite, infinite, and
finfinite traces (Def. 5.7). We show that every recHML formula is equivalent
to a deterministic automaton over finfinite traces (Lem. 5.12), and then we use
this result to prove that every recHML formula is equivalent to a deterministic
one over finfinite traces (Lem. 5.13). This allows us to identify the persistently
informatively monitorable formulas as certain deterministic formulas with special
characteristics (Thm. 5.4).

Definition 5.6 The deterministic fragment dHML of recHML is given by:

ϕ ∈ dHML ::= tt | ff |
∧

a∈Act

[a]ϕa |
∨

a∈Act

〈a〉ϕa | maxX.ϕ | minX.ϕ | X.

An Operational Guide to Monitorability 23

In order to motivate the definition of this fragment, consider a formula ϕ ∈
dHML and let ψ be one of its subformulae. Let s be the finite trace consisting of the
modalities leading to an occurrence of ψ in ϕ. Then a finfinite trace sf satisfies ϕ
if, and only if, f satisfies ψ. In contrast, for subformulae of a sHML formula, sf can
only be made to violate the formula by a suffix f that falsifies the subfomula; the
dual statement holds true for cHML. Since persistently informative monitorability
depends on both violations and satisfactions, we turn to the deterministic fragment
in Def. 5.6.

While the determinisation of both finite automata and ω-automata are stan-
dard, automata over the finfinite domain are not well-established. We define these
automata and show that using determinisation procedures from the finite and
the infinite domain, we can obtain, for any recHML formula ϕ, a deterministic
automaton over finfinite words that recognises the traces satisfying ϕ. We then
translate such automata into dHML.

The following definition recalls the definitions of deterministic automata over
finite and infinite traces (words) and defines deterministic automata over finfinite
traces.

Definition 5.7 A deterministic automaton is given by D = (Q,Σ, q0, δ, Ω) where
Q is a set of states, Σ is an alphabet, q0 ∈ Q is an initial state, δ : Q×Σ → Q is a
transition function and Ω is an acceptance condition, which depends on the type
of the automaton.

For deterministic automata over finite traces (DFA), Ω is a subset F ⊆ Q;
for deterministic automata over infinite traces (DPA), Ω is a priority assignment
ρ : Q → I where I is a finite set of integer priorities; for deterministic automata
over finfinite traces (DPFA), Ω is a pair of the form (F, ρ).

A run of an automaton D over a finite trace s ∈ Σ∗ is a sequence of states
π = π0π1 · · ·π|s|+1 of length |s|+1 such that π0 = q and πi+1 = δ(πi, s[i]). Similarly,
a run of an automaton D over an infinite trace t ∈ Σω is an infinite sequence of
states π = π0π1..., such that π0 = q and πi+1 = δ(πi, t[i]). A run of a DFA over
a finite word is accepting if the final state of the run is in F ; a run of a DPA
over an infinite word is accepting if the highest priority assigned by ρ to a state
occuring infinitely often on the run is even; a run of a DPFA over a finfinite word
is accepting if it is either finite and its final state is in F or it is infinite and the
highest priority assigned by ρ to a state occuring infinitely often is even.

A deterministic automaton D accepts a word t if the (unique) run over t is
accepting. The language recognised by the automaton, L(D) is the set of traces
that D accepts. �

DFA are known to recognise all regular properties over finite traces while DPA
recognise all ω-regular properties over infinite traces. We now argue that it follows
that any recHML property ϕ is recognised by a DPFA.

Lemma 5.12 For each recHML formula ϕ there is a DPFA that recognises the lan-

guage of finfinite traces that satisfy ϕ.

Proof The set of finite traces S∗ that satisfy ϕ is a regular property of finite
words, and therefore there is a DFA D∗ = (Q,Act, q0, δ, F) that recognises S∗.
Similarly, the set Sω of infinite traces that satisfy ϕ is ω-regular, so there is a DPA
Dω = (Q′,Act, q′0, δ

′, ρ) that recognises Sω.

24 Luca Aceto et al.

Let D = (Q×Q′,Act, (q0, q
′
0),∆, (F ′, ρ′)) where ∆((q, q′), a) = (δ(q, a), δ(q′, a))

and F ′ = F ×Q′ and ρ′(q, q′) = ρ(q′).
D recognises JϕK. Indeed, D accepts a finite trace s if and only if the first

component of its run is an accepting run over s in D∗, and an infinite trace t if
and only if the second component of its run is an accepting run over t in Dω. ut

Lemma 5.13 For every recHML formula ϕ, there is an equivalent dHML formula

ψ.

Proof From Lem. 5.12, there is a DPFA D = (Q,Act, q0, δ, (F, ρ)) that accepts
exactly the traces that satisfy ϕ. We now show how to translate D into a dHML

formula that is equivalent to ϕ.
We now consider all (finite) paths in D that start from q0. For k ≥ 0, states

q1, q2, . . . , qk ∈ Q, and actions a1, a2, . . . , ak ∈ Act, $ = q0a1q1a2q2 · · · akqk is a
path (for our purposes) of length k in D, if

– for all states qi, qj , where j > i, if qi = qj , then there is some i < l < j, such
that ρ(ql) > ρ(qi); and

– for all i < k, qi+1 = δ(qi, ai+1).

