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Abstract. Runtime enforcement is a dynamic analysis technique that
instruments a monitor with a system in order to ensure its correctness
as specified by some property. In particular, we explore bidirectional
enforcement instrumentation to enforce properties about the input and
output behaviour of a system. We develop an operational framework
for bidirectional enforcement and use it to study the enforceability of
the safety fragment of Hennessy-Milner logic with recursion (sHML).
We provide an automated synthesis function that generates correct and
optimal monitors from sHML formulas, and show that this logic is
enforceable via a specific type of bidirectional enforcement monitors
called action disabling monitors.

1 Introduction

Our dependence on software systems is raising the demand for ensuring their
correctness. Verifying systems is, however, becoming harder due to their ever
increasing complexity. For instance, systems may now opt to collect data from
multiple inputs before providing the required response, or they may supply
multiple outputs in response to a single input. Moreover, most systems nowadays
are made from concurrent interacting entities (such as processes, threads or
actors) that may lead them to exhibit non-deterministic behaviour.

Automatic software verification techniques are gaining popularity as a way
to ensure system correctness [21, 22, 28, 25]. In particular, runtime enforcement
(RE) [31, 4, 5] is a dynamic verification technique that uses monitors to analyse
the runtime behaviour of a system-under-scrutiny (SuS) and transform it to
conform to some correctness specification. The seminal work in RE [31, 32, 10,
37, 12, 27] models the behaviour of the SuS as a trace of arbitrary actions, e.g.,
α1.α2, . . ., and assumes that the monitor can either suppress or replace any trace
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Fig. 1. Enforcement instrumentation setups.

action, and when possible insert additional actions into the trace. This work has
been effectively used to implement unidirectional enforcement approaches [28,
16, 4, 8] that monitor the trace of outputs produced by the SuS as illustrated by
Figure 1 (a).

In this setup, the monitor is instrumented with the SuS to form a composite
system (represented by the dashed enclosure) and is tasked with transforming
the output behaviour of the SuS to ensure its correctness. For instance, if the
SuS executes an erroneous output β, this gets intercepted by the monitor and
modified accordingly into β′ to stop the error from propagating to the surrounding
environment.

Despite its merits, unidirectional enforcement lacks the power to enforce
properties that require modifying the input behaviour of the SuS. These properties
are arguably harder to enforce as, unlike outputs, inputs are instigated by the
environment and not the SuS itself, and hence the SuS possesses only partial
control over them. Although the SuS can control when certain inputs can be
supplied (e.g., by opening and reading from a file, communication port, etc.), at
runtime the environment determines what payload will be provided.

Instead of dealing with the complexities of directly transforming inputs,
several work [14, 26, 15] has been conducted to circumvent this issue by using
an extra monitor. As shown in Figure 1 (b), this monitor is attached to the
environment to scrutinise its outputs before they are forwarded as inputs to the
SuS. While this approach has been shown to be viable, it assumes that a monitor
can actually be attached to the environment.

By contrast, Figure 1 (c) presents a less explored bi-directional enforcement
setup. Unlike in (b), the monitor now scrutinises the entire behaviour of the SuS
without instrumenting the environment (which is often inaccessible). Adopting
this setup is, however, not an easy task, particularly since the SuS enjoys limited
control over its inputs. In fact, since properties are violated when the system
performs an invalid action, it may be too late for the monitor to prevent the
violation if it allows the SuS to input a value that then turns out to be invalid.
Hence, it is questionable whether the monitor can intercept and suppress (or
replace) an invalid input that has already been provided by the environment.
The monitor must therefore exploit the system’s limited control over its inputs in
the best way possible to ensure that the resulting composite system can perform
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all the specified valid inputs, while preventing it from performing invalid ones.
The development of a viable bidirectional setting, requires adopting a different
enforcement approach than the ones conventionally used for enforcing output
behaviour in a unidirectional one.

In this paper we thus explore how the existing monitor transformations can
be repurposed to work with input actions. Since inputs and outputs must be
handled differently by the monitor, we find it essential to distinguish between the
monitor’s transformations (i.e., suppressions, insertions and replacements) and
their resulting effect on the visible behaviour of the composite system. As a result,
we develop a bidirectional enforcement instrumentation model that can enable
and disable specific actions from the resulting composite system. This model
permits us to study the enforceability of properties defined via the safety subset
sHML of the well studied branching time logic µHML [36, 7, 30] (which is a
reformulation of the modal µ-calculus [29]). A crucial aspect of our investigation
is the synthesis function that maps the declarative sHML formulas to algorithmic
monitors that enforce properties concerning both the input and output behaviour
of the SuS.

Our results and contributions are:

(i) A general instrumentation framework for bidirectional enforcement (Fig-
ure 4) that is parametrisable by any system behaviour that can be modelled
as a labelled transition system. The novelty of this framework lies in how
its effect on the visible behaviour of the resulting composite system differs
according to whether the transformed action is an input or an output.

(ii) A definition dictating what it means for a monitor to adequately enforce a
logical formula in a bidirectional setting (Definitions 2 and 6), and a novel
notion of monitor optimality (Definition 7). The latter assesses the level of
intrusiveness of the monitor and guides in the search for the least intrusive
one. These definitions are parametrisable with respect to an instrumentation
relation, an instance of which is given by our enforcement framework of
Figure 4.

(iii) A synthesis function (Definition 10) that maps sHML formulas into action
disabling monitors. We evaluate the quality of this mapping by proving
that the synthesised monitors are correct and optimal (Theorems 1 and 2).

Structure of the paper. The rest of the paper is structured as follows. Section 2
provides the necessary preliminary material including how we model systems as
labelled transition systems and properties via the chosen logic. In Section 3 we
then present the operational model for bidirectional enforcement, and in Section 4
we formalise the interdependent notions of correct and optimal enforcement. These
act as a foundation for developing the synthesis function in Section 5. Section 6
overviews related work, and Section 7 concludes.

2 Preliminaries

The Model: We assume systems that are described as labelled transition systems
(LTSs). An LTS consists of a triple 〈Sys,Act ∪ {τ} ,→〉 that defines: a set
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Syntax

ϕ,ψ ∈ sHML ::= tt (truth) | ff (falsehood) |
∧
i∈I ϕi (conjunction)

| [ p, c¡]ϕ (necessity) | maxX.ϕ (greatest fp.) | X (fp. variable)

Semantics

Jtt, ρK def

= Sys Jff, ρK def

= ∅ JX, ρK def

= ρ(X)

J
∧
i∈I ϕi, ρK

def

=
⋂
i∈IJϕi, ρK JmaxX.ϕ, ρK def

=
⋃{

S | S ⊆ Jϕ, ρ[X 7→ S]K
}

J [ p, c¡]ϕ, ρK def

=
{
s | ∀α, r, σ · (s α

=⇒ r and mtch(p, α)=σ and cσ⇓ true) implies r∈ Jϕσ, ρK
}

Fig. 2. The syntax and semantics for sHML.

of system states, s, r, q ∈Sys, a set of visible actions, α, β ∈Act, along with a
distinguished invisible action τ /∈Act (where µ∈Act∪ {τ}), and a transition
relation, −→ ⊆ (Sys × (Act ∪ {τ}) × Sys). We assume a countably infinite
set of communication ports a, b, c∈Port, a set of values v, w∈Val, and par-
tition the set of actions into inputs a?v ∈ iAct, and outputs a!v ∈oAct where

iAct∪oAct=Act. We write s
µ−−→ r in lieu of (s, µ, r) ∈→, and s

α
=⇒ r to

denote weak transitions representing s(
τ−→)∗· α−−→ r where r is called the α-

derivative of s. For convenience, we use the syntax of the regular fragment of
value-passing CCS [23] to concisely describe LTSs and assume the classic notion
of strong bisimilarity [23, 38], s ∼ r, to denote system equivalence.

Traces t, u ∈ Act∗ range over (finite) sequences of visible actions. We

write s
t

=⇒ r to denote a sequence of weak transitions s
α1==⇒ . . .

αn==⇒ r
when t = α1 . . . αn for some n ≥ 0; when t= ε, s

ε
=⇒ r means s

τ−→*r. Ad-
ditionally, we represent system runs as explicit traces that include τ -actions,

tτ , uτ ∈ (Act∪ {τ})∗ and abuse notation by writing s
µ1...µn−−−−−→ r to denote a

sequence of strong transitions s
µ1−−→ . . .

µn−−→ r. Occasionally, we also use the
function sys(tτ ) to produce a system that executes the sequence of actions de-
fined in the system run tτ . For instance, sys(a?3.τ.a!5) produces the process
a?x.τ.a!5.nil.

The Logic: We consider the safety subset sHML based on a variation on value
passing µHML [36, 24] that uses symbolic actions of the form  p, c¡ defining
an action pattern p and a condition c. Symbolic actions abstract over visible
actions using data variables x, y, z ∈ DVar that occur free in the condition c
or as binders in the pattern p denoted as (x). We use function bv(p) to denote
the set of binders in p, and fv(c) to represent the set of free variables referenced
in condition c. Patterns are subdivided into input (x)?(y) and output (x)!(y)
patterns where (x) binds the information about the port on which the interaction
has occurred, whereas (y) binds the payload. We assume a (partial) matching
function for patterns mtch(p, α) that (when successful) returns a substitution σ
mapping variables in p to the corresponding values in α, so that if we instantiate
every variable x in p with σ(x) we obtain α. The filtering condition, c, may refer
to variables bound in p and it is evaluated with respect to the substitutions
returned by successful matches, written as cσ⇓b where b ∈ {true, false}.
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A symbolic action  p, c¡ is closed whenever the free variables in c only refer
to the variables that are bound in p, i.e., fv(c)⊆bv(p); it denotes the set of
actions J p, c¡K def

= { α ∃σ ·mtch(p, α) =σ and cσ⇓ true } and allows more ade-
quate reasoning about LTSs with infinitely many actions (e.g., inputs or outputs
carrying data from infinite domains). As our systems have no control over the
data values supplied in its inputs, the condition c of an input symbolic action,
 (x)?(y), c¡, may not restrict the values of binder y, i.e., y /∈ fv(c). Put differently,
for a closed input symbolic action  (x)?(y), c¡, if σ and σ′ are substitutions that
agree on x then cσ ⇓ true iff cσ′ ⇓ true. By contrast, as the system produces
the output values itself, a closed output symbolic action,  (x)!(y), c¡, may also
describe specific output values by restricting the possible values of y in c.

As a shorthand, whenever a condition in a symbolic action equates a bound
variable to a specific value we embed the equated value within the pattern,
e.g., (x)!(y), x= a∧y= 3¡ and  (x)?(y), x= a¡ become  a!3, true¡ and  a?(y), true¡;
we also elide the condition when it is true, and just write  a!3¡ and  a?(y)¡.

Figure 2 presents the sHML syntax that assumes a countably infinite set of
logical variablesX,Y ∈LVar. It provides standard logical constructs such as truth,
falsehood and conjunctions: where

∧
i∈I ϕi describes a compound conjunction,

ϕ1∧ . . .∧ϕn, where I = {1, .., n} is a finite set of indices. It allows for defining
recursive properties using greatest fixpoints, maxX.ϕ, which bind free occurrences
of X in ϕ. The logic also provides the symbolic necessity (universal) modal
operator, [ p, c¡]ϕ where the binders bv(p) bind the free data variables in c and
ϕ. To improve presentation, we occasionally use the notation ( ) to denote “don’t
care” binders in the pattern p, whose bound values are not referenced in c and
ϕ. A formula [ p, c¡]ϕ is satisfied by any system that either cannot perform an
action α that matches p and satisfies condition c, or if it can perform such an
α with a matching substitution σ, then its derivative state must satisfy the
continuation ϕσ. We finally assume that fixpoint variables, X, are guarded by a
modal necessity (e.g., maxX.([α]ff∧X) is invalid, unlike maxX.([β]ff∧[α]X) in
which X is guarded by [α]).

Formulas in sHML are interpreted over the system powerset domain where
S∈P(Sys). The semantic definition of Figure 2, Jϕ, ρK, is given for both open and
closed formulas. It employs a valuation from logical variables to sets of states,
ρ ∈ (LVar→ P(Sys)), which permits an inductive definition on the structure
of the formulas; ρ′ = ρ[X 7→ S] denotes a valuation where ρ′(X) = S and
ρ′(Y ) = ρ(Y ) for all other Y 6= X. We consider formulas modulo associativity
and commutativity of ∧, and unless stated explicitly, we assume closed formulas,
i.e., without free logical and data variables. Since the interpretation of a closed
ϕ is independent of the valuation ρ we write JϕK in lieu of Jϕ, ρK. A system s
satisfies formula ϕ whenever s∈ JϕK, and a formula ϕ is satisfiable, when JϕK 6= ∅.

Example 1. Consider a property stating that for every input request that is made
on a specific port, the server should not input another request in succession. It
may, however, output a single answer on the same port in response, and then log
the serviced request by outputting a notification on a dedicated port b. Due to
the special status of port b, this property does not apply to requests that are
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input from this port. Using our logic we can formalise this property as ϕ1.

ϕ1
def

= maxX.[ (x)?(y1), x6=b¡]([ x?( )¡]ff ∧ [ x!(y2)¡]ϕ′1)

ϕ′1
def

= ([ x!( )¡]ff ∧ [ b!(y3), y3=(log, y1, y2)¡]X)

This formula defines an invariant property maxX.(..) and uses binder (x)
to bind the port on which the request is input, and binders (y1), (y2) and (y3)
to bind the input and output payloads. The values bound to y1 and y2 are
later referenced in condition y3 = (log, y1, y2). The formula is violated by two
consecutive inputs on the same port x, and when a request is serviced with
multiple answers. An answer output followed by a log action on port b is normal,
and thus the formula recurses.
Now consider systems sa, sb and sc (where scls

def

= (b?z.if z=cls then nil else X)).

sa
def

= recX.((a?x.y := ans(x).a!y.b!(log, x, y).X) + scls) sc
def

= a?y.sa

sb
def

= recX.((a?x.y := ans(x).a!y.(a!y.b!(log, x, y).sa + b!(log, x, y).X)) + scls)

sa implements a request-response server that repeatedly inputs values (for some
domain Val) on port a, a?x, for which it internally computes an answer and
assigns it to the data variable y, y := ans(x). It then outputs the answer on
port a in response to each request, a!y, and finally logs the serviced request by
outputting the triple (log, x, y) on port b, b!(log, x, y). It terminates whenever it
inputs a close request cls from port b, i.e., b?z when z= cls.

Systems sb and sc are similar to sa but define additional behaviour. In
fact, sc is initialised in a suspended state that requires an extra (unused) input,
a?y, to start working as sa, whereas sb may occasionally provide a redundant
(underlined) answer prior to logging the serviced request. Using the semantics of

Figure 2, one can check that sa ∈ Jϕ1K whereas sc /∈ Jϕ1K since sc
a?v1.a?v2======⇒, and

sb /∈ Jϕ1K since sb
a?v1.a!ans(v1).a!ans(v1)

===============⇒ (for some input values v1 and v2).

As we aim to use our logic in conjunction to monitoring, it is sometimes useful
to know the constraint that a system must satisfy after performing a number
of steps. For instance, if a?v.a!w.s satisfies formula [ a?( )¡][ a!( )¡]ψ then its
derivative s must also satisfy formula ψ after it performs actions a?v and a!w. We
thus define the function after to denote how sHML formulas evolve in reaction
to an action µ.