It is not hard to see, with a combinatorial argument, that k ≤ 2|Q| (the highest
priority can only occur once, the second highest twice, and the ith-highest 2i−1

times). We use the notations q$ = qk and $|q = q0a1q1a2q2 · · · aiqi, where qi = q

is the last position where q appears in the path.
We then define a formula for each path $ = q0a1q1a2q2 · · · akqk:

ϕ$ =


maxX$.

∧
a∈Act [a]g($, a), if qk ∈ F and ρ(qk) is even;

minX$.
∧
a∈Act [a]g($, a), if qk ∈ F and ρ(qk) is odd;

maxX$.
∨
a∈Act 〈a〉g($, a), if qk /∈ F and ρ(qk) is even;

minX$.
∨
a∈Act 〈a〉g($, a), if qk /∈ F and ρ(qk) is odd;

where g($, a) = ϕ$aδ(q,a) if $aδ(q, a) is a path, and X$|δ(q,a) otherwise. Further-
more, we define ψ$ to be such that ϕ$ = maxX$.ψ$, or ϕ$ = minX$.ψ$.

Observe that the definition above is recursive, with maximal paths as base
cases, and therefore for all $, ϕ$ is well defined. Furthermore, according to the
above definition, a fixpoint variable appears only if it is marked by a subscript of
a prefix of the corresponding path, and therefore it appears only in the scope of a
(unique) formula that binds it.

We proceed to prove that Jϕq0K is exactly the language of D, i.e., we show that
for every finfinite trace f , D accepts f if and only if f ∈ Jϕq0K. We distinguish two
cases.

Case 1: f is a finite trace. For this case, we consider an environment σ, such that
for every path $, σ(X$) = Jϕ$, σK, and we use induction on f to prove that
for every path $ = q0a1q1 · · · akqk, f ∈ Jϕ$, σK if and only if the run of D from
q$ on f is an accepting run, and this suffices, because ϕq0 is a closed formula.

Case 2: f is an infinite trace. In this case, let π = π0π1 · · · be the (infinite) run
of D on f , where q0 = π0. Let f = a1a2 · · · , and for each i ≥ 0, let fi =
aiai+1 · · · . We can define the path-run π′ = π′0π

′
1 · · · , where each π′i is a path

in D, such that π′0 = q0, and for all i > 0, if π′i−1δ(qπ′i−1
, ai) is a path, then

An Operational Guide to Monitorability 25

π′i = π′i−1δ(qπ′i−1
, ai), and otherwise π′i = π′i−1|δ(qπ′

i−1
,ai). Let q be such that

ρ(q) is the highest priority that appears infinitely often in the run.
We first assume that D accepts f (and therefore ρ(q) is even), and we prove
that f ∈ Jϕq0K. Let I0 ≥ 0 be such that πI0 = q, and every priority that does
not appear infinitely often in the path-run, only appears before position I0.
We proceed to prove the following claims:
Claim 1: fI0 ∈ Jϕπ′I0

, σK. Since ρ(qπ′I0
) is even, ϕπ′I0

is a greatest fixpoint for-

mula, and therefore, from its semantics, it suffices to find a set of traces
S, such that S ⊆ Jψπ′I0

, σ[Xπ′I0
7→ S]K. Let S = {fi | i ≥ I0 and π′i = π′I0}.

Let I ′ > I ≥ I0 be such that π′I = π′I′ = π′I0 . To prove the claim, it
suffices to prove that fI ∈ Jϕπ′I , σ[Xπ′I0

7→ S]K. Note that ρ(π′I) is the

greatest priority that appears from position I onward, and therefore all
paths that appear in the path-run after position I are extensions of π′I .
Therefore, all ϕπ′i , where i ≥ I are subformulas of ϕπ′I . We show that

for every I ≤ i < I ′, fi ∈ Jϕπ′i , σ[Xπ′I0
7→ S]K and we use induction on

I ′ − i. The base case is i + 1 = I ′, and therefore g($, ai) = Xπ′I0
, so

fi+1 ∈ S ⊆ Jg($, ai), σ[Xπ′I0
7→ S]K, yielding that fi ∈ Jϕπ′i , σ[Xπ′I0

7→ S]K.
The inductive step is straightforward, after observing that ϕπ′i is equivalent
to ψπ′i [ϕπ′i/Xπ′i], which, under σ[Xπ′I0

7→ S] is equivalent to ψπ′i (we have

established that Xπ′I0
6= Xπ′i).

Claim 2: for all i ≤ I0, fi ∈ Jϕπ′i , σK. We can prove this by induction on I0 − i.
The base case is Claim 1 and the inductive steps are straightforward and
similar to the above.

We now assume that D does not accept f (and therefore ρ(q) is odd), and we
prove that f /∈ Jϕq0K. This case is similar to the above. ut

We are ready to define the persistently informative fragment of recHML.

Definition 5.8 The persistently informatively monitorable fragment of recHML

is pHML, which consists of all the formulas in dHML all of whose subformulas can
refute or verify.

Theorem 5.4 For ϕ ∈ recHML, ϕ is persistently informatively monitorable if and

only if there is some ψ ∈ pHML such that JϕK = JψK.

Proof Assume that ϕ ∈ recHML is a persistently informatively monitorable.
By Lem. 5.13, we can assume, without loss of generality, that ϕ ∈ dHML. Further-
more, assume that unsatisfiable subformulas are replaced by ff and valid subfor-
mulas are replaced by tt. Towards a contradiction, assume that a subformula ψ of
ϕ can neither refute or verify. Consider a sequence of modalities under the scope
of which ψ is located and let s be the finite trace read off these modalities. Since ϕ
is persistently informatively monitorable, it has a sound persistently informative
monitor, and therefore, from Lem. 3.1, there is some r such that sr determines ϕ.
Since ψ can neither refute nor verify, ψ is neither ff nor tt; since it is neither valid
nor unsatisfiable, there are traces srt ∈ JϕK and srt′ /∈ JψK, contradicting that sr
determines ϕ.

For the other direction, consider ϕ ∈ dHML all of whose subformulas can refute
or verify. Then, for every trace s, we can find some r such that sr determines ϕ;

26 Luca Aceto et al.

indeed r is the trace labelling the sequence of modalities leading to tt or ff. Hence
ϕ is persistently monitorable, and we are done. ut

This concludes our quest for syntactic characterisations of regular properties
monitorable according to the different levels of our monitorability hierarchy. We
now turn our attention to how existing notions of monitorability from the literature
embed into this hierarchy, starting with (co-)safety properties.

6 Safety and Co-safety

The classic (and perhaps the most intuitive) definition of monitorability consists
of (some variation of) safety properties [5, 9, 30, 37, 50, 53]. There are, however,
subtleties associated with how exactly safety properties are defined—particularly
over the finfinite domain—and how decidable they need to be to qualify as truly
monitorable. For example, Kim and Viswanathan [53] argued that only recursively
enumerable safety properties are monitorable (they restrict themselves to infinite,
rather than finfinite traces). By and large, however, most works on monitorability
restrict themselves to regular properties, as we do in Sec. 4.

We adopt the definition of safety that is intuitive for the context of RV: a
property can be considered monitorable if its failures can be identified by a finite
prefix. This is equivalent to Falcone et al.’s definition of safety properties[30, Def. 4]
and, when restricted to infinite traces, to other work such as [9, 19,37].

Definition 6.1 (Safety) A property P ⊆ Act∞ is a safety property if every f /∈ P
has a prefix that determines P negatively. The class of safety properties is denoted
as Safe in Fig. 1.1. �

Pnueli and Zaks, and Falcone et al. (among others) argue that it makes sense
to monitor both for violation and satisfaction. Hence, if safety is monitorable for
violations, then the dual class, co-safety (a.k.a. guarantee [30], reachability [18]), is
monitorable for satisfaction. That is, every trace that satisfies a co-safety property
can be positively determined by a finite prefix.

Definition 6.2 (Co-safety) A property P ⊆ Act∞ is a co-safety property if every
f ∈ P has prefix that determines P positively. The class of co-safety properties is
denoted as CoSafe, also represented in Fig. 1.1. �

Example 6.1 “Eventually s is reached”, i.e., F s, is a co-safety property whereas “f

never occurs”, i.e., G¬f, is a safety property. The property “s occurs infinitely often”,
i.e., G F s, is neither safety nor co-safety. The property only holds over infinite traces
so it cannot be positively determined by a finite trace. Dually, there is no finite
trace that determines that there cannot be an infinite number of s occurrences in
a continuation of the trace. Similarly, ϕeven from Example 4.2 is neither a safety
nor a co-safety property, but ϕevenW is a safety property. �

Safety and Co-safety, operationally. It should come as no surprise that safety and
co-safety coincide with an equally natural operational definition. Here, we establish
the correspondence with the denotational definition of safety (co-safety), complet-
ing three correspondences amongst the monitorability classes of Fig. 1.1.

An Operational Guide to Monitorability 27

Theorem 6.1 VCmp = Safe and SCmp = CoSafe.

Proof We treat the case for safety, as the case for co-safety is similar. If P is a
safety property, then for every f ∈ Act∞ \ P , there is some finite prefix s of f
that negatively determines P . Therefore, mP is sound (Lem. 3.2) and violation-
complete (Def. 3.2) for P . The other direction follows from the fact that whenever
P ⊆ Act∞ is monitorable for violation, every f ∈ Act∞ \ P has a finite prefix
that negatively determines it. ut

Aceto et al. [5] already show the correspondence between violation (dually,
satisfaction) monitorability over finfinite traces and properties expressible in sHML

(dually, cHML). As a corollary of Thm. 6.1, we obtain a syntactic characterisation
for the Safe and CoSafe monitorability classes; see Fig. 1.1.