Definition 1. We define the function after:(sHML×Act∪{τ})→sHML as:

after(ϕ, α)
def

=



ϕ if ϕ∈
{

tt,ff
}

after(ϕ′{ϕ/X}, α) if ϕ= maxX.ϕ′∧
i∈I after(ϕi, α) if ϕ=

∧
i∈I ϕi

ψσ if ϕ= [ p, c¡]ψ and ∃σ·(mtch(p, α)=σ ∧ cσ⇓ true)

tt if ϕ= [ p, c¡]ψ and @σ·(mtch(p, α)=σ ∧ cσ⇓ true)

after(ϕ, τ)
def

= ϕ
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Remark 1. The function after is well-defined since, due to our assumption that
formulas are guarded, ϕ′{ϕ/X} has fewer top level occurrences of greatest fixpoint
operators than maxX.ϕ′.

When applied to a fixpoint, the function unfolds the formula and reapplies
itself to the unfolded equivalent. Similarly, in the case of conjunctions it recurses
for each individual branch. It returns formula ψσ when α matches successfully
the symbolic action of a modal operator preceding ψ, where σ is created by the
successful match. However, when unsuccessful it returns tt to signify a trivial
satisfaction. Truth and falsehood are definitive and thus do not change. Silent τ
actions do not affect the formula ϕ as well. We justify our definition of the after
function vis-a-vis the semantics of Figure 2 via Proposition 1.

Proposition 1. For every system state s, formula ϕ and action α, if s∈ JϕK
and s

α
=⇒s′ then s′ ∈ Jafter(ϕ, α)K.

A proof for this theorem is given in Appendix A. We abuse notation and lift
the after function to (explicit) traces in the obvious way, i.e., after(ϕ, tτ ) is equal
to after(after(ϕ, µ), uτ ) when tτ = µuτ and to ϕ when tτ = ε.

Example 2. When applied to ϕ1 of Example 1 in relation to t1τ = a?v1.τ.a!ans(v1),
formula after(ϕ1, t

1
τ ) denotes ([ a!( )¡]ff ∧ [ b!(y3), y3=(log, v1, ans(v1))¡]ϕ1) and

when applied to trace a?v1.a?v2 it evolves into ff.

3 A bi-directional enforcement model

In bidirectional enforcement we seek to transform the entire (input and output)
behaviour of the SuS; this contrasts with unidirectional approaches that only
modify its output traces. When changing the behaviour of a system (and not
just a single trace) it makes sense to distinguish between the transformations
performed by the monitor (i.e., insertions, suppressions and replacements), and
the way they can be used to affect the resulting behaviour of the composite
system. In particular, we say that an action that can be performed by the SuS
has been disabled when it is no longer visible in the resulting composite system.
Similarly, a visible action is enabled when the composite system can execute it
unlike the SuS. Actions are adapted when either the payload of an action in the
SuS differs from that of the composite system, or when the action is rerouted
through a different port. However, since inputs and outputs are fundamentally
different, the type of the action itself cannot be adapted, that is, an input cannot
become an output, and vice versa.

Implementing action enabling, disabling and adaptation differs according
to whether the action is an input or an output. In Figure 3 we illustrate our
proposed instrumentation setup that implements them by using the monitor’s
existing transformations. As the instrumented monitor can only fully control the
actions instigated by the SuS, enforcing its outputs is more intuitive. In fact, (a),
(b) and (c) in Figure 3 respectively show that to disable an output it suffices to
suppress it, to adapt it the monitor may replace the output data and forward it
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Fig. 3. Our bi-directional enforcement setup.

to the environment on a (potentially) different port, while to enable an output it
suffices to produce the required data via an insertion transformation.

Working with inputs is less straightforward. In our setup, we propose that to
disable an input, item (d) in Figure 3, it suffices that the monitor conceals the
system’s input port so to prevent the environment from forwarding a value as
input to the system. As this technique may block the system’s execution from
progressing, the instrumented monitor may additionally insert a default input
that unblocks the system4, item (e) in Figure 3. Input adaptation, item (f) in
Figure 3, is also attained via a replacement transformation, but unlike in the
case of outputs, it is applied in the reverse direction. In fact, it modifies the data
received by the monitor over some port, and forwards it to the SuS over the
same (or a different) port. Inputs can also be enabled, item (g), by allowing the
monitor to accept the required input on a desired port and then suppress it. To
an external viewer, the input has been made, yet discarded internally.

More concretely, in Figure 4 we formalise the novel bidirectional instrumenta-
tion setup of Figure 3 in terms of the (symbolic) transducers m,n∈Trn that
were priorly introduced in [4]. Transducers are monitors that define symbolic
transformation triples,  p, c, p′¡, consisting of an action pattern p, condition c,
and a transformation pattern p′. Conceptually, the action pattern and condition
determine the range of system (input or output) actions upon which the transfor-
mation should be applied, while the transformation pattern specifies the kind of
transformation that should be applied. The symbolic transformation patterns p
and p′ are extended versions of those definable in symbolic actions. In addition to
denoting inputs and outputs, these extended patterns may also specify • and use
it as follows. When p= •, the transformation pattern represents a point where
the monitor can act independently from the system to insert the action specified
by p′, but when p′= •, it represents the suppression of the action specified by
p. The syntax of our transducers assumes a well-formedness constraint where,
for every  p, c, p′¡.m, either p or p′ is • (but not both), or else both patterns are

4 The added benefits of this mechanism are further discussed in the forthcoming
sections.
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Syntax

m,n ∈ Trn ::=  p, c, p′¡.m |
∑
i∈Imi (I is a finite index set) | recX.m | X

Dynamics

eSel
mj

γIγ′−−−−→ nj∑
i∈Imi

γIγ′−−−−→ nj

j∈I eRec
m{recX.m/X}

γIγ′−−−−→ n

recX.m
γIγ′−−−−→ n

eTrn
mtch(p, γ) = σ cσ ⇓ true γ′= p′σ

 p, c, p′¡.m
γIγ′−−−−→ mσ

Instrumentation

biTrnO s
b!w−−−→ s′ m

(b!w)I(a!v)−−−−−−−→ n

m[s]
a!v−−→ n[s′]

biTrnI m
(a?v)I(b?w)−−−−−−−−→ n s

b?w−−−→ s′

m[s]
a?v−−−→ n[s′]

biDisO s
a!v−−→ s′ m

(a!v)I•−−−−−→ n

m[s]
τ−−→ n[s′]

biDisI m
•I(a?v)−−−−−−→ n s

a?v−−−→ s′

m[s]
τ−−→ n[s′]

biEnO m
•I(a!v)−−−−−→ n

m[s]
a!v−−→ n[s]

biEnI m
(a?v)I•−−−−−−→ n

m[s]
a?v−−−→ n[s]

biAsy s
τ−−→ s′

m[s]
τ−−→ m[s′]

biDef
s

a!v−−→ s′ m 6a!v−−→ ∀ b∈Port, w∈Val ·m 6•Ib!w−−−−→

m[s]
a!v−−→ id[s′]

where id is shorthand for recY. (x)!(y), true, x!y¡.Y +  (x)?(y), true, x?y¡.Y and m 6γ−−→
means @γ′, n·m γIγ′−−−→n.

Fig. 4. A bi-directional instrumentation model for enforcement monitors.

of the same type i.e., both are input or output patterns. For instance, symbolic
transformations  •, true, a?v¡ and  (x)!(y), true, •¡ are valid since only one of their
patterns is •, and so is  (x)!(y), true, a!v¡ since both patterns are output patterns.
This constraint ensures that input actions cannot be adapted into outputs and
vice versa. It is crucial since inputs and outputs are instigated by different entities,
namely, the environment and the SuS respectively.

The monitor transition rules in Figure 4 assume closed terms, i.e., every
transformation-prefix transducer of the form  p, c, p′¡.m must obey the constraint(
fv(c)∪ fv(p′)∪ fv(m)

)
⊆bv(p)∪V, where V is the set of variables that are

bound by priorly defined transformation prefixes. Each transformation-prefix
transducer yields an LTS with labels of the form γIγ′, where γ, γ′ ∈ (Act∪{•}).
Intuitively, transition m

γIγ′

−−−−→ n denotes the way that a transducer in state m
transforms the visible action γ into γ′ and reduces to state n. In this sense, the
transducer action αIβ represents the replacing of α by β, and αIα denotes the
identity transformation. Cases αI• and •Iα respectively encode the suppression
and insertion transformations of action α. The key transition rule in Figure 4 is
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eTrn. It states that the transformation-prefix transducer  p, c, p′¡.m transforms
action γ into a (potentially) different action γ′ and reduces to state mσ, whenever
γ matches pattern p, i.e., mtch(p, γ)=σ, and satisfies condition c, i.e., cσ ⇓ true.
Action γ′ results from instantiating the free variables in p′ with the corresponding
values mapped by σ, i.e., γ′=pσ. The remaining rules for recursion (eRec) and
selection (eSel) are standard. We encode the identity monitor, id, as a recursive
monitor defining identity transformations that match every action.

The primary contribution of this enforcement model lies in the new instru-
mentation relation of Figure 4. This relation links the behaviour of the SuS s with
the transformations of a monitor m. The term m[s] thus denotes the resulting
monitored system whose behaviour is defined in terms of Act∪{τ}. Concretely,
rule biTrnO states that if the SuS s transitions with an output b!w to s′ and
the transducer m can replace it with a!v and reduce to n, the adapted output
can be externalised so that the composite system m[s] transitions over a!v to
n[s′]. Rule biDisO states that if s performs an output a!v that can be suppressed
into •, the instrumentation withholds this output and so the composite system
transitions silently over τ thereby disabling it. Dually, rule biEnO enables and
augments the composite system m[s] with an output a!v whenever m is able
to insert a!v independently of the behaviour of s. Rules biDisO, biTrnO and
biEnO therefore correspond to items (a), (b) and (c) in Figure 3 respectively.

Rule biDef is analogous to standard rules for premature monitor termination
[17, 19, 18, 1], and accounts for underspecification of transformations. We, however,
restrict defaulting (termination) exclusively to output actions performed by the
SuS. A monitor therefore defaults to id when it cannot react to or enable a
system output. By forbidding the monitor from defaulting upon unspecified
inputs, the monitor is able to block them from becoming part of the composite
system’s behaviour. Hence, any input that the monitor is unable to react to i.e.,

m 6a?vIγ−−−−−→, is by default considered as being invalid and blocked. This technique
is thus used to implement item (d) of Figure 3. To avoid disabling valid inputs
unnecessarily, the monitor must explicitly define symbolic transformations that
specify all the valid inputs of the SuS. For instance, the symbolic transformation
 a?(x), true, a?x¡ allows values to be input on port a only, while  (y)?( ), y 6=b, •¡
allows inputs on any port except b; any other input is invalid and thus blocked.
By including such symbolic transformations, rules biTrnI and biEnI can be
applied.

With rule biTrnI any value v that is input on some port a by the instrumented
system is adapted into a (potentially) different value w and forwarded to the
SuS over port b, provided the SuS is willing to accept that input. As far as
the environment is concerned, the SuS accepted the input provided by the
environment on port a. Similarly, rule biEnI enables an input on a port a by
allowing the composite system to accept a value v which is then suppressed by
the monitor and concealed from the SuS. Although unspecified inputs on a port a

are implicitly disabled (since the monitor cannot react to them, i.e., m 6a?vIγ−−−−−→),
rule biDisI prevents the monitor from blocking systems that require the blocked
input in order to progress. Specifically, this rule allows the monitor to generate a
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default input value v and forward it to the SuS on a port a, thereby unblocking
it by allowing the composite system to silently move on to the next state. Hence,
rules biDisI, biTrnI and biEnI respectively implement items (e), (f) and (g)
of Figure 3. Finally, rule biAsy allows the SuS s to internally transition with a
silent action τ to some state s′ independent of m.

In our examples, we find it convenient to elide the transformation pattern p′ in
a transducer  p, c, p′¡.m and write  p, c¡.m when all the binding occurrences (x) of
p are defined as free occurrences x in p′, thus denoting an identity transformation.
Similarly, we elide c whenever c=true.

Example 3. Consider the following action disabling transducer md:

md
def

= recY. b?( )¡.Y +  ( )!( ), •¡.Y

It is a recursive transducer, recY. , that repeatedly disables every output per-
formed by the system via the branch  (x)!(y), •¡.Y . Moreover, by only defining
the input branch  b?( )¡.Y it also restricts the composite system by allowing
it to only input values from port b. Concretely, inputs from other ports are
disabled since none of the instrumentation rules in Figure 4 can be applied to
allow the composite system to transition over these input actions. For instance,
when instrumented with sc from Example 1, md blocks its initial input so that
for every action α, md[sc] 6α−−→. For sb, the composite system md[sb] can only

input termination requests on port b, i.e., md[sb]
b?cls−−−→ md[nil].

Now consider the more elaborate transducer mdt.

mdt
def

= recX.( (x)?(y1), x6=b¡.( (x1)?( ), x1 6= x¡.id+ x!(y2)¡.m′dt)+  b?( )¡.id)

m′dt
def

=  x!( ),•¡.md +  ( )?( )¡.id +  b!(y3), y3=(log, y1, y2)¡.X

On the one hand, by defining branch  b?( )¡.id, monitor mdt allows the SuS to
immediately input a termination request on port b and defaults to id. On the
other hand, the branch prefixed by  (x)?(y1), x6=b¡permits the system to input
the first request via any port x 6= b. It then blocks subsequent inputs on the same
port x (without deterring inputs on other ports) by defining the input branch
 (x1)?( ), x1 6= x¡.id. In conjunction to this input branch, mdt defines  x!(y2)¡.m′dt
to allow the SuS to perform an output on the port bound to variable x. The
continuation monitor m′dt then defines the suppression branch  x!( ),•¡.md by
which it disables every redundant response that is output following the first one.
However, as it also defines branches  b!(y3), y3=(log, y1, y2)¡.X and  ( )?( )¡.id,
it refrains from modifying log events and blocking further inputs that occur
immediately after the first response.

When instrumented with sc from Example 1, mdt allows the composite system
to perform the first input but then blocks the second one which means that

it can only input termination requests, i.e., mdt[sc]
a?v−−→ · b?cls−−−→ id[nil]. It also

disables the first redundant response of sb, and as a result, it reduces to md which
carries on to suppress every subsequent output (even log actions) and blocks

every port except b, i.e., mdt[sb]
a?v−−−→ · a!w

==⇒ · τ−→ md[b!(log, v, w).sb]
τ−→
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md[sb] 6a?v−−−→ (for every port a where a6=b and value v). Moreover, it resorts to
defaulting to handle unspecified outputs e.g., for system b!(log, v, w).sa although

mdt 6b!(log,v,w)−−−−−−−→, using rule iDef the composite system can still perform the

output, i.e., mdt[b!(log, v, w).sa]
b!(log,v,w)−−−−−−→ id[sa].