6.1 Monitorability according to Falcone et al.

Falcone et al. [30] propose three definitions of monitorability (Definitions 16 and
17 in [30]) which they claim to coincide with safety, co-safety, and the union of
safety and co-safety properties (Theorem 3 in [30]). We discuss this claim in more
detail here, and argue that it does not hold. In brief, their definition deems all
properties that are uniform over finite traces, such as “success infinitely often”,
or “the trace is finite” to be monitorable, not just safety and co-safety properties.
In this appendix we recall Falcone et al.’s definitions and show that their definitions
of monitorability include more than just safety and co-safety properties.

Remark 6.1 Falcone et al. present finfinite properties as a pair consisting of a set
of finite traces and a set of infinite traces. Here we will speak of just one set,
containing both finite and infinite traces.

The definition of monitorability proposed by Falcone et al. in [30] is param-
eterised by a truth domain, and a mapping of formulas into this domain. They
then give a uniform condition that defines monitorability with respect to any
truth-domain and its associated mapping. Here we focus on their monitorability
with respect to the truth-domains {tt, ?}, {ff, ?} and {tt,ff, ?}, which they claim
correspond to co-safety, safety and their union, respectively.

Definition 6.3 (Property evaluation with respect to a truth-domain [30]) For
each of three different verdict-domains and finfinite properties P (“r-properties”
in their terminology), Falcone, Fernandez and Mournier define the following eval-
uation functions:

For B = {ff, ?} and s ∈ Act∗:
JP KB(s) = ff if ∀f ∈ Act∞. sf /∈ P
JP KB(s) =? otherwise.

For B = {tt, ?} and s ∈ Act∗:
JP KB(s) = tt if ∀f ∈ Act∞. sf ∈ P
JP KB(s) =? otherwise.

For B = {tt,ff, ?} and s ∈ Act∗:
JP KB(s) = tt if s ∈ P and ∀f ∈ Act∞. sf ∈ P
JP KB(s) = ff if s /∈ P and ∀f ∈ Act∞. sf /∈ P
JP KB(s) =? otherwise. �

28 Luca Aceto et al.

Definition 6.4 (FFM-monitorability Definition 17, [30]) A property P is B-
monitorable over a truth domain B if for all s, r ∈ Act∗, if s ∈ P and r /∈ P , then
JP KB(s) 6= JP KB(r). �

From this definition, it easily follows that any property P for which P ∩Act∗ =
∅ or Act∗ ⊆ P is vacuously monitorable for any truth-domain, and evaluation func-
tion. However, not all such properties are safety or co-safety properties: “always
eventually success” for instance is neither a safety nor a co-safety property.

We believe the critical points are Lemma 3 and Theorem 3 in [30], which do
not hold. The proof of Lemma 3 in particular (Appendix 2.3) falsely claims that
P ∩Act∗ = ∅ or Act∗ ⊆ P implies that P is a safety or co-safety properties.

7 Pnueli and Zaks

The work on monitorability due to Pnueli and Zaks [47] is often cited by the RV
community [15]. The often overlooked particularity of their definitions is that they
only define monitorability of a property with respect to a (finite) sequence.

Definition 7.1 ([47]) Property P is s-monitorable, where s ∈ Act∗, if there is
some r ∈ Act∗ such that P is positively or negatively determined by sr. �

Example 7.1 The property
(
f ∧ F r

)
∨
(
F G s

)
is s-monitorable for any finite trace

that begins with f, i.e., fs, since it is determined by the extension fsr. It is not

s-monitorable for finite traces that begin with an action other than f. �

Monitorability over properties—rather than over property–sequence pairs—can
then be defined by either quantifying universally or existentially over finite traces:
a property is monitorable either if it is s-monitorable for all s, or for some s. We
address both definitions, which we call ∀pz- and ∃pz-monitorability respectively.
∀pz-monitorability is the more standard interpretation: it appears for example
in [16, 30] where it is attributed to Pnueli and Zaks. However, the original intent
seems to align more with ∃pz-monitorability: in [47], Pnueli and Zaks refer to
a property as non-monitorable if it is not monitorable for any sequence. This
interpretation coincides with weak monitorability used in [21].

Definition 7.2 (∀pz-monitorability) A property P is (universally Pnueli–Zaks)
∀pz-monitorable if it is s-monitorable for all finite traces s. The class of all ∀pz-
monitorable properties is denoted ∀PZ. �

Definition 7.3 (∃pz-monitorability) A property is (existentially Pnueli–Zaks)
∃pz-monitorable if it is s-monitorable for some finite trace s, i.e., if it is ε-monitorable.
The class of ∃pz-monitorable properties is written ∃PZ. �

The apparently innocuous choice between existential and universal quantifica-
tion leads to different monitorability classes ∀PZ and ∃PZ.