Monitor mdet (below) is similar to mdt but instead of reducing to md after
suppressing the first redundant response, it employs a loop of suppressions
(underlined in m′′det) that only disables further responses until a log or termination
input is made.

mdet
def

= recX.( (x)?(y1), x6=b¡.m′det +  b?( )¡.id)

m′det
def

= recY1. •, x?vdef¡.Y1 +  x!(y2)¡.m′′det +  (x1)?( ), x1 6= x¡.id

m′′det
def

= recY2.
(
 x!( ),•¡.Y2+ b!(y3), y3=(log, y1, y2)¡.X+ ( )?( )¡.id

)
Hence, contrary to mdt, after detecting and disabling the redundant response

of sb, monitor mdet only attempts to disable further responses via the suppression
loop of m′′det, and thus allows the subsequent log action to go through, as follows:

mdet[sb]
a?v−−−→ · a!w

==⇒ · τ−→ m′′det[b!(log, v, w).sb]
b!(log,v,w)−−−−−−−→ mdet[sb].

It also defines a branch prefixed by the insertion transformation  •, x?vdef¡
(underlined in m′det) where vdef is a default input domain value. This permits
the instrumentation to silently unblock the SuS when this is waiting for a request
following an unanswered one. In fact, when instrumented with sc, mdet not only
forbids invalid input requests, but it also (internally) unblocks sc by supplying
the required input via the added insertion branch. This allows the composite
system to proceed silently, i.e.,

mdet[sc]
a?v−−−→ recY.( •, a?vdef¡.Y +  a!(y2)¡.m′′det +  b?( )¡.id)[sa]
τ−−−→ recY.( •, a?vdef¡.Y +  a!(y2)¡.m′′det +  b?( )¡.id)[s′a]

a!ans(vdef).b!(log,vdef,y)
===============⇒ mdet[sa]

where s′a
def

= y := ans(vdef).a!y.b!(log, vdef, y).sa.

Although in this paper we mainly focus on action disabling monitors, using
our model one can also define action enabling and adaptation monitors.

Example 4. Consider now transducers me and ma below:

me
def

=  (x)?(y), x6=b, •¡. •, x!ans(y)¡. •, b!(log, y, ans(y))¡.id

ma
def

= recX. b?(y), a?y¡.X +  (x)!(y), b!y¡.X.

Once instrumented with a system, me first uses a suppression transformation to
enable an input that may come from any port x 6= b (but then gets discarded).
It then automates a response by inserting an answer followed by a log action.
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Concretely, when composed with r∈{sb, sc} from Example 1, the execution of
the composite system can only start as follows:

me[r]
c?v−−→  •, c!w¡. •, b!(log, v, w)¡.id[r]

c!w
==⇒  •, b!(log, v, w)¡.id[r]

b!(log,v,w)−−−−−−→ id[r].

for some values v and w= ans(v). By contrast, ma uses action adaptation to
redirect the inputs and outputs of the SuS through port b. Specifically, the
monitor allows the composite system to input values only from port b and
forwards them to the SuS on its input port a. Similarly, outputs from the SuS on
port a are rerouted to port b. As a result, the composite system is only able to

interact on port b. For instance, ma[sc]
b?v1−−−→ ma[sa]

b?v2.b!w2.b!(log,v2,w2)
==============⇒ ma[sa]

and ma[sb]
b?v1.b!w1.b!(log,v1,w1)
==============⇒ ma[sb].

4 Enforcement and Optimality

The enforceability of a logic rests on the relationship between the semantic
behaviour specified by the logic on the one hand, and the ability of the operational
mechanism (of Section 3 in our case) to enforce the specified behaviour on the
other.

Definition 2 (Enforceability). A formula ϕ is enforceable iff there exists a
transducer m such that m adequately enforces ϕ. A logic L is enforceable iff
every formula ϕ∈L is enforceable.

Definition 2 relies on the meaning of “m adequately enforces ϕ”. Several
meanings can be given, however, it is reasonable to expect that an adequate
definition should be applicable to any system that can be instrumented with
monitor m. In [4] we stipulated that one should at least expect soundness, i.e., if
the property of interest ϕ is satisfiable, i.e., JϕK 6= ∅, then the composite system,
m[s], should satisfy ϕ for every system state s.

Definition 3 (Sound Enforcement). Monitor m soundly enforces a satisfiable
formula ϕ, denoted as senf(m,ϕ), iff m[s]∈ JϕK, for every state s∈Sys.

Example 5. In general, showing that a monitor soundly enforces a formula re-
quires showing this for every possible system. However, we give an intuition
based on systems sa, sb, sc and formula ϕ1 (restated below) from Example 1.

ϕ1
def

= maxX.[ (x)?(y1), x6=b¡]([ x?( )¡]ff ∧ [ x!(y2)¡]ϕ′1)

ϕ′1
def

= ([ x!( )¡]ff ∧ [ b!(y3), y3=(log, y1, y2)¡]X)

Recall the transducers me, ma, md, mdt and mdet from Example 3, and also
that sa ∈ Jϕ1K (hence Jϕ1K 6= ∅) and sb, sc /∈ Jϕ1K. When assessing their soundness
in relation to ϕ1, we have that:
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– me is unsound as it allows invalid behaviour such as me[sb]
t1e==⇒ id[sb]

where t1e
def

= c?v1.c!ans(v1).b!(log, v1, ans(v1)).a?v2.a!w2.a!w2. This shows that
the composite system me[sb] can still make two consecutive output replies
(underlined), and so me[sb]/∈Jϕ1K. Similarly, me[sc]/∈Jϕ1K since the me[sc]
executes the erroneous trace c?v1.c!ans(v1).b!(log, v1, ans(v1)).a?v2.a?v3. This
demonstrates that me[sc] can still input two consecutive requests on port
a (underlined). Either one of these counter examples suffice to prove that
¬senf(me, ϕ1).

– ma is sound because once instrumented, the resulting composite system is
adapted to only interact on port b, and so its actions are not of concern to ϕ1.
As ma applies this enforcement strategy to any SuS, we can safely conclude
that senf(ma, ϕ1), in fact ma[sa],ma[sb],ma[sc]∈Jϕ1K. Monitors md, mdt

and mdet are also sound. Intuitively, md prevents the violation of ϕ1 by
blocking all input ports except b, whereas mdt and mdet achieve the same
goal by disabling the invalid consecutive requests and answers that occur on
a specific port (except b).

Although sound enforcement is a fundamental aspect of enforceability, in
[4] we had found it to be relatively weak to solely define adequate enforcement
in Definition 2, namely, because it does not regulate the extent of the applied
enforcement. More specifically, consider md from Example 3. Although it suc-
cessfully prevents the violating behaviour of sb and sc, it needlessly modifies
the behaviour of sa even though sa satisfies ϕ1. By blocking the initial input of
sa, md causes it to block indefinitely. Hence, in addition to soundness, in [4] we
posited that adequate enforcement must also require a degree of transparency
that safeguards the integrity of well-behaved systems. Transparency thus dictates
that, whenever a system s already satisfies the property ϕ, the assigned monitor
m should not alter the behaviour of s.

Definition 4 (Transparent Enforcement). A monitor m is transparent when
enforcing a formula ϕ, written as tenf(m,ϕ), iff for all system states s ∈ Sys, if
s ∈ JϕK then m[s] ∼ s.

Example 6. As argued earlier, the counter-example given in relation to sa suffices
to prove that ¬tenf(md, ϕ1). Monitor ma from Example 4 also fails to meet this
requirement: although sa satisfies ϕ1, we have that ma[sa]6∼sa since for any value

v and w, ma[sa]
b?v−−−→ · b!w−−−→ but ma[sa]

b?v−−−→ · 6b!w−−−→. By contrast, monitors mdt

and mdet follow this criterion as they only intervene when it becomes apparent
that a violation will occur. For instance, they only disable inputs on a specific
port, as a precaution, following an unanswered request on the same port, and they
only disable the redundant responses that are produced after the first response
to a request. The universal quantification over all systems makes it difficult to
show that tenf(mdt, ϕ1) and tenf(mdet, ϕ1). However, since both monitors do
not modify valid systems such as sa, i.e., sa ∈ Jϕ1K and mdt[sa] ∼ sa ∼ mdet[sa],
and only modify invalid ones, such as sb and sc (see Example 5), we get a good
intuition for why this is the case.
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It turns out that transparency is still a relatively weak constraint as it only
restricts the enforcement applied to well-behaved systems, and disregards the
extent of enforcement induced upon the erroneous ones. For instance, consider
monitor mdt from Example 3 and system sb from Example 1. At runtime

sb can exhibit the following invalid behaviour: sb
t1==⇒ b!(log, v, w).sa where

t1
def

= a?v.a!w.a!w. In order to bring the invalid behaviour of sb (show in t1)
in line with our specification ϕ1, it suffices to use some monitor m that only
disables one of its responses, a!w. After correcting t1 into t′1

def

= a?v.a!w, no further
modifications are required by m since the SuS reaches a valid point, that is, it
reduces into a state that does not violate the rest of the property. In this case, the
SuS reduces into b!(log, v, w).sa where b!(log, v, w).sa∈Jafter(ϕ1, t

′
1)K. However,

when instrumented with mdt, this monitor does not only disable the invalid

response, i.e., mdt[sb]
a?v.a!w.

=====⇒ md[b!(log, v, w).sa], but keeps on disabling every

subsequent action as a result of reducing into md, md[b!(log, v, w).sa]
τ−→ md[sa].

It thus makes sense that transparency should also start applying whenever
an invalid SuS reaches a valid point while instrumented with the monitor. Put
differently, if a composite system, m[s] (where s/∈JϕK), reduces to some state
m′[s′] over a trace t, where s′ is in agreement with ϕ after following t (i.e.,
s′ ∈ Jafter(ϕ, t)K), then the behaviour of m′[s′] should be equivalent to that of s′.
In this paper we therefore introduce the notion of eventual transparency.

Definition 5 (Eventual Transparent Enforcement). A monitor m adheres
to eventual transparency when enforcing ϕ, denoted as evtenf(m,ϕ), iff for all

system states s, s′, trace t and monitor m′, m[s]
t

=⇒ m′[s′] and s′ ∈ Jafter(ϕ, t)K
imply that m′[s′] ∼ s′.

Example 7. We have already argued, via the counter example sb, why mdt

does not adhere to eventual transparency, i.e., ¬evtenf(mdt, ϕ1); this is not the
case for mdet because evtenf(mdet, ϕ1). Although the universal quantification
over all systems and traces make it hard to prove this property, we can get a

good intuition of why this is the case from sb, as when mdet[sb]
a?v1.a!w1======⇒ · τ−→

m′′det[b!(log, v1, w1).sa] we have that b!(log, v1, w1).sa ∈ Jafter(ϕ1, a?v1.a!w1)K and
that m′′det[b!(log, v1, w1).sa] ∼ b!(log, v1, w1).sa.

Since Definition 4 (transparency) is just an instance of Definition 5 (eventual
transparency) (i.e., when t is the empty trace ε), the latter requirement along
with Definition 3 (soundness) suffice to provide an adequate definition for “m
enforces ϕ”.

Definition 6 (Enforcement). A monitor m enforces property ϕ whenever it
adheres to (i) soundness, Definition 3, and (ii) eventual transparency, Defini-
tion 5.

Corollary 1. Since Definition 6 is defined in terms of eventual transparency
(Definition 5) that is stronger than transparency (Definition 4), our new definition
for “m enforces ϕ” is stricter than the one given in [4].
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mc(m, tτ )
def

=


1 + mc(m′, t′τ ) if tτ =µt′τ and m[sys(µt′τ )]

µ′
−−→ m′[sys(t′τ )] and µ 6=µ′

1 + mc(m′, tτ ) if tτ ∈{µt′τ , ε} and m[sys(tτ )]
µ′
−−→ m′[sys(tτ )]

mc(m′, t′τ ) if tτ =µt′τ and m[sys(µt′τ )]
µ−−→ m′[sys(t′τ )]

| tτ | if tτ ∈{µt′τ , ε} and ∀µ′ ·m[sys(tτ )] 6µ
′
−−→

Fig. 5. Modification Count (mc).

Definitions 2 and 6 define what it means for a monitor to adequately enforce
a formula, but fail to assess whether a monitor is (to some extent) the “best”
that one can find to enforce a property. To define such a notion we must first be
able to compare monitors to one another via some kind of distance measurement
that tells them apart. One ideal measurement is to assess the monitor’s level of
intrusiveness when enforcing the property.

In Figure 5 we thus define function mc that inductively analyses a system
run, represented as an explicit trace tτ , and counts the number of modifications
applied by the monitor. In each case the function reconstructs a trace system
systr(tτ ) and instruments it with the monitor m in order to assess the type of
transformation applied. Specifically, in the first two cases, mc increments the
counter whenever the monitor adapts, disables or enables an action, and then it
recurses to keep on inspecting the run (i.e., the suffix t′τ in the first, and the same
trace tτ in the second) vis-a-vis the subsequent monitor state, m′. The third case,
specifies that the counter stays unmodified when the monitor applies an identity
transformation, while the last case returns the length of tτ when m[sys(tτ )] is
unable to execute further.

Example 8. Recall the monitors of Example 3 and consider the following system
run t0τ=a?v1.a?v2.τ.a!w2.a!w2.b!(log, v2, w2). For me and ma, function mc respec-
tively counts three enabled actions, i.e., mc(me, t

0
τ )=3, and four adapted actions,

i.e., mc(ma, t
0
τ )=4 (since b!(log, v2, w2) remains unmodified). The maximum count

of 5 is attained by md as it immediately blocks the first input a?v1, and so none of

the actions in t0τ can be executed by the composite system i.e., ∀µ ·md[sys(t0τ )] 6µ−−→
and so mc(md, t

0
τ )=5. Similarly, mc(mdt, t

0
τ )=4 since mdt allows the first request

to be made, but blocks the second erroneous one, and as a result it also forbids

the execution of the subsequent actions, i.e., ∀µ ·mdt[sys(t0τ )]
a?v1−−−→ · 6µ−−→. Fi-

nally, mdet performs the least number of modifications, namely mc(mdet, t
0
τ )=2.

The first modification is caused when the monitor blocks the second erroneous
input and internally inserts a default input value that allows the composite
system to proceed over a τ -action. This contrasts with md and mdt which fail
to perform this insertion step thereby contributing to their high intrusiveness
score. The second modification is attained when mdet suppresses the redundant
response.

We can now use function mc to compare monitors to each other in order to
identify the least intrusive one, i.e., the monitor that applies the least amount
of transformations when enforcing a specific property. However, for this com-
parison to be fair, we must also compare like with like. This means that if a
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ec(m)
def

=


∅ if m=X⋃

i∈I ec(mi) if m=
∑
i∈I mi

ec(m′) if m= recX.m′ or m=  p, c, p¡.m′

{DIS}∪ ec(m′) if m=  (x)!(y), c, •¡.m′ or m=  •, c, a?v¡.m′

{EN}∪ ec(m′) if m=  (x)?(y), c, •¡.m′ or m=  •, c, a!v¡.m′

{ADPT}∪ ec(m′) if m=  p, c, p′¡.m′ and p′ 6= p 6= •

Fig. 6. Enforcement Capabilities (ec).

monitor enforces a formula by only disabling actions, it is only fair to compare
it to other monitors of the same kind. It is reasonable to expect that monitors
with more enforcement capabilities are likely to be “better” than those with
fewer capabilities. We determine the enforcement capabilities of a monitor via
function ec of Figure 6. It inductively analyses the structure of the monitor and
deduces whether it can enable, disable and adapt actions based on the type of
transformation triples it defines. For instance, if the monitor defines an output
suppression triple,  (x)!(y), c, •¡.m′, or an input insertion branch,  •, c, a?v¡.m′,
then ec determines that the monitor can disable actions DIS, while if it defines an
input suppression,  (x)?(y), c, •¡.m′, or an output insertion branch,  •, c, a!v¡.m′,
then it concludes that the monitor can enable actions, EN. Similarly, if a monitor
defines a replacement transformation, it infers that the monitor can adapt actions,
ADPT.

Example 9. Recall the monitors of Example 3. With function ec we determine
that ec(me)={EN}, ec(ma)={ADPT}, ec(md)=ec(mdt)=ec(mdet)={DIS}. Mon-
itors may also have multiple types of enforcement capabilities, for instance,
ec(recX. (x)?(y), •¡.X +  (x)!(y), •¡.X)={EN,DIS}.

With these definitions we now define optimal enforcement.

Definition 7 (Optimal Enforcement). A monitor m is optimal when enforc-
ing ϕ, denoted as oenf(m,ϕ), iff it enforces ϕ (Definition 6) and when for every

state s, explicit trace tτ and monitor n, if ec(n)⊆ ec(m), enf(n, ϕ) and s
tτ−−→

then mc(m, tτ )≤mc(n, tτ ).

Definition 7 states that an adequate (sound and eventually transparent) monitor
m is optimal for ϕ, if one cannot find another adequate monitor n, with the same
(or fewer) enforcement capabilities, that performs fewer modifications than m
and is thus less intrusive.

Example 10. Recall formula ϕ1 of Example 1 and monitor mdet of Example 7.
Although showing that oenf(mdet, ϕ1) is inherently difficult, from Example 8
we already get the intuition that it holds since mdet imposes the least amount
of modifications compared to the other monitors of Examples 3 and 4. We
further reaffirm this intuition using systems sb and sc from Example 1. In fact,
when considering the invalid runs t1τ

def

= a?v1.τ.a!w1.a!w1.b!(log, v1, w1) of sb, and
t2τ

def

= a?v1.a?v2.τ.a!w2.b!(log, v2, w2) of sc, one can easily deduce that no other
adequate action disabling monitor can enforce ϕ1 with fewer modifications than
those imposed by mdet, namely, mc(mdet, t

1
τ ) =mc(mdet, t

2
τ ) = 1. Furthermore,
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consider the invalid traces t1τ{c/a} and t2τ{c/a} that are respectively produced
by versions of sb and sc that interact on some port c instead of a (for any port
c 6= a). Since mdet binds the port c to its data binder x and uses this information
in its insertion branch,  •,  x?( )¡¡.Y , the same modification count is achieved
for these traces, as well i.e., mc(mdet, t

1
τ{c/a}) =mc(mdet, t

2
τ{c/a}) = 1.

Example 10 describes the case where formula ϕ is optimally enforced by a
finite-state and finitely-branching monitor, mdet. In the general case, this is not
always possible.

Example 11. Consider formula ϕ2 stating that an initial input on port a followed
by another input from some other port x2 6=a constitutes invalid system behaviour.
Also consider monitor m1 where enf(m1, ϕ2).

ϕ2
def

= [ a?( )¡][ (x2)?( ), x2 6=a¡]ff

m1
def

=  a?( )¡.recY.( •, b?vdef¡.Y +  a?( )¡.id)

When enforcing a system that generates the run t3τ
def

= a?v1.b?v2.a!w1.u
3
τ , monitor

m1 modifies the trace only once. Although it disables the input b?v2, it subse-
quently unblocks the SuS by inserting b?vdef and so trace t3τ is transformed into
a?v1.τ.a!w1.u

3
τ . However, for a slightly modified version of t3τ , e.g., t3τ{c/b}, m1

scores a modification count of 2+|u3
τ |, as despite blocking the invalid input on port

c, it fails to insert the default value that unblocks the SuS. A more expressive ver-
sion of m1, such as m2

def

=  a?( )¡.recY.( •, b?vdef¡.Y +  •, c?vdef¡.Y +  a?( )¡.id),
circumvents this problem by defining an extra insertion branch (underlined), but
still fails to be optimal in the case of t3τ{d/b}. In this case, there does not exist a way
to finitely define a monitor that can insert a default value on every possible input
port x2 6= a. Hence, it means that the optimal monitor mopt for ϕ1 would be an in-
finite branching one, i.e., it requires a countably infinite summation that is not ex-
pressible in Trn, mopt

def

=  a?( )¡.(recY.
∑

b∈Port and a6=b  •, b?vdef¡.Y +  a?( )¡.id)
or alternatively  a?( )¡.(recY.

∑
b∈Port  •, a6=b, b?vdef¡.Y +  a?( )¡.id) where the

condition a6=b is evaluated at runtime.

Unlike Example 10, Example 11 presents a case where optimality can only
be attained by a monitor that defines an infinite number of branches; this is
problematic since monitors are required to be finitely described. As it is not always
possible to find a finite monitor that enforces a formula using the least amount
of transformation for every possible system, this indicates that Definition 7 is
too strict. We thus mitigate this issue by weakening Definition 7 and redefine
it in terms of the set of system states SysΠ , i.e., the set of states that can only
perform inputs using the ports specified in a finite Π ⊂Port. Although this
weaker version does not guarantee that the monitor m optimally enforces ϕ on
all possible systems, it, however, ensures optimal enforcement for all the systems
that input values via the ports specified in Π.

Definition 8 (Weak Optimal Enforcement). A monitor m is weakly op-
timal when enforcing ϕ, denoted as oenf(m,ϕ,Π), iff it enforces ϕ (Defini-
tion 6) and when for every state s∈SysΠ , explicit trace tτ and monitor n, if

ec(n)⊆ ec(m), enf(n, ϕ) and s
tτ−−→ then mc(m, tτ )≤mc(n, tτ ).
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Example 12. Monitor m1 from Example 11 ensures that ϕ2 is optimally enforced
on systems that interact on ports a and b, i.e., when Π = {a, b}, while monitor
m2 guarantees it when Π = {a, b, c}.

5 Synthesising Action Disabling Monitors

The universal quantifications in Definitions 3, 5 and 8 make it difficult to prove
that a monitor enforces a property correctly and optimally in a bi-directional
setting. Particularly, establishing that a formula is enforceable, in the sense of Def-
inition 6, requires finding a monitor that enforces it correctly. This monitor must
then be scrutinised vis-a-vis Definition 8 to determine whether it is optimal under
certain assumptions about the system’s ports. Establishing the enforceability of
a logic is even harder, as it entails yet another universal quantification on all the
formulas in the logic. We address these problems through an automated synthesis
procedure that produces an enforcement monitor for every sHML formula and
then prove that the synthesised monitors are correct and optimal as stipulated
by Definitions 6 and 8.

In this paper, we restrict ourselves to action disabling when studying en-
forceability of sHML in a bidirectional setting. For a unidirectional setting, it
has already been shown several times [4, 31, 16, 25] that the omission of actions
from the resulting behaviour of a composite system can be used to enforce safety
properties. Intuitively, safety is ensured when actions are omitted as soon as it
becomes apparent that a violation is about to be committed by the SuS. Even
though the works relating action omission to safety have mainly been explored
in a unidirectional setting, we are confident that a similar result can be attained
in the case of a bi-directional one.

We follow the standard way for achieving our aims by first defining a synthesis
function from sHML formulas to action disabling monitors and then showing that
for every ϕ∈ sHML, our synthesis can produce a monitor mϕ that adequately
enforces ϕ as per Definition 6, and weak optimally in the sense of Definition 8.
As learnt from our prior work [4, 5], it is imperative for the synthesis function to
be compositional. This is desirable, as it simplifies our analysis of the produced
monitors, and allows us to use standard inductive proof techniques to prove
properties about the synthesis function, such as proving adherence to Definitions 6
and 8. However, we argued in the above-mentioned references that a naive
approach to such a scheme is bound to fail, and that normalisation provides an
effective way for preserving the compositionality and simplicity of our synthesis
while circumventing the problems of a naive approach. We thus work with respect
to sHMLnf defined in Definition 9, that is, a normalised syntactic subset of
sHML that is known to be equally expressive to sHML [4, 3]. An automated
procedure for translating from sHML to sHMLnf is also available in [4].

Definition 9 (sHML normal form). The set of normalised sHML formulas
by the following grammar:

ϕ,ψ ∈ sHMLnf ::= tt | ff |
∧
i∈I [ pi, ci¡]ϕi | X | maxX.ϕ .
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In addition, normalised sHML formulas are required to satisfy the following
conditions:

1. Every branch in
∧
i∈I [ pi, ci¡]ϕi, must be disjoint, #i∈I  pi, ci¡, which entails

that for every i, j ∈ I, i 6= j implies J pi, ci¡K∩ J pj , cj¡K = ∅.
2. For every maxX.ϕ we have X ∈ fv(ϕ).

In a (closed) sHMLnf formula, the basic terms tt and ff can never appear
unguarded unless they are at the top level (e.g., we can never have ϕ∧ff or
maxX0. . . .maxXn.ff). Modal operators are combined with conjunctions into one
construct

∧
i∈I [ pi, ci¡]ϕi that is written as [ p0, c0¡]ϕ0∧ . . .∧[ pn, cn¡]ϕn when

I =
{

0, . . . , n
}

and simply as [ p0, c0¡]ϕ when | I | = 1. The conjunct modal
guards must also be disjoint so that at most one necessity guard can satisfy any
particular visible action. Along with these restrictions, sHMLnf also inherits the
assumptions that fixpoint variables are guarded, and that for every  (x)?(y), c¡,
y /∈ fv(c).

Example 13. Consider the following formula ϕ3. It defines a recursive property
that is violated when a system outputs a value of 4 on any port, after inputting
a value from port a, but recurses if the output is made on port a with a value
that is not equal to 3.

ϕ3
def

= maxX.[ (x1)?(y1), x1=a¡]

(
[ (x2)!(y2), x2=a ∧ y2 6=3¡]X

∧ [ (x3)!(y3), y3=4¡]ff

)
It turns out that ϕ3 /∈sHMLnf since the conjunction it defines is not disjoint, i.e.,
J (x2)!(y2), x2=a ∧ y2 6=3¡K∩J (x3)!(y3), y3=4¡K={a!4}. Using the normalisation
procedure of [4], we can reformulate ϕ3 into ϕ′3∈sHMLnf:

ϕ′3
def

= maxX.[ (x1)?(y1), x1=a¡]

(
[ (x4)!(y4), x4=a ∧ y4 6=4¡]X

∧ [ (x4)!(y4), x4=a ∧ y4=4¡]ff

)
where x4 and y4 are fresh variables.

We now proceed to define the synthesis function in Definition 10. It defines a
compositional mapping that converts an sHMLnf formula ϕ into a transducer
m. This conversion also requires information regarding the input ports of the
SuS, as this is used to add the necessary insertion branches that silently unblock
the SuS at runtime. The synthesis function must therefore be supplied with this
information in the form of a finite set of input ports Π ⊂Port, which then
relays this information to the resulting monitor.

Example 14. Recall formula ϕ2 and monitors m1 and m2 from Example 11.
Synthesising m1 from ϕ2 the SuS can be unblocked when a value is inserted on
port b. This information must be supplied to the synthesis as Π = {b} which
in turn uses this information to add the insertion branch  •, b?vdef¡.Y in m1.
However, if Π = {b, c} monitor m2 is synthesised instead.
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Definition 10. The synthesis function L− M : sHMLnf×Pfin(Port) 7→Trn is
defined inductively as:

LX,Π M def

= X L tt, Π M def

= L ff, Π M def

= id L maxX.ϕ,Π M def

= recX.Lϕ,Π M

Lϕ=
∧
i∈ I

[ pi, ci¡]ϕi, Π M def

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi=ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(ϕ)

where dis(p, c,m,Π)
def

=

{
 p, c, •¡.m if p = (x)!(y)∑
b∈Π

 •, c{b/x}, b?vdef¡.m if p = (x)?(y)

and def(
∧
i∈ I

[ (xi)?(yi), ci¡]ϕi∧ψ)
def

=

  ( )?( )¡.id when I=∅
 (x)?(y),

∧
i∈I

(¬ci{x/xi, y/yi})¡.id otherwise

where ψ has no conjuncts starting with an input modality, variables x and y are
fresh, and vdef is a default value.

The definition above assumes a bijective mapping between formula variables
and monitor recursion variables and converts logical variables X accordingly,
whereas maximal fixpoints, maxX.ϕ, are converted into the corresponding recur-
sive monitor. The synthesis also converts truth, tt, and falsehood, ff, formulas
into the identity monitor id. Normalized conjunctions,

∧
i∈ I [ pi, ci¡]ϕi, are syn-

thesised into a recursive summation of monitors, i.e., recY.
∑
i∈I mi, where Y is

fresh, and every branch mi can be one of the following:

(i) when mi is derived from a branch of the form [ pi, ci¡]ϕi where ϕi 6= ff,
the synthesis produces a monitor with the identity transformation prefix,
 pi, ci¡, followed by the monitor synthesised from the continuation ϕi, i.e.,
[ pi, ci¡]ϕi is synthesised as  pi, ci¡.Lϕi, Π M;

(ii) when mi is derived from a violating branch of the form [ pi, ci¡]ff, the
synthesis produces an action disabling transformation via dis(pi, ci, Y,Π).

Specifically, in (ii) the dis function produces either a suppression transformation,
 pi, ci, •¡, when pi is an output pattern, (xi)!(yi), or a summation of insertions,∑

b∈Π  •, ci{b/xi}, b?vdef¡.mi, when pi is an input pattern, (xi)?(yi). The former
signifies that the monitor must react to and suppress every matching (invalid)
system output thus stopping it from reaching the environment. By not synthesising
monitor branches that react to the erroneous input, the latter allows the monitor
to hide the input handshake from the environment. However, the synthesised
insertion branches allow the resulting monitor to insert a default domain value
vdef on every port a∈Π whenever the branch condition ci{b/xi} evaluates to
true at runtime. This stops the monitor from blocking the runtime progression
of the resulting composite system.

This blocking mechanism can, however, block unspecified inputs, i.e., those
that do not satisfy any modal necessity in the normalised conjunction. This is
undesirable since unspecified actions do not contribute towards a safety violation
and, on the contrary, lead to its trivial satisfaction. To prevent this, the default
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monitor def(ϕ) is also added to the resulting summation. The def function pro-
duces a ‘catch-all’ identity monitor that forwards an input to the SuS whenever
it satisfies the negation of all the conditions associated to modal necessities
defining an input pattern in the normalized conjunction. Put differently, the
default monitor allows inputs to reach the system whenever they satisfy the con-
dition

∧
i∈I ¬ci. This condition is constructed when the normalised conjunction

is
∧
i∈I [ (xi)?(yi), ci¡]ϕi ∧ψ (assuming that ψ does not include further input

modalities). Otherwise, if none of the conjunct modalities define an input pat-
tern, every input is allowed, i.e., the default monitor becomes  ( )?( )¡.id. Upon
matching a system action, the default monitor transitions to id after forwarding
the input to the SuS.