Example 7.2 Consider the property “Either s occurs before f, or r happens infinitely

often”, expressed in LTL fashion as
(
(¬f) U s

)
∨
(
G F r

)
. This property is ∃pz-

monitorable because the trace s positively determines the property. However, it is

An Operational Guide to Monitorability 29

not ∀pz-monitorable because no extension of the trace f positively or negatively de-
termines that property. Indeed, all extensions of f violate the first disjunct and, as
we argued in Example 6.1, there is no finite trace that determines the second con-
junct positively or negatively. Property ϕeven from Example 4.2 is ∀pz-monitorable:
any prefix of the form a0s . . . ans or a0s . . . an (including ε), where n ≥ 0 and every
ai ∈ {s, f, r}, can be extended to a prefix that negatively determines it (e.g., by
extending it with ff). �

From Defs. 7.2 and 7.3, it follows immediately that ∀PZ ⊂ ∃PZ.

Proposition 7.1 All properties in Safe ∪ CoSafe are ∀pz-monitorable.

Proof Let P ∈ Safe and pick a finite trace s. If there is an f such that sf /∈ P

then, by Def. 6.1, there exists r � sf that negatively determines P , meaning that
s has an extension that negatively determines P . Alternatively, if there is no f

such that sf /∈ P , s itself positively determines P . Hence P is s-monitorable, for
every s, according to Def. 7.1. The case for P ∈ CoSafe is dual. ut

Pnueli and Zaks, operationally.∃pz-monitorability coincides with informative moni-
torability: ∃pz-monitorable properties are those for which some monitor can reach
a verdict on some finite trace. For similar reasons, ∀pz-monitorability coincides
with persistently informative monitorability. See Fig. 1.1.

Theorem 7.1 ∃PZ = ICmp and ∀PZ = PICmp.

Proof Since the proofs of the two claims are analogous, we simply outline the one
for ∀PZ = PICmp. Let P ∈ ∀PZ and pick a finite trace s ∈ Act∗. By Lem. 3.2,
mP is sound for P . By Def. 3.6 we need to show that there exists an f such that
acc(mP , sf) or rej(mP , sf). From Defs. 7.1 and 7.2 we know that there is a finite
r such that sr positively or negatively determines P . By Def. 3.2 we know that
acc(mP , sr) or rej(mP , sr). Thus P ∈ PICmp, which is the required result.

Conversely, assume P ∈ PICmp, and pick some s ∈ Act∗. By Defs. 7.1 and 7.2,
we need to show that there is an extension of s that positively or negatively
determines P . From Defs. 3.6 and 3.7, there exists some f such that acc(mP , sf)
or rej(mP , sf). By Def. 3.1, there is a finite extension of s, say sr, that is a prefix
of sf such that acc(mP , sr) or rej(mP , sr). By Def. 3.2, we know that sr either
positively or negatively determines P . Thus P ∈ ∀PZ. ut

8 Monitorability in other settings

We have shown how classical definitions of monitorability fit into our hierarchy
and provided the corresponding operational interpretations and syntactic char-
acterisations, focussing on regular finfinite properties over a finite alphabet and
monitors with irrevocable verdicts. Here we discuss how different parameters, both
within our setting and beyond, affect what is monitorable.

Monitorability with respect to the alphabet. The monitorability of a property can
depend on Act. For instance, if Act has at least two elements {a, b, . . .}, prop-
erty {aω}, which can be represented as max X.〈a〉X, is s-monitorable for every
sequence s, as s can be extended to sb, which negatively determines the property.

30 Luca Aceto et al.

On the other hand, assume that Act = {a}. In this case, {aω} is neither ∃pz- nor
∀pz-monitorable. Indeed, no string s = ak, k ≥ 0, determines {aω} positively or
negatively as s does not satisfy p but its extension aω does. On the other hand,
when restricted to infinite traces, p is again ∃pz-monitorable.

So far, we only considered finite alphabets; how an infinite alphabet, which
may encode integer data for example, affects monitorability is left as future work.

Monitoring with revocable verdicts. Early on, we postulated that verdicts are irre-
vocable. Although this is a typical (implicit) assumption in most work on moni-
torability, some authors have considered monitors that give revocable judgements
when an irrevocable one is not appropriate. This approach is taken by Bauer et al.

when they define a finite-trace semantics for LTL, called RV-LTL [16]. Falcone
et al. [30] also have a definition of monitorability based on this idea (in addition
to those discussed in Sec. 6.1). It uses the four-valued domain {yes, no, yesc, noc}
(c for currently). Finite traces that do not determine a property yield a (revoca-
ble) verdict yesc or noc that indicates whether the trace observed so far satisfies
the property; yes and no are still irrevocable. This definition allows all finfinite
properties to be monitored since it does not require verdicts to be irrevocable.