Example 15. Consider the following unshortened version of formula ϕ1 from
Example 1.

ϕ1
def

= maxX.[ (x)?(y1), x6=b¡]([ (x1)?( ), x1=x¡]ff ∧ [ (x2)!(y2), x2=x¡]ϕ′1)

ϕ′1
def

= ([ (x3)!( ), x3=x¡]ff ∧ [ (x4)!(y3), x4=b ∧ y3=(log, y1, y2)¡]X)

For any set of ports Π, the synthesis function of Definition 10 produces the
following monitor.

mϕ1

def

= recX.recZ.( (x)?(y1), x6=b¡.recY1.m
′
ϕ1

) +  (xdef)?( ), xdef = b¡.id

m′ϕ1

def

=
∑

a∈Π
 •, a=x, a?vdef¡.Y1+ (x2)!(y2), x2=x¡.recY2.m

′′
ϕ1

+ (xdef)?( ), xdef 6=x¡.id

m′′ϕ1

def

=  (x3)!( ), x3=x,•¡.Y2+ (x4)!(y3), x4=b ∧ y3=(log, y1, y2)¡.X+ ( )?( )¡.id

The synthesised monitor mϕ1
can be further optimized by removing redundant

recursive constructs such as recZ. .

Notice that monitor mϕ1 (synthesised via Lϕ1, Π M in Example 15) has es-
sentially the same structure as mdet of Example 3 but mainly varies in how it
defines its insertion branches for unblocking the SuS. For instance if Π = {b, c},
Lϕ1, Π M would synthesise two insertion branches, namely,  •, b = x, b?vdef¡ and
 •, c = x, c?vdef¡, whereas if Π also includes d, it would add another branch.
By contrast, the manually defined mdet attains the same result more elegantly
via the single insertion branch  •, x?vdef¡. As argued in Example 11, it is not
always possible to define a monitor like mdet, especially when the formula defines
complex conditions in its violating modal necessities, such as ϕ2 of Example 11.
Despite this, the following results, namely, Theorems 1 and 2, show that our
synthesis still guarantees enforceability and optimality.

Theorem 1 (Enforceability). The logic sHML is enforceable in a bi-directional
setting.

Proof. Since sHML is logically equivalent to sHMLnf, by Definition 2 the result
follows from showing that for every ϕ∈ sHMLnf and Π ⊆Port, Lϕ,Π M enforces
ϕ (for every Π). By Definition 6, this claim comes as a result of the below stated
Propositions 2 and 3 which entail that the synthesised monitors enforce their
respective sHMLnf formula and are correct by construction.
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Proposition 2 (Soundness). For every input port set Π, system state s∈Sys
and ϕ∈ sHMLnf, if JϕK 6= ∅ then Lϕ,Π M[s]∈ JϕK.

Proposition 3 (Eventual Transparency). For every input port set Π, sHML
formula ϕ, system states s, s′ ∈Sys, action disabling monitor m′ and trace t, if

Lϕ,Π M[s] t
=⇒ m′[s′] and s′ ∈ Jafter(ϕ, t)K then m′[s′] ∼ s′.

The proofs of these propositions are given in Appendix A.
We now proceed to show that the synthesised monitor Lϕ,Π M is also guar-

anteed to be optimal (as stated by Definition 8) when enforcing ϕ on a SuS s
whose input ports are specified by Π, i.e., s∈SysΠ .

Theorem 2 (Weak Optimal Enforcement). For every system state s∈SysΠ ,

explicit trace tτ and monitor m, if ec(m)⊆ ec(Lϕ,Π M), enf(m,ϕ) and s
tτ−−→ then

mc(Lϕ,Π M, tτ )≤mc(m, tτ ).

The proof for this theorem is also given in Appendix A.

6 Related Work

In his seminal work [39], Schneider introduced the concept of runtime enforcement
and enforceability in a linear-time setting. Particularly, in his setting a property is
deemed enforceable if its violation can be detected by a truncation automaton, and
prevented via system termination. By preventing misbehaviour, these automata
can only enforce safety properties. Ligatti et al. extended this work in [31] via
edit automata—an enforcement mechanism capable of suppressing and inserting
system actions. A property is thus enforceable if it can be expressed as an edit
automaton that transforms invalid executions into valid ones via suppressions and
insertions. As a means to assess the correctness of these automata, the authors
introduced soundness and transparency.

Both settings by Schneider [39] and Ligatti et al. [31] assume a trace based
view of the SuS and that every action can be freely manipulated by the monitor.
They also do not distinguish between the specification and the enforcement
mechanism, as properties are encoded in terms of the enforcement model itself,
i.e., as edit/truncation automata. In our prior work [4], we addressed this issue by
separating the specification and verification aspects of the logic and explored the
enforceability of µHML in a unidirectional context and in relation to a definition
of adequate enforcement defined in terms of soundness and transparency. In this
paper we adopt a stricter notion of enforceability that requires adherence to
eventual transparency and investigate the enforceability of sHML formulas in
the context of bidirectional enforcement.

Bielova and Massacci [11, 13] remark that, on their own, soundness and
transparency fail to specify the extent in which a transducer should modify invalid
runtime behaviour and thus introduce a predictability criterion. A transducer is
predictable if one can predict the edit-distance between an invalid execution and a
valid one. With this criterion, adequate monitors are further restricted by setting
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an upper bound on the number of transformations that a monitor can apply to
correct invalid traces. Although this is similar to our notion of optimality, we
however use it to compare an adequate (sound and eventual transparent) monitor
to all the other adequate monitors and determine whether it is the least intrusive
monitor that can enforce the property of interest.

In [28] Könighofer et al. present a synthesis algorithm similar to our own
that produces action replacement monitors called shields from safety properties
encoded as automata-based specifications. Although their shields can analyse
both the inputs and outputs of a reactive system, they still perform unidirectional
enforcement since they only modify the data associated with the system’s output
actions. By definition, shields should adhere to correctness and minimum deviation
which are, in some sense, analogous to soundness and transparency respectively.

In [35, 34], Pinisetty et al. conduct a preliminary investigation of RE in a
bidirectional setting. They, however, model the behaviour of the SuS as a trace
of input and output pairs, a.k.a. reactions, and focus on enforcing properties
by modifying the payloads exchanged by these reactions. This way of modelling
system behaviour is, however, quite restrictive as it only applies to synchronous
reactive systems that output a value in reaction to an input. This differs sub-
stantially from the way we model systems as LTSs, particularly since we can
model more complex systems that may opt to collect data from multiple inputs,
or supply multiple outputs in response to an input. The enforcement abilities
studied in [35, 34] are also confined to action replacement that only allows the
monitor to modify the data exchanged by the system in its reactions, and so
the monitors in [35, 34] are unable to disable and enable actions. Due to their
trace based view of the system, their correctness specifications do not allow for
defining correct system behaviour in view of its different execution branches. This
is particularly useful when considering systems whose inputs may lead them into
taking erroneous computation branches that produce invalid outputs. Moreover,
since their systems do not model communication ports, their monitors cannot
influence directly the control structure of the SuS, e.g., by opening, closing or
rerouting data through different ports.

7 Conclusion

In this paper we conduct a preliminary study of the enforceability of a branching
time logic in a bi-directional enforcement setting. To enable this study, we
conceptualised a novel distinction between the enforcement transformations
(suppression, insertions and replacements) performed by the enforcement monitor,
and the way the instrumentation interprets these transformations to enable,
disable or adapt actions of the SuS at runtime. Based on this distinction, we
have developed an instrumentation model for bi-directional enforcement. We
then focused on identifying the properties that can be both expressed via the
process logic sHML and also enforced using our model.

We thus defined a strict notion of enforceability that builds upon the con-
ventional definitions that are typically based on soundness and transparency.
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Particularly, we included the criterion of eventual transparency that not only
forbids modifications to valid systems (as imposed by transparency), but also
requires the monitor to stop applying transformations whenever the SuS reaches
a valid point. In addition, we introduced the notion of optimality to assess the
level of intrusiveness of a monitor, and determine whether it is the least intru-
sive monitor that one can find. Based on these notions, we devised a synthesis
function that produces action disabling monitors that are correct and optimal by
construction. This allowed us to conclude that sHML is enforceable via action
disabling in a bidirectional setting.

Future Work. We plan to expand our exploration into bi-directional enforcement
by studying the enforceability of more expressive logics such as the full µHML.
This requires investigating how the capabilities of the other enforcement instru-
mentation mechanisms (action enabling and adaptation) can be fully harnessed
to enforce properties that cannot be expressed via sHML. We also intend to
study the maximality results for action disabling enforcement, along the lines of
[2, 19].

Another interesting avenue for future research would be to explore the im-
plementability and feasibility of our instrumentation model for bi-directional
enforcement. Languages closer to an actual implementation (e.g., actor or channel-
based languages along the lines of [20, 9]) can be used to implement our monitor
descriptions and refinement analysis techniques can then be used to refine our
abstract enforcement monitor descriptions into more concrete ones. Our synthesis
function in conjunction with the refinement technique can then be used to guide
and facilitate tool construction.
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A Main Proofs

To facilitate the forthcoming proofs we occasionally use the satisfaction semantics
for sHML from [6, 24] which is defined in terms of the satisfaction relation, �.
When restricted to sHML, � is the largest relation R satisfying the implications
defined in Figure 7. As these semantics are well known to agree with the sHML
semantics of Figure 2, we use s � ϕ in lieu of s ∈ JϕK. At certain points we also
refer to the τ -closure property of sHML, Proposition 4, that was proven in [6].

Proposition 4. if s
τ−→ s′ and s � ϕ then s′ � ϕ.

We also assume the classic notion of strong similarity, s@∼ r as our touchstone
system preorder for LTSs [33, 38].
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(s, tt) ∈ R implies true

(s,ff) ∈ R implies false

(s,
∧
i∈I ϕi) ∈ R implies (s, ϕi) ∈ R for all i∈ I

(s, [ p, c¡]ϕ) ∈ R implies (∀α, r · s α
=⇒ r and  p, c¡(α) = σ) implies (r, ϕσ) ∈ R

(s,maxX.ϕ) ∈ R implies (s, ϕ{maxX.ϕ/X}) ∈ R

where  p, c¡(α) = σ is short for mtch(p, α) = σ and cσ ⇓ true.

Fig. 7. A satisfaction relation for sHML formulas

Definition 11 (Strong Similarity). A relation R over a set of system states
is a strong simulation iff whenever (s, r) ∈ R for every action µ:

– s
µ−−→ s′ implies there exists a transition r

µ−−→ r′ such that (s′, r′) ∈ R

States s and r are similar, s@∼ r, iff they are related by a strong simulation.

We now present the proof for Proposition 1 followed by the proofs for the theorems
and propositions omitted from Section 5.

A.1 Proving Proposition 1

We need to prove that for every system transition s
α

=⇒ s′ and sHML formula
ϕ, if s ∈ JϕK then s′ ∈ Jafter(ϕ, α)K. We prove the contrapositive, i.e., if s

α
=⇒ s′

and s′ /∈ Jafter(ϕ, α)K then s /∈ JϕK.

Proof. As we assume that logical variables are guarded (see Remark 1 on 7), we
can proceed by rule induction on after.

Case after(ff, α). This case holds trivially since s /∈ JffK.

Case after(tt, α). This case does not apply since after(tt, α) = tt and so the
assumption that s′ /∈ Jafter(tt, α)K is invalid.

Case after(
∧
i∈I ϕi, α). Assume that

s
α

=⇒ s′ (1)

and that s′ /∈ Jafter(
∧
i∈I ϕi, α)K from which by the definition of after we have

that

s′ /∈ J
∧
i∈I

after(ϕi, α)K ≡ ∃j ∈ I · s′ /∈ Jafter(ϕj , α)K. (2)

Hence, by (1) and (2) we can apply the inductive hypothesis and deduce that
there exists a j ∈ I such that s /∈ JϕjK which means that s /∈

⋂
i∈I

JϕiK = J
∧
i∈I ϕiK

as required.
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Case after(maxX.ϕ, α). Assume that

s
α

=⇒ s′ (3)

and that s′ /∈ Jafter(maxX.ϕ, α)K from which, by the definition of after, we have
that

s′ /∈ Jafter(ϕ{maxX.ϕ/X}, α)K. (4)

By (3), (4) and the inductive hypothesis we have that s /∈ Jϕ{maxX.ϕ/X}K.
Since Jϕ{maxX.ϕ/X}K = JmaxX.ϕK, we can conclude that s /∈ JmaxX.ϕK as
required.

Case after([ p, c¡]ϕ, α). Assume that

s
α

=⇒ s′ and (5)

s′ /∈ Jafter([ p, c¡]ϕ, α)K. (6)

Now consider the following two cases:

– mtch(p, α) = σ and cσ ⇓ true (for some σ): By (6) and the definition of after
we know that

s′ /∈ JϕσK (7)

and so from (5), (7) and by the definition of J−K we can infer that s /∈
J[ p, c¡]ϕK since there exists a transition, i.e., (5), that leads to a violation,
i.e., (7).

– Otherwise: This case does not apply since after([ p, c¡]ϕ, α) = tt which
contradicts assumption (6).

A.2 Proving Proposition 2 (Sound Enforcement)

Proof. To prove that for every system s, formula ϕ and set of ports Π

if JϕK 6= ∅ then Lϕ,Π M[s]�ϕ

we show a stronger result stating that for every system r simulated by Lϕ,Π M[s],

if JϕK 6= ∅ and r @∼ Lϕ,Π M[s] then r �ϕ.

We prove this by showing that relation R (below) is a satisfaction relation (�)
and so that it abides by the rules in Figure 7.

R def

=
{

(r, ϕ)
∣∣∣ JϕK 6= ∅ and r @∼ Lϕ,Π M[s]

}
.

We prove this claim by case analysis on the structure of ϕ.

Cases ϕ∈{X,ff}. These cases do not apply since JffK = ∅ and LX,Π M does not
yield a valid monitor.
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Case ϕ = tt. This case holds trivially as for every process r @∼ L tt, Π M[s] the
pair (r, tt) is in R since we know that JttK 6= ∅.

Case ϕ = maxX.ϕ and X∈fv(ϕ). Lets assume that (r,maxX.ϕ) ∈ R and so
we have that

JmaxX.ϕK 6= ∅ (1)

r @∼ L maxX.ϕ,Π M[s]. (2)

To prove that R is a satisfaction relation we show that (r, ϕ{maxX.ϕ/X}) ∈
R as well. Hence, since Lϕ{maxX.ϕ/X}, Π M produces a monitor that is the
unfolded equivalent of L maxX.ϕ,Π M we can conclude that L maxX.ϕ,Π M ∼
Lϕ{maxX.ϕ/X}, Π M and so from (2) we have that

r @∼ Lϕ{maxX.ϕ/X}, Π M[s]. (3)

Finally, since from (1) and JmaxX.ϕK = Jϕ{maxX.ϕ/X}K we can also deduce
that Jϕ{maxX.ϕ/X}K 6= ∅, by (3) and the definition of R we can conclude that
(r, ϕ{maxX.ϕ/X}) ∈ R as required.