This type of monitoring does not give any guarantees beyond soundness: there
are properties that are monitorable according to this definition for which no sound
monitor ever reaches an irrevocable verdict: F G s for the system from Example 1.1
has no sound informative monitor, yet can be monitored according to Falcone
et al.’s four-valued monitoring. This type of monitorability is complete, in the
sense of providing at least a revocable verdict for all traces.

Monitorability in the infinite and finite. Bauer et al. use ∀pz-monitorability in their
study of runtime verification for LTL [17] and attribute it to Pnueli and Zaks.
However, unlike Falcone et al., Pnueli and Zaks [47] and ourselves, they focus
on properties over infinite traces. There are some striking differences that arise
if there is no risk of an execution ending. Aceto et al. show that, unlike in the
finfinite domain, a set of non-trivial properties becomes completely monitorable:
HML [38] (a.k.a. modal logic) is monitorable for both satisfaction and violation
over infinite traces [5]. Furthermore, some properties, like {aω} over Act = {a},
that were not ∃pz- or ∀pz-monitorable on the finfinite domain, are ∃pz- or even
∀pz-monitorable on the infinite domain. The full analysis of how the hierarchy in
Fig. 1.1 changes for the infinite domain is left for future work.

Havelund and Peled recently presented a related classification of infinitary
properties [37]. Their classification consists of safety and co-safety properties,
(there called AFS and AFR), and properties that are not positively or not nega-
tively determined by any sequence (NFS and NFR) and properties where some,
but not all prefixes have an extention that determines the property positively, and
their negations (SFS and SFR). They show that several of their classes contain
both ∀pz-monitorable and non-∀pz-monitorable properties. In contrast, in our clas-
sification, ∀pz-monitorability is not orthogonal to other types of monitorability;
rather, it is part of a spectrum that reflects the trade-offs between the strengths of
the guarantees a monitor can provide and the specifications that can be monitored
with these guarantees.

Barringer et al. [14] consider monitoring of properties over finite traces. In this
domain, all properties are monitorable if, as is the case in [14], the end of a trace
is observable; in this setting the question of monitorability is less relevant.

An Operational Guide to Monitorability 31

Monitorability parameterised by the domain Instead of considering finite, infinite of
finfinite traces, we could equally consider monitorability with respect to any set
of traces S. This could, for example, reflect some prior knowledge we have about
the system. Then, the level of S-monitorability of a property will correspond to
the guarantees that monitors can provide assuming the execution is from S. This
approach is also called grey-box monitoring, as it no longer treats the system as a
black box, and has been considered in [51] for hyperproperties.

Monitoring non-regular properties. Although we have focussed on the monitorability
of regular properties, the monitorability hierarchy of Sec. 3 is not restricted to
this setting. Indeed, although non-regular properties require richer monitors, for
example monitors with a stack or registers, the same concerns of soundness and
degress of completeness remain relevant. Barringer et al. consider a specification
logic that allows for context-free properties [14], in [31], Ferrier et al. consider
monitors with registers (i.e., infinite state monitors) to verify safety properties
that are not regular. Characterising (e.g., syntactically) the different classes of
monitorability for non-regular properties is left as future work.

Beyond Monitorability. Stream-based monitoring systems such as [24, 25] are more
concerned with producing (revocable) aggregate outputs and transforming traces
to satisfy properties, employing more powerful monitors than the ones considered
here (e.g., transducers). Instead of monitorability, enforceability [7, 30] is a criteria
that is better suited for these settings.

9 Conclusion

We have proposed a unified, operational view on monitorability. This allows us to
clearly state the implicit operational guarantees of existing definitions of monitora-
bility. For instance, recall Example 1.1 from the introduction: since (G¬f) ∧ (F s)
is ∃pz- and ∀pz-monitorable but it is neither a safety nor a co-safety property, we
know there is a monitor which can recognise some violations and satisfactions of
this property, but there is no monitor that can recognise all satisfactions or all

violations. Although we focussed on regular, finfinite properties, the definitions of
monitorability in Sec. 3, and, more fundamentally, the methodology that system-
atically puts the relationship between monitor behaviour and specification centre
stage, are equally applicable to other settings.