Case ϕ=
∧
i∈I

[ pi, ci¡]ϕi and #h∈I  ph, ch¡. Assume that (r,
∧
i∈I

[ pi, ci¡]ϕi) ∈ R

and so we have that

J
∧
i∈I

[ pi, ci¡]ϕiK 6= ∅ (4)

r @∼ L
∧
i∈I

[ pi, ci¡]ϕi, Π M[s]. (5)

By the definition of L− M we further know that L
∧
i∈I [ pi, ci¡]ϕi, Π M produces

the following monitor m,

m = recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi=ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

which can be further unfolded as

L
∧
i∈I

[ pi, ci¡]ϕi, Π M =
(∑
i∈I

{
dis(pi, ci,m,Π) if ϕi=ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi).

(6)

In order to prove that R is a satisfaction relation, for this case we must show that
for every j ∈ I, (r, [ pj , cj¡]ϕj)∈R as well. We thus inspect the different types
of branches that are definable in sHMLnf and hence we consider the following
cases:

(i) A violating output branch, [ (x)!(y), cj¡]ff:

To prove that (r, [ (x)!(y), cj¡]ff) ∈ R we show that (a) J[ (x)!(y), cj¡]ffK 6= ∅,
(b) r @∼ L [ (x)!(y), cj¡]ff, Π M[s], and (c) that for every output action a!v,
when  (x)!(y), cj¡(a!v) = σ, then there does not exist a system r′ such that

30



r
a!v

==⇒ r′. From (4) and the definition of J−K we can immediately infer that
(a) holds, and so we have that

J[ (x)!(y), cj¡]ffK 6= ∅. (7)

We now note that since from (6) we know that branch [ (x)!(y), cj¡]ff is
synthesised into dis((x)!(y), cj ,m,Π) in m, by the definition of dis we can
infer that one of the summed monitors in (6) is a suppression monitor of
the form

dis((x)!(y), cj ,m,Π) =  (x)!(y), cj , •¡.m. (8)

From (8) we infer that since L[ (x)!(y), cj¡]ff, Π M def

= recY. (x)!(y), cj , •¡.Y +

def([ (x)!(y), cj¡]ff) (where def([ (x)!(y), cj¡]ff)
def

=  (x)?(y), true¡.id) we know
that this monitor can only disable actions matching  (x)!(y), cj¡, while
m= L

∧
i∈I [ pi, ci¡]ϕi, Π M can possibly disable other actions as well. Hence,

the composite system m[s] (for any s) can perform at most the same actions
as L [ (x)!(y), cj¡]ff, Π M[s] and so from (5) we can deduce that (b) holds since

r @∼ L
∧
i∈I

[ pi, ci¡]ϕi, Π M[s]@∼ L [ (x)!(y), cj¡]ff, Π M[s] (9)

as required. Finally, from (6) we know that monitor m was synthesised from

a normalized conjunction which is disjoint (since #h∈I  ph, ch¡) and that
the synthesised monitors def(

∧
i∈I [ pi, ci¡]ϕi) can only transform actions

that do not satisfy the conditions of the other monitors in m. This enables
us to conclude that whenever the system performs action a!v such that
 (x)!(y), cj¡(a!v) = σ, only the suppression branch presented in (8) (which is
a single branch of m in (6)) can be selected via rule eSel. Once this branch
is selected, the action is suppressed via rule eTrn and as a result disabled
via rule iDisO which causes the composite system m[s] to transition over a

silent τ action to its recursive derivative m. This means that m[s] 6a!v==⇒ and
so from (5) we can also deduce that (c) also holds since

@r′ · r a!v
==⇒ r′ (10)

which means that any output modal necessity that precedes ff can never be
satisfied by r as required. This case thus holds by (7), (9) and (10).

(ii) A violating input branch, [ (x)?(y), cj¡]ff where Y /∈fv(cj):
To prove that (r, [ (x)?(y), cj¡]ff) ∈ R we show that: (a) J[ (x)?(y), cj¡]ffK 6= ∅,
(b) r @∼ L [ (x)?(y), cj¡]ff, Π M[s] and then that (c) for every input action a?v,
when  (x)?(y), cj []¡(a?v) = σ, then there does not exist a system r′ such

that r
a?v

==⇒ r′.

By (4) and the definition of J−K we can infer that (a) holds, and so that

J[ (x)?(y), cj¡]ffK 6= ∅. (11)
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Now, from (6) we can infer that the summation of monitors in m includes
a summation of insertion monitors and so by the definition of dis we have
that

dis((x)?(y), cj ,m,Π) =
∑
b∈Π

 •, cj{b/x}, b?w¡.m. (12)

Therefore from (12) we can deduce that monitor

L [ (x)?(y), cj¡]ff, Π M = recY.
∑
b∈Π

 •, cj{b/x}, b?w¡.m+ def([ (x)?(y), cj¡]ff)

where def([ (x)?(y), cj¡]ff)
def

=  (x)?(y),¬cj []¡.id (13)

can only block and disable erroneous input actions satisfying [ (x)?(y), cj¡]ff,
while monitor m in (6) can possibly disable additional actions. Hence the
monitored system m[s] can only perform either a subset or exactly the same
action as per L [ (x)?(y), cj¡]ff, Π M[s] and so from (5) we can deduce that
(b) holds, and so that

r @∼ L
∧
i∈I

[ pi, ci¡]ϕi, Π M[s]@∼ L [ (x)?(y), cj¡]ff, Π M[s] (14)

as required. Finally, to show that (c) holds, recall that every system s is
unable perform an input unless the environment provides it, and that the
monitor cannot allow an input to go through unless it has an identity (or
replacement) branch that forwards the environment’s input to the system.
From (12) and (13) we thus know that the synthesised monitor m does not
include such an identity (or replacement) branch for [ (x)?(y), cj¡]ff, and
unless Π = ∅, it instead provides a summation of insertion transformations
that allow the monitor to insert a default domain value w on every port b in
Π whenever cj{b/x} evaluates to true at runtime. In this way, whenever the
system is expecting to erroneously procure an input from the environment,
the monitor blocks and disables the input and unless Π=∅ it also (non-
deterministically) selects one of the synthesised branches in (12) via rule
eSel and performs the insertion via rule eTrn which subsequently allows
the instrumentation to proceed via rule iDisI that forwards the generated
input to the system. This causes the composite system m[s] to transition
over a silent τ action to the recursive derivative m. Since the erroneous
input is blocked regardless of whether the monitor inserts a value or not,

we can infer that m[s] 6a?v==⇒ and so from (5) we can also deduce that

@r′ · r a?v
==⇒ r′ (15)

and so the violating input modalities cannot ever be satisfied by r as
required. Therefore, this case holds by (11), (14) and (15).

(iii) A non-violating branch, [ pj , cj¡]ϕj (where ϕj 6= ff):
To prove that this branch is in R, (r, [ pj , cj¡]ϕj)∈R, we show that (a)
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J[ pj , cj¡]ϕjK 6= ∅, (b) r @∼ L [ pj , cj¡]ϕj , Π M[s] and then that (c) for every ac-

tion α and derivative r′, when  pj , cj¡(α)=σ and r
α

=⇒ r′ then (r′, ϕjσ)∈R.

From (4) and by the definition of J−K we can immediately determine that
(a) holds, and so that

J[ pj , cj¡]ϕjK 6= ∅ (16)

and since by the definition of L− M we know that monitor

L [ pj , cj¡]ϕj , Π M = recY. pj , cj¡.Lϕ,Π M + def([ pj , cj¡]ϕj)

from (6) we can infer that both monitors m and L [ pj , cj¡]ϕj , Π M refrain
from modifying actions matching  pj , cj¡ but m may disable more actions.
Hence we can infer that for all s, m[s]@∼ L [ pj , cj¡]ϕj , Π M[s] and so from (5)
we can deduce that (b) holds since

r @∼m[s]@∼ L [ pj , cj¡]ϕj , Π M[s] (17)

as required. We now prove that (c) holds by assuming that

 pj , cj¡(α) = σ (18)

r
α

=⇒ r′ (19)

and so from (5) and (19) we can deduce that

m[s]
α

=⇒ q (where r′ @∼ q). (20)

Hence, by the definition of
α

=⇒ we know that the weak transition in (20) is
composed of zero or more τ -transitions followed by the α-transition, i.e.,

m[s]
τ−→*q′

α−−→ q. (21)

By the rules in our model we know that the τ -reductions in (21) could
have been the result of either one of these instrumentation rules, namely
iDisI, iDisO or iAsy. From (6) we however know that whenever an action
is disabled (via rules iDisO/I) the synthesised monitor m always recurses
back to its original form m and in this case only s changes its state to some
s′; the same effect occurs if rule iAsy is applied instead. Hence we know
that q′ = m[s′] (for some derivative s′ of s), and so from (21) we thus have
that

m[s′]
α−−→ q. (22)

From (18) we also know that the reduction in (22) can be the result of
either iTrnI or iTrnO, and so we consider both cases.
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(i) iTrnI: By assuming that (22) is the result of rule iTrnI we infer that
α = a?v and that

m
a?vIb?w−−−−−−→ m′ (23)

s′
b?w−−−→ s′′ (24)

q = m′[s′′]. (25)

Since we know that [ pj , cj¡]ϕj and ϕj 6= ff, from (6) we know that
m defines an identity branch of the form  pj , cj¡.Lϕj , Π M which is
completely disjoint from the rest of the monitors. This is true since

m is derived from a normalized conjunction in which #i∈I  pi, ci¡,
and the default monitors, def(

∧
i∈I [ pi, ci¡]ϕi), can only match actions

that do not match with any other monitor. Hence from (18) and (23)
we can deduce that

m′ = Lϕjσ,Π M. (26)

Since from (16) and by the definition of J−K we know that JϕjσK 6= ∅
and from (20), (25) and (26) we have that r′ @∼ Lϕjσ,Π M[s′′], by the
definition of R we can conclude that (r′, ϕjσ) ∈ R as required.

(ii) iTrnO: We omit this proof due to its strong resemblance to that of
case iTrnI.

Therefore from (i) and (ii) we can conclude that (c) holds as well, which
means that

∀α, r′ · if  pj , cj¡(α) = σ and r
α

=⇒ r′ then (r′, ϕjσ) ∈ R. (27)

Hence this case is done by (16), (17) and (27).

A.3 Proving Proposition 3 (Eventual Transparent Enforcement)

Proof for Proposition 3. We must prove that for every formula ϕ∈ sHMLnf if
Lϕ,Π M =m then evtenf(m,ϕ). Since sHMLnf is equally expressive as sHML we

prove that for every ϕ∈ sHMLnf, if Lϕ,Π M[s] t
=⇒ m′[s′] and s′ � after(ϕ, t) then

m′[s′] ∼ s′. We also refer to Proposition 5 (Transparency) and Lemma 1, defined
below, and whose proofs are provided in Appendix B.

Proposition 5 (Transparency). For every state s∈Sys and ϕ∈ sHMLnf, if
s∈ JϕK then Lϕ,Π M[s]∼ s.

Lemma 1. For every formula ϕ∈ sHMLnf, state s and trace t, if Lϕ,Π M[s] t
=⇒

m′[s′] then ∃ψ ∈ sHMLnf · ψ = after(ϕ, t) and Lψ,Π M = m′.

Now, assume that

Lϕ,Π M[s] t
=⇒ m′[s′] (28)

s′ � after(ϕ, t) (29)
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and so from (28) and Lemma 1 we have that

∃ψ ∈ sHMLnf · ψ = after(ϕ, t) (30)

L after(ϕ, t), Π M = m′ = Lψ,Π M. (31)

Hence, knowing (29) and (30), by Proposition 5 (Transparency) we conclude that
L after(ϕ, t), Π M[s′] ∼ s′ as required, and so we are done.

A.4 Proving Theorem 2 (Optimal Enforcement)

Since our synthesis produces only action disabling monitors, i.e., ec(Lϕ,Π M) = {DIS}
for all ϕ and Π, we can limit ourselves to monitors pertaining to the set
DisTrn

def

= {n if ec(n)⊆{DIS}}. To further simplify the proof for Theorem 2 we
refer to the following lemmas.

Lemma 2. For every m∈DisTrn and explicit trace tτ , mc(m, tτ ) =N .

Lemma 3. For every action α and monitor m∈DisTrn, if m
αIα−−−−→ m′,

enf(m,
∧
i∈I [ pi, ci¡]ϕi) and  pj , cj¡(α) =σ (for some j∈I) then enf(m′, ϕjσ).

Lemma 4. For every monitor m∈DisTrn, whenever enf(m,
∧
i∈I [ pi, ci¡]ϕi)

and m
(a!v)I•−−−−−→ m′ then enf(m′,

∧
i∈I [ pi, ci¡]ϕi).

Lemma 5. For every monitor m∈DisTrn, whenever enf(m,
∧
i∈I [ pi, ci¡]ϕi)

and m
•I(a?v)−−−−−−→ m′ then enf(m′,

∧
i∈I [ pi, ci¡]ϕi).

Proof. As from Lemma 2 we know that for every m∈DisTrn, mc(m, tτ ) =N ,

we can prove that if enf(m,ϕ), s
tτ−−→ and mc(Lϕ,Π M, tτ ) =N then N ≤mc(m, tτ ).

We proceed by rule induction on mc(Lϕ,Π M, tτ ).

Case mc(Lϕ,Π M, tτ ) when tτ =µt′τ and Lϕ,Π M[sys(µt′τ )]
µ−−→ m′ϕ[sys(t′τ )]. As-

sume that

mc(Lϕ,Π M, µt′τ ) = mc(m′ϕ, t
′
τ ) = N (32)

which implies that

Lϕ,Π M[sys(µt′τ )]
µ−−→ m′ϕ[sys(t′τ )] (33)

and also assume that

enf(m,ϕ) (34)

and that s
µt′τ−−−→. By the rules in our model we can infer that the reduction in

(33) can result from rule iAsy when µ= τ , iDef and iTrnO when µ= a!v, or
iTrnI when µ= a?v. We consider each case individually.
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– iAsy: By rule iAsy from (33) we know that µ= τ and that

m′ϕ = Lϕ,Π M. (35)

Since from (34) we know that m is sound and eventual transparent, we can
thus deduce that m does not hinder internal τ -actions from occurring and so
the composite system Lϕ,Π M[sys(τt′τ )] can always transition over τ via rule
iAsy, that is,

m[sys(τt′τ )]
τ−→ m[sys(t′τ )]. (36)

Hence, by (32), (34) and since s
τt′τ−−−→ entails s

τ−→ s′ and s′
t′τ−−→ we can

apply the inductive hypothesis and deduce that N ≤mc(m, t′τ ) so that by
(36) and the definition of mc, we conclude that N ≤mc(m, τt′τ ) as required.

– iDef: From (33) and rule iDef we know that µ= a!v, Lϕ,Π M 6a!v−−→ and that
m′ϕ = id. Since id does not modify actions, we can deduce that mc(m′ϕ, t

′
τ ) = 0

and so by the definition of mc we know that mc(Lϕ,Π M, (a!v)t′τ ) = 0 as well.
This means that we cannot find a monitor that performs fewer transformations,
and so we conclude that 0≤mc(m, (a!v)t′τ ) as required.