The emphasis our approach places on the explicit guarantees provided by the
different types of monitorability should clarify the role of monitorability in the de-
sign of RV tools which, depending on the setting, may have different requirements.
Indeed, a monitor that checks that the output of a module does not violate the
preconditions of the next module had better be violation-complete; on the other
hand, it is probably sufficient that a monitor be informative when it is used as a
light-weight, best-effort part of a hybrid verification strategy.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent actions. In:
S. Lokam, R. Ramanujam (eds.) FSTTCS, LIPIcs, vol. 93, pp. 7:1–7:14. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017)

32 Luca Aceto et al.

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A Framework for Parameterized
Monitorability. In: Foundations of Software Science and Computation Structures - 21st
International Conference, FOSSACS 2018, LNCS, vol. 10803, pp. 203–220 (2018). URL
https://doi.org/10.1007/978-3-319-89366-2_11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: Deter-
minizing monitors for HML with recursion. CoRR abs/1611.10212 (2016). URL
http://arxiv.org/abs/1611.10212

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On the
complexity of determinizing monitors. In: A. Carayol, C. Nicaud (eds.) Implementation
and Application of Automata - 22nd International Conference, CIAA 2017, LNCS, vol.
10329, pp. 1–13. Springer (2017). URL https://doi.org/10.1007/978-3-319-60134-2_1

5. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adventures in
monitorability: From branching to linear time and back again. Proceedings of the ACM
on Programming Languages 3(POPL), 52:1–52:29 (2019). URL https://dl.acm.org/
citation.cfm?id=3290365

6. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An operational
guide to monitorability. In: P.C. Ölveczky, G. Salaün (eds.) Software Engineering and
Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway, September
18-20, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11724, pp. 433–453.
Springer (2019). DOI 10.1007/978-3-030-30446-1\ 23. URL https://doi.org/10.1007/
978-3-030-30446-1_23

7. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On Runtime Enforcement via
Suppressions. In: 29th International Conference on Concurrency Theory, CONCUR 2018,
LIPIcs, vol. 118, pp. 34:1–34:17. Schloss Dagstuhl (2018). URL https://doi.org/10.
4230/LIPIcs.CONCUR.2018.34

8. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specifi-
cation and Verification. Cambridge Univ. Press, New York, NY, USA (2007)

9. Alpern, B., Schneider, F.B.: Defining liveness. Information processing letters 21(4), 181–
185 (1985)

10. Arnold, A., Niwinski, D.: Rudiments of µ-calculus, Studies in Logic and the Foundations
of Mathematics, vol. 146. North-Holland (2001)

11. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingolfsdottir, A.: A runtime monitoring
tool for actor-based systems. In: S. Gay, A. Ravara (eds.) Behavioural Types: From Theory
to Tools, pp. 49–74. River Publishers (2017)

12. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In: Y. Fal-
cone, C. Sánchez (eds.) Runtime Verification - 16th International Conference, RV 2016,
LNCS, vol. 10012, pp. 473–481. Springer (2016). URL https://doi.org/10.1007/
978-3-319-46982-9_31

13. Baier, C., Tinelli, C. (eds.): Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, LNCS, vol. 9035. Springer (2015)

14. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: from
Eagle to RuleR. Journal of Logic and Computation 20(3), 675–706 (2008)

15. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: E. Bartocci, Y. Falcone (eds.) Lectures on Runtime Verification - Introductory and
Advanced Topics, LNCS, vol. 10457, pp. 1–33. Springer (2018). URL https://doi.org/
10.1007/978-3-319-75632-5_1

16. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Journal of Logic and Computation 20(3), 651–674 (2010)

17. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology 20(4), 14:1–14:64 (2011). URL
http://doi.acm.org/10.1145/2000799.2000800

18. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen,
P.: Systems and Software Verification: Model-checking Techniques and Tools. Springer
Science & Business Media (2013)

19. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In:
W. Kuich (ed.) Automata, Languages and Programming, 19th International Colloquium,
ICALP 1992, LNCS, vol. 623, pp. 474–486. Springer (1992). URL https://doi.org/10.
1007/3-540-55719-9_97

20. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework. In:
R.P. Gabriel, D.F. Bacon, C.V. Lopes, G.L.S. Jr. (eds.) Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

An Operational Guide to Monitorability 33

Applications, OOPSLA 2007, pp. 569–588. ACM (2007). URL https://doi.org/10.1145/
1297027.1297069

21. Chen, Z., Wu, Y., Wei, O., Sheng, B.: Poster: Deciding weak monitorability for runtime
verification. In: 2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), pp. 163–164 (2018)

22. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In: Baier and
Tinelli [13], pp. 581–595. URL https://doi.org/10.1007/978-3-662-46681-0_54

23. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press (1999)
24. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: TeSSLa:

Temporal Stream-Based Specification Language. In: Formal Methods: Foundations and
Applications - 21st Brazilian Symposium, SBMF 2018, LNCS, vol. 11254, pp. 144–162
(2018). DOI 10.1007/978-3-030-03044-5\ 10

25. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME’05),
pp. 166–174. IEEE Computer Society Press (2005)

26. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on fi-
nite traces. In: F. Rossi (ed.) IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, pp. 854–860. IJCAI/AAAI (2013). URL http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

27. Decker, N., Leucker, M., Thoma, D.: jUnitrv-adding runtime verification to jUnit. In:
NASA Formal Methods, 5th International Symposium, NFM, LNCS, vol. 7871, pp. 459–
464 (2013). URL https://doi.org/10.1007/978-3-642-38088-4_34

28. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History
and Perspectives, Texts in Logic and Games, pp. 261–306. Amsterdam University Press
(2008)

29. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verification. The-
oretical Computer Science 537, 29–41 (2014). DOI 10.1016/j.tcs.2014.02.052

30. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?
International Journal on Software Tools for Technology Transfer 14(3), 349–382 (2012)

31. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: A. Dawar,
E. Grädel (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, pp. 394–403. ACM (2018). URL https://doi.org/10.
1145/3209108.3209194

32. Francalanza, A.: A Theory of Monitors (Extended Abstract). In: Foundations of Soft-
ware Science and Computation Structures - 19th International Conference, FOSSACS,
Eindhoven, The Netherlands, LNCS, vol. 9634, pp. 145–161 (2016)

33. Francalanza, A.: Consistently-detecting monitors. In: 28th International Conference on
Concurrency Theory (CONCUR), LIPIcs, vol. 85, pp. 8:1–8:19. Schloss Dagstuhl (2017).
DOI 10.4230/LIPIcs.CONCUR.2017.8

34. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Monica, D.D.,
Ingólfsdóttir, A.: A Foundation for Runtime Monitoring. In: Runtime Verification - 17th
International Conference, RV 2017, LNCS, vol. 10548, pp. 8–29. Springer (2017). URL
https://doi.org/10.1007/978-3-319-67531-2_2

35. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-Milner logic
with recursion. Formal Methods in System Design 51(1), 87–116 (2017). URL https:
//doi.org/10.1007/s10703-017-0273-z

36. Francalanza, A., Seychell, A.: Synthesising Correct concurrent Runtime Monitors. Formal
Methods in System Design (FMSD) 46(3), 226–261 (2015). URL http://dx.doi.org/10.
1007/s10703-014-0217-9

37. Havelund, K., Peled, D.: Runtime Verification: From Propositional to First-Order Tem-
poral Logic. In: Runtime Verification - 18th International Conference, RV 2018, Limas-
sol, Cyprus, November 10-13, 2018, Proceedings, LNCS, vol. 11237, pp. 90–112. Springer
(2018). URL https://doi.org/10.1007/978-3-030-03769-7_7

38. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency. Journal
of the ACM 32(1), 137–161 (1985). DOI 10.1145/2455.2460

39. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages,
and computation. Acm Sigact News 32(1), 60–65 (2001)

40. Kozen, D.C.: Results on the propositional µ-calculus. Theoretical Computer Science 27,
333–354 (1983)

34 Luca Aceto et al.

41. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in
System Design 19(3), 291–314 (2001)

42. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-
time model checking. Journal of the ACM 47(2), 312–360 (2000)

43. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science 72(2), 265 – 288 (1990). DOI http://dx.doi.org/10.1016/
0304-3975(90)90038-J

44. Laurent, J., Goodloe, A., Pike, L.: Assuring the Guardians. In: Runtime Verification (RV),
LNCS, vol. 9333, pp. 87–101 (2015)

45. Manna, Z., Pnueli, A.: Completing the temporal picture. Theoretical Computer Science
83(1), 97–130 (1991). DOI 10.1016/0304-3975(91)90041-Y

46. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty conversa-
tions. Formal Aspects of Computing 29(5), 877–910 (2017). URL https://doi.org/10.
1007/s00165-017-0420-8

47. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: J. Misra,
T. Nipkow, E. Sekerinski (eds.) FM 2006: Formal Methods, 14th International Symposium
on Formal Methods, LNCS, vol. 4085, pp. 573–586. Springer (2006). URL https://doi.
org/10.1007/11813040_38

48. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at runtime with QEA. In:
Baier and Tinelli [13], pp. 596–610. URL https://doi.org/10.1007/978-3-662-46681-0_
55

49. Rosu, G.: On safety properties and their monitoring. Scientific Annals of Computer Science
22(2), 327–365 (2012)

50. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and
System Security 3(1), 30–50 (2000)

51. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of hyper-
properties. In: M.H. ter Beek, A. McIver, J.N. Oliveira (eds.) Formal Methods – The Next
30 Years, pp. 406–424. Springer International Publishing, Cham (2019)

52. THOMAS, W.: Chapter 4 - automata on infinite objects. In: J.V. LEEUWEN (ed.)
Formal Models and Semantics, Handbook of Theoretical Computer Science, pp. 133 – 191.
Elsevier, Amsterdam (1990). DOI https://doi.org/10.1016/B978-0-444-88074-1.50009-3.
URL http://www.sciencedirect.com/science/article/pii/B9780444880741500093

53. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive systems
- fundamentals of the MaC language. In: Z. Liu, K. Araki (eds.) Theoretical Aspects of
Computing - ICTAC 2004, First International Colloquium, LNCS, vol. 3407, pp. 543–556.
Springer (2004). URL https://doi.org/10.1007/978-3-540-31862-0_38

54. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2),
72–99 (1983). URL https://doi.org/10.1016/S0019-9958(83)80051-5