– iTrnI: From (33) and rule iTrnI we know that µ= a?v and that

Lϕ,Π M
(a?v)I(a?v)−−−−−−−−→ m′ϕ. (37)

We now inspect the cases for ϕ.
• ϕ∈{ff, tt, X}: The cases for ff and X do not apply since L ff, Π M and

LX,Π M do not yield a valid monitor, while the case when ϕ= tt gets
trivially satisfied since L tt, Π M = id and mc(id, (a?v)t′τ ) = 0.

• ϕ=
∧
i∈I [ pi, ci¡]ϕi where #i∈I  pi, ci¡: Since ϕ =

∧
i∈I [ pi, ci¡]ϕi, by

the definition of L− M we have that

Lϕ∧ =
∧
i∈I [ pi, ci¡]ϕi, Π M

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

=

(∑
i∈I

{
dis(pi, ci, Lϕ∧, Π M, Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

(38)

Since normalized conjunctions are disjoint, i.e., #i∈I  pi, ci¡, from (38)
we can infer that the identity reduction in (37) can only happen when
a?v matches an identity branch,  pj , cj¡.Lϕj , Π M (for some j ∈ I), and so
we have that

 pj , cj¡(a?v) = σ. (39)

Hence, knowing (37) and (39), by rule eTrn we know thatm′ϕ = Lϕjσ,Π M
and so by (32) we can infer that

mc(m′ϕ, t
′
τ ) = N where m′ϕ = Lϕjσ,Π M. (40)

36



Since from (38) we also know that the monitor branch  pj , cj¡.Lϕj , Π M
is derived from a non-violating modal necessity, i.e., [ pj , cj¡]ϕj where
ϕj 6= ff, we can infer that a?v is not a violating action and so it should
not be modified by any other monitor m, as otherwise it would infringe
the eventual transparency constraint of assumption (34). Therefore, we
can deduce that

m
(a?v)I(a?v)−−−−−−−−→ m′ (for some m′) (41)

and subsequently, knowing (41) and that tτ = (a?v)t′τ and also that

sys((a?v)t′τ )
a?v−−−→sys(t′τ ), by rule iTrnI and the definition of mc we infer

that

mc(m, (a?v)t′τ ) = mc(m′, t′τ ). (42)

As by (34), (37), (39) and Lemma 3 we know that enf(m′, ϕjσ), by (40)

and since s
(a?v)t′τ−−−−−→ entails that s

a?v−−−→ s′ and s′
t′τ−−→, we can apply the

inductive hypothesis and deduce that N ≤mc(m′, t′τ ) and so from (42)
we conclude that N ≤mc(m, (a?v)t′τ ) as required.
• ϕ= maxX.ϕ′ and X ∈ fv(ϕ′): Since ϕ= maxX.ϕ′, by the syntactic re-

strictions of sHMLnf we infer that ϕ′ cannot be ff or tt since X /∈ fv(ϕ′)
otherwise, and it cannot be X since every logical variable must be guarded.
Hence, ϕ′ must be of a specific form, i.e., maxY1 . . . Yn.

∧
i∈I [ pi, ci¡]ϕi,

and so by unfolding every fixpoint in maxX.ϕ′ we reduce our formula to
ϕ

def

=
∧
i∈I [ pi, ci¡]ϕi{maxX.ϕ′

/X , . . .}. We thus omit the remainder of this

proof as it becomes identical to that of the subcase when ϕ=
∧
i∈I

[ pi, ci¡]ϕi.

– iTrnO: We elide the proof for this case as it is very similar to that of iTrnI.

Case mc(Lϕ,Π M, tτ ) when tτ=µt′τ and Lϕ,Π M[sys(µt′τ )]
µ′

−−→m′ϕ[sys(t′τ )] and µ′ 6=µ.

Assume that

mc(Lϕ,Π M, µt′τ ) = 1 +M (43)

where M = mc(m′ϕ, t
′
τ ) (44)

which implies that

Lϕ,Π M[sys(µt′τ )]
µ′

−−→ m′ϕ[sys(t′τ )] where µ′ 6= µ (45)

and also assume that

enf(m,ϕ) (46)

and that s
µt′τ−−−→. Since we only consider action disabling monitors, the µ′

reduction of (45) can only be achieved via rules iDisO or iDisI. We thus explore
both cases.
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– iDisI: From (45) and by rule iDisI we have that µ = a?v and µ′ = τ and
that

Lϕ,Π M •Ia?v−−−−→ m′ϕ. (47)

We now inspect the cases for ϕ.

• ϕ∈{ff, tt, X}: These cases do not apply since L ff, Π M and LX,Π M do not
yield a valid monitor, while L tt, Π M = id does not perform the reduction
in (47).

• ϕ=
∧
i∈I [ pi, ci¡]ϕi where #i∈I  pi, ci¡: Since ϕ =

∧
i∈I [ pi, ci¡]ϕi, by

the definition of L− M we have that

Lϕ∧ =
∧
i∈I [ pi, ci¡]ϕi, Π M

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

=

(∑
i∈I

{
dis(pi, ci, Lϕ∧, Π M, Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

(48)

Since normalized conjunctions are disjoint i.e., #i∈I  pi, ci¡, and since

s
µt′τ−−−→ where µ = (a?v), by the definition of dis, from (48) we can deduce

that the reduction in (47) can only be performed by an insertion branch of
the form,  •, cj{a/x}, a?v¡.L

∧
i∈I [ pi, ci¡]ϕi, Π M that can only be derived

from a violating modal necessity [ pj , cj¡]ff (for some j ∈ I). Hence, we
can infer that

m′ϕ = L
∧
i∈I [ pi, ci¡]ϕi, Π M (49)

pj = (x)?(y) and cj{a/x} ⇓ true. (50)

Knowing (50) and that [ pj , cj¡]ff we can deduce that any input on port
a is erroneous and so for the soundness constraint of assumption (46) to
hold, any other monitor m is obliged to somehow block this input port.
As we consider action disabling monitors, i.e., m∈DisTrn, we can infer
that monitor m may block this input in two ways, namely, either by not

reacting to the input action, i.e., m 6a?v−−−→, or by additionally inserting a

default value v, i.e., m
•I(a?v)−−−−−−→ m′. We explore both cases.

* m 6a?v−−−→: Since sys((a?v)t′τ )
a?v−−−→ sys(t′τ ) and since m 6a?v−−−→, by the

rules in our model we know that for every action µ′,m[sys((a?v)t′τ )] 6µ
′

−−→
and so by the definition of mc we have that mc(m, (a?v)t′τ ) = | (a?v)t′τ |
meaning that by blocking inputs on a, m also blocks (and thus modi-
fies) every subsequent action of trace t′τ . Hence, this suffices to deduce
that at worst 1 +M is equal to | (a?v)t′τ |, that is 1 +M ≤ | (a?v)t′τ |,
and so from (43) we can deduce that 1 + M ≤mc(Lϕ,Π M, µt′τ ) as
required.
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* m
•I(a?v)−−−−−−→ m′: Since sys((a?v)t′τ )

a?v−−−→ sys(t′τ ) and since m
•I(a?v)−−−−−−→

m′, by rule iDisI we know that m[sys((a?v)t′τ )]
τ−→ m[sys(t′τ )] and so

by the definition of mc we have that

mc(m, (a?v)t′τ ) = 1 + mc(m′, t′τ ). (51)

As by (46), (47) and Lemma 5 we infer that enf(m′,
∧
i∈I [ pi, ci¡]ϕi),

by (44), (51) and since s
(a?v)t′τ−−−−−→ entails that s

(a?v)−−−−→ s′ and s′
t′τ−−→,

we can apply the inductive hypothesis and deduce that M ≤mc(m′, t′τ )
and so from (43), (44) and (51) we conclude that 1+M ≤mc(m, (a?v)t′τ )
as required.

• ϕ= maxX.ϕ′ and X ∈ fv(ϕ′): We omit showing this proof as it is a special
case of when ϕ=

∧
i∈I [ pi, ci¡]ϕi.

– iDisO: We omit showing the proof for this subcase as it is very similar to
that of case iDisI. Apart from the obvious differences (e.g., a!v instead of
a?v), Lemma 4 is used instead of Lemma 5.

Case mc(Lϕ,Π M, tτ ) when tτ ∈{µt′τ , ε} and Lϕ,Π M[sys(µt′τ )] 6µ
′

−−→. Assume
that

mc(Lϕ,Π M, tτ ) = | tτ | (where tτ ∈{µt′τ , ε}) (52)

Lϕ,Π M[sys(µt′τ )] 6µ
′

−−→ (53)

enf(m,ϕ) (54)

Since tτ ∈{µt′τ , ε} we consider both cases individually.

– tτ = ε : This case holds trivially since by (52), (53) and the definition of mc,
mc(Lϕ,Π M, ε) = | ε | = 0.

– tτ = µt′τ : Since tτ = µt′τ we can immediately exclude the cases when
µ∈{τ, a!v} since rules iAsy and iDef make it impossible for (53) to be
attained in such cases. Particularly, rule iAsy always permits the SuS to
independently perform an internal τ -move, while rule iDef allows the monitor
to default to id whenever the system performs an unspecified output a!v.
However, in the case of inputs, a?v, the monitor may completely block
inputs on a port a and as a consequence cause the entire composite system
Lϕ,Π M[sys(µt′τ )] to block, thereby making (53) a possible scenario. We thus
inspect the cases for ϕ vis-a-vis µ= a?v.

• ϕ∈{ff, tt, X}: These cases do not apply since L ff, Π M and LX,Π M do not
yield a valid monitor and since L tt, Π M = id is incapable of attaining (53).
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• ϕ=
∧
i∈I

[ pi, ci¡]ϕi where #i∈I  pi, ci¡: Since ϕ=
∧
i∈I

[ pi, ci¡]ϕi, by the def-

inition of L− M we have that

Lϕ∧ =
∧
i∈I [ pi, ci¡]ϕi, Π M

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

=

(∑
i∈I

{
dis(pi, ci, Lϕ∧, Π M, Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)

(55)

Since µ = a?v, from (55) and by the definitions of dis and def we can
infer that the only case when (53) is possible is when the inputs on port
a satisfy a violating modal necessity, that is, there exists some j ∈ I such
that [ pj , cj¡]ff and for every v ∈Val, mtch(pj , a?v) =σ and cjσ ⇓ true.
At the same time, the monitor is also unaware of the port on which the
erroneous input can be made, i.e., a /∈Π. Hence, this case does not apply
since we limit ourselves to SysΠ , i.e., states of system that can only input
values via the ports specified in Π.
• ϕ= maxX.ϕ′: As argued in previous cases, this subcase is a special case

of ϕ=
∧
i∈I [ pi, ci¡]ϕi and so we omit this part of the proof.

Case mc(Lϕ,Π M, tτ ) when tτ ∈{µt′τ , ε} and Lϕ,Π M[sys(tτ )]
µ′

−−→ m′ϕ[sys(tτ )]. As
we only consider action disabling monitors, this case does not apply since

Lϕ,Π M[sys(tτ )]
µ′

−−→ m′ϕ[sys(tτ )] can only be achieved via action enabling and
rules iEnO and iEnI.

B Auxiliary Proofs

In this section we give the omitted proofs for auxiliary lemmas defined in Ap-
pendix A.

B.1 Proving Auxiliary Lemmas for Proposition 3 (Eventual
Transparency)

Proof for Lemma 1. We need to prove that for every formula ϕ∈ sHMLnf, if we

assume that Lϕ,Π M[s] t
=⇒ m′[s′] then there must exist some formula ψ, such that

ψ = after(ϕ, t) and Lψ,Π M = m′. This proof relies on the following lemma whose
proof is given following the end of the current one.

Lemma 6. For every formula of the form
∧
i∈I [ pi, ci¡]ϕi and system states s

and r, if L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] τ−→*r then there exists some state s′ and trace

u such that s
u

=⇒ s′ and r = L
∧
i∈I [ pi, ci¡]ϕi, Π M[s′].

We now proceed by induction on the length of t.
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Case t = ε. This case holds vacuously since when t= ε then m′= Lϕ,Π M and
ϕ= after(ϕ, ε).

Case t = αu. Assume that Lϕ,Π M[s] αu
==⇒ m′[s′] from which by the definition

t
=⇒ we can infer that

Lϕ,Π M[s] τ−→*r (56)

r
α−−→ r′ (57)

r′
u

=⇒ m′[s′]. (58)

We now proceed by case analysis on ϕ.

– ϕ∈{ff, X}: These cases do not apply since L ff, Π M and LX,Π M do not yield
a valid monitor.

– ϕ= tt: Since L tt, Π M = id we know that the τ -reductions in (56) are only

possible via rule iAsy which means that s
τ−→*s′′ and r= L tt, Π M[s′′]. The

latter allows us to deduce that the reduction in (57) is only possible via rule

iTrn and so we also know that s′′
α−−→*s′′′ and r′= L tt, Π M[s′′′]. Hence, by

(58) and the inductive hypothesis we conclude that

∃ψ ∈ sHMLnf · ψ = after(tt, u) (59)

Lψ,Π M = m′. (60)

Since from the definition of after we know that after(tt, αu) equates to
after(after(tt, α), u) and after(tt, α) = tt, from (59) we can conclude that
ψ = after(tt, αu) and so this case holdssince we also know (60).

– ϕ=
∧
i∈I [ pi, ci¡]ϕi and #i∈I  pi, ci¡: Since ϕ=

∧
i∈I [ pi, ci¡]ϕi, by the defi-

nition of L− M we know that recY.
∑
i∈I

{
dis(pi, ci, Y,Π) if ϕ=ff
 pi, ci¡.Lϕi, Π M otherwise which can

be unfolded into

L
∧
i∈I

[ pi, ci¡]ϕi, Π M =
∑
i∈I

{
dis(pi, ci,m,Π) if ϕ=ff
 pi, ci¡.Lϕi, Π M otherwise (61)

and so by (56), (61) and Lemma 6 we conclude that ∃s′′ · s u
=⇒ s′′ and that

r = L
∧
i∈I [ pi, ci¡]ϕi, Π M[s′′]. (62)

Hence, by (61) and (62) we know that the reduction in (57) can only happen

if ∃s′′′ · s′′ α−−→ s′′′ and α matches an identity transformation  pj , cj¡.Lϕj , Π M
(for some j ∈ I) which was derived from [ pj , cj¡]ϕj (where ϕj 6= ff). We can
thus deduce that

r′ = Lϕjσ,Π M[s′′′] (63)

mtch(pj , α) = σ and cjσ ⇓ true (64)
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and so by (58), (63) and the inductive hypothesis we deduce that

∃ψ ∈ sHMLnf · ψ = after(ϕjσ, u) (65)

Lψ,Π M = m′. (66)

Now since we know (64), by the definition of after we infer that

after(
∧
i∈I [ pi, ci¡]ϕi, αu) = after(after(

∧
i∈I [ pi, ci¡]ϕi, α), u)

= after(ϕjσ, u)
(67)

and so from (65) and (67) we conclude that

ψ = after(
∧
i∈I [ pi, ci¡]ϕi, αu). (68)

Hence, this case is done by (66) and (68).

– ϕ= maxX.ψ and X ∈ fv(ψ): Since ϕ= maxX.ψ, by the syntactic rules of
sHMLnf we know that ψ /∈{ff, tt} since X /∈ fv(ψ), and that ψ 6=X since
logical variables must be guarded, hence we know that ψ can only be of the
form

ψ = maxY1. . . .maxYn.
∧
i∈I [ pi, ci¡]ϕi. (69)

where maxY1. . . .maxYn. denotes an arbitrary number of fixpoint declarations,
possibly none. Hence, knowing (69), by unfolding every fixpoint in maxX.ψ
we reduce the formula to

ϕ =
∧
i∈I [ pi, ci¡]ϕi{maxX.maxY1....maxYn.

∧
i∈I [ pi, ci¡]ϕi/X , . . .}

and so from this point onwards the proof proceeds as per that of case
ϕ=

∧
i∈I [ pi, ci¡]ϕi which allows us to deduce that

∃ψ′ ∈ sHMLnf · ψ′= after(
∧
i∈I [ pi, ci¡]ϕi{. . .}, αu) (70)

Lψ′, Π M = m′. (71)

From (69), (70) and the definition of after we can therefore conclude that

∃ψ′ ∈ sHMLnf · ψ′= after(maxX.ψ, αu) (72)

and so this case holds by (71) and (72).

Hence, the above cases suffice to show that the case for when t = αu holds.

Proof for Lemma 6. We must now prove that for every formula of the form∧
i∈I [ pi, ci¡]ϕi and states s and r, if L

∧
i∈I [ pi, ci¡]ϕi, Π M[s] τ−→*r then there

exists some state s′ and trace u such that s
u

=⇒ s′ and r = L
∧
i∈I [ pi, ci¡]ϕi, Π M[s′].

We proceed by mathematical induction on the number of τ transitions.

Case 0 transitions. This case holds vacuously given that s
ε

=⇒ s and so that
r = L

∧
i∈I [ pi, ci¡]ϕi, Π M[s].
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Case k+ 1 transitions. Assume that L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] τ−→k+1

r and so we
can infer that

L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] τ−→ r′ (for some r′) (73)

r′
τ−→k

r. (74)

By the definition of L−M we know that L
∧
i∈I [ pi, ci¡]ϕi, Π M synthesises the

monitor recY.
∑
i∈I

{
dis(pi, ci, Y,Π) if ϕ=ff
 pi, ci¡.Lϕi, Π M otherwise which can be unfolded into

L
∧
i∈I

[ pi, ci¡]ϕi, Π M =
∑
i∈I

{
dis(pi, ci,m,Π) if ϕ=ff
 pi, ci¡.Lϕi, Π M otherwise (75)

and so from (75) we know that the τ -reduction in (73) can be the result of rules
iAsy, iDisO or iDisI. We therefore inspect each case.

– iAsy: By rule iAsy, from (73) we can deduce that

∃s′′ · s τ−→ s′′ (76)

r′ = L
∧
i∈I [ pi, ci¡]ϕi M[s′′] (77)

and so by (74), (77) and the inductive hypothesis we know that

∃s′, u · s′′ u
=⇒ s′ and r = L

∧
i∈I [ pi, ci¡]ϕi M[s′]. (78)

Finally, by (76) and (78) we can thus conclude that ∃s′, u · s u
=⇒ s′ and

r = L
∧
i∈I [ pi, ci¡]ϕi M[s′].

– iDisI: By rule iDisI and from (73) we infer that

∃s′′ · s (a?v)−−−−→ s′′ (79)

L
∧
i∈I [ pi, ci¡]ϕi, Π M

•I(a?v)−−−−−−→ m′ (80)

r′ = m′[s′′] (81)

and from (75) and by the definition of dis we can infer that the reduction in
(80) occurs when the synthesised monitor inserts action a?v and then reduces
back to L

∧
i∈I [ pi, ci¡]ϕi, Π M allowing us to infer that

m′ = L
∧
i∈I [ pi, ci¡]ϕi, Π M. (82)

Hence, by (74), (81) and (82) we can apply the inductive hypothesis and
deduce that

∃s′, u · s′′ u
=⇒ s′ and r = L

∧
i∈I [ pi, ci¡]ϕi, Π M[s′] (83)

so that by (79) and (83) we finally conclude that ∃s′, u · s (a?v)u
====⇒ s′ and that

r = L
∧
i∈I [ pi, ci¡]ϕi, Π M[s′] as required, and so we are done.
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– iDisO: We omit showing the proof for this case as it is very similar to that
of case iDisI.

Proof for Proposition 5 (Transparency). We need to prove that for every system
s, if s∈ JϕK thenm[s] ∼ s. Since s∈ JϕK is analogous to s�ϕ we prove that relation
R def

= { (s, Lϕ,Π M[s]) s�ϕ } is a strong bisimulation relation that satisfies the
following transfer properties:

(a) if s
µ−−→ s′ then Lϕ,Π M[s] µ−−→ r′ and (s′, r′) ∈ R

(b) if Lϕ,Π M[s] µ−−→ r′ then s
µ−−→ s′ and (s′, r′) ∈ R

We prove (a) and (b) separately by assuming that s�ϕ in both cases as defined
by relation R and conduct these proofs by case analysis on ϕ. We now proceed
to prove (a) by case analysis on ϕ.

Cases ϕ ∈
{

ff, X
}

. Both cases do not apply since @s · s � ff and similarly since
X is an open-formula and so @s · s � X.

Case ϕ = tt. We now assume that

s � tt (84)

s
µ−−→ s′ (85)

and since µ ∈ {τ, α}, we must consider both cases.

– µ = τ : Since µ = τ , we can apply rule iAsy on (85) and get that

L tt, Π M[s] τ−→ L tt, Π M[s′] (86)

as required. Also, since we know that every process satisfies tt, we know that
s′ � tt, and so by the definition of R we conclude that

(s′, L tt, Π M[s′]) ∈ R (87)

as required. This means that this case is done by (86) and (87).

– µ = α: Since L tt, Π M = id encodes the ‘catch-all’ monitor, recY. (x)!(y), true, x!y¡.Y+
 (x)?(y), true, x?y¡.Y , by rules eRec and eTrn we can apply rule iTrnI/O

and deduce that id
αIα−−−−→ id, which we can further refine as

L tt, Π M[s] α−−→ L tt, Π M[s′] (88)

as required. Once again since s′ � tt, by the definition of R we can infer that

(s′, L tt, Π M[s′]) ∈ R (89)

as required, and so this case is done by (88) and (89).
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Case ϕ =
∧
i∈I [ pi, ci¡]ϕi. We assume that

s �
∧
i∈I [ pi, ci¡]ϕi (90)

s
µ−−→ s′ (91)

and by the definition of � and (90) we have that for every index i∈ I and action
β ∈Act,

if s
β

=⇒ s′ and  pi, ci¡(β) = σ then s �
∧
i∈I [ pi, ci¡]ϕi. (92)

Since µ ∈ {τ, α}, we must consider both possibilities.

– µ = τ : Since µ = τ , we can apply rule iAsy on (91) and obtain

L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] τ−→ L

∧
i∈I [ pi, ci¡]ϕi, Π M[s′] (93)

as required. Since µ =τ , and since we know that sHML is τ -closed, from
(90), (91) and Proposition 4, we can deduce that s′ �

∧
i∈I [ pi, ci¡]ϕi, so that

by the definition of R we conclude that

(s′, L
∧
i∈I [ pi, ci¡]ϕi, Π M[s′]) ∈ R (94)

as required. This subcase is therefore done by (93) and (94).

– µ = α: Since µ = α, from (91) we know that

s
α−−→ s′ (95)

and by the definition of L− M we can immediately deduce that

Lϕ∧, Π M = recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(ϕ∧) (96)

where ϕ∧
def

=
∧
i∈I [ pi, ci¡]ϕi. Since the branches in the conjunction are all

disjoint, #i∈I  pi, ci¡, we know that at most one of the branches can match
the same (input or output) action α. Hence, we consider two cases, namely:

• No matching branches (i.e., ∀i ∈ I ·  pi, ci¡(α) = undef): Since none of
the symbolic actions in (96) can match action α, we can infer that if α
is an input, i.e., α = a?v, then it will match the default monitor def(ϕ∧)
and transition via rule iTrnI, while if it is an output, i.e., α = a!v, rule
iDef handles the underspecification. In both cases, the monitor reduces
to id. Also, notice that rules iDisO and iDisI cannot be applied since
if they do, it would mean that s can also perform an erroneous action,
which is not the case since we assume (90). Hence, we infer that

L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] α−−→ L tt, Π M[s′] (since id =L tt, Π M) (97)
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as required. Also, since any process satisfies tt, we know that s′ � tt, and
so by the definition of R we conclude that

(s′, L tt, Π M[s′]) ∈ R (98)

as required. This case is therefore done by (97) and (98).

• One matching branch (i.e., ∃j ∈ I ·  pj , cj¡(α) =σ): From (96) we can
infer that the synthesised monitor can only disable the (input or output)
actions that are defined by violating modal necessities. However, from
(92) we also deduce that s is incapable of executing such an action as
otherwise would contradict assumption (90). Hence, since we now assume
that ∃j ∈ I ·  pj , cj¡(α) = σ, from (96) we deduce that this action can
only be transformed by an identity transformation and so by rule eTrn
we have that

 pj , cj¡.Lϕj , Π M αIα−−−−→ Lϕjσ,Π M. (99)

By applying rules eSel, eRec on (99) and by (95), (96) and iTrnI/O
(depending on whether α is an input or output action) we get that

L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] α−−→ Lϕjσ,Π M[s′] (100)

as required. By (92), (95) and since we assume that ∃j ∈ I · pj , cj¡(α) = σ
we have that s′ � ϕjσ, and so by the definition of R we conclude that

(s′, Lϕjσ,Π M[s′]) ∈ R (101)

as required. Hence, this subcase holds by (100) and (101).

Case ϕ = maxX.ϕ and X ∈ fv(ϕ). Now, lets assume that

s
µ−−→ s′ (102)

and that s � maxX.ϕ from which by the definition of � we have that

s � ϕ{maxX.ϕ/X}. (103)

Since ϕ{maxX.ϕ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we
know that: ϕ cannot be X because (bound) logical variables are required to be
guarded, and it also cannot be tt or ff since X is required to be defined in ϕ, i.e.,
X ∈ fv(ϕ). Hence, we know that ϕ can only have the following form, that is

ϕ = maxY0. . . .maxYn.
∧
i∈I

[ pi, ci¡]ϕi (104)

and so by (103), (104) and the definition of � we have that

s � (
∧
i∈I [ pi, ci¡]ϕi){··} where (105)

{··} = {maxX.ϕ/X, (maxY0. . . .maxYn.
∧
i∈I [ pi, ci¡]ϕi)/Y0, . . .}.
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Since we know (102) and (105), from this point onwards the proof proceeds as per
the previous case. We thus omit this part of the proof and immediately deduce
that

∃m′ · L (
∧
i∈I [ pi, ci¡]ϕi){··}, Π M[s] µ−−→ Lm′, Π M[s′] (106)

(s′, Lm′, Π M[s′]) ∈ R (107)

and so since L (
∧
i∈I [ pi, ci¡]ϕi){··}, Π M synthesises the unfolded equivalent as per

Lϕ{maxX.ϕ/X}, Π M, from (106) we can conclude that

∃m′ · Lϕ{maxX.ϕ/X}, Π M[s] µ−−→ Lm′, Π M[s′] (108)

as required, and so this case holds by (107) and (108).

These cases thus allow us to conclude that (a) holds. We now proceed to prove
(b) using the same case analysis approach.

Cases ϕ ∈
{

ff, X
}

. Both cases do not apply since @s · s � ff and similarly since
X is an open-formula and @s · s � X.

Case ϕ = tt. Assume that

s � tt (109)

L tt, Π M[s] µ−−→ r′ (110)

Since µ ∈ {τ, a?v, a!v}, we must consider each case.

– µ = τ : Since µ = τ , the transition in (110) can be performed via iDisI, iDisO
or iAsy. We must therefore consider these cases.
• iAsy: From rule iAsy and (110) we thus know that r′ = L tt, Π M[s′] and

that s
τ−→ s′ as required. Also, since every process satisfies tt, we know

that s′ � tt as well, and so we are done since by the definition of R we
know that (s′, L tt, Π M[s′]) ∈ R.

• iDisI: From rule iDisI and (110) we know that: r′ = m′[s′], s
a?v−−−→ s′

and that

L tt, Π M
•I(a?v)−−−−−−→ m′. (111)

Since L tt, Π M = id we can deduce that (111) is false and hence this case
does not apply.

• iDisO: The proof for this case is analogous as to that of case iDisI.
– µ = a?v: Since µ = a?v, the transition in (110) can be performed either via

iTrnI or iEnI. We consider both cases.
• iEnI: This case also does not apply since if the transition in (110) is

caused by rule iEnI we would have that L tt, Π M a?vI•−−−−→ m which is false
since L tt, Π M = id = recY. (x)!(y), true, x!y¡.Y +  (x)?(y), true, x?y¡.Y

and rules eRec, eSel and eTrn state that for every a?v, id
a?vIa?v−−−−−−→ id,

thus leading to a contradiction.
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• iTrnI: By applying rule iTrnI on (110) we know that r′ = m′[s′] such
that

L tt, Π M a?vIb?w−−−−−−→ m′. (112)

s
b?w−−−→ s′ (113)

Since L tt, Π M = id = recY. (x)!(y), true, x!y¡.Y +  (x)?(y), true, x?y¡.Y ,
by applying rules eRec, eSel and eTrn to (112) we know that a?v =
b?w, m′ = id = L tt, Π M, meaning that r′ = L tt, Π M[s′]. Hence, since every
process satisfies tt we know that s′ � tt, so that by the definition of R
we conclude

(s′, L tt, Π M[s′]) ∈ R. (114)

Hence, we are done by (113) and (114) since we know that a?v = b?w.

– µ = a!v: When µ = a!v, the transition in (110) can be performed via iDef,
iTrnO or iEnO. We omit this proof as it is very similar to that of case
µ = a?v.

Case ϕ =
∧
i∈I [ pi, ci¡]ϕi. We now assume that

s �
∧
i∈I [ pi, ci¡]ϕi (115)

L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] µ−−→ r′. (116)

From (115) and by the definition of � we can deduce that

∀i ∈ I, β ∈ Act · if s
β

=⇒ s′ and  pi, ci¡(β) = σ then s′ � ϕiσ (117)

and from (116) and the definition of L− M we have that(
recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)
)

[s′]
µ−−→ r′. (118)

From (118) we can deduce that the synthesised monitor can only disable an (input
or output) action β when this satisfies a violating modal necessity. However,
we also know that s is unable to perform such an action as otherwise it would
contradict assumption (117). Hence, we can safely conclude that the synthesised
monitor in (118) does not disable any (input or output) actions of s, and so by
the definition of dis we conclude that

∀a?v, a!v ∈ Act, s′ ∈ Sys·(
s

a?v−−−→ s′ implies L
∧
i∈I [ pi, ci¡]ϕi, Π M 6•Ia?w−−−−−→ (for all w) and

s
a!v−−→ s′ implies L

∧
i∈I [ pi, ci¡]ϕi, Π M 6a?vI•−−−−→

)
.

(119)

Since µ ∈ {τ, a?v, a!v}, we must consider each case.
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– µ = τ : Since µ = τ , from (116) we know that

L
∧
i∈I [ pi, ci¡]ϕi, Π M[s] τ−→ r′ (120)

The τ -transition in (120) can be the result of rules iAsy, iDisI or iDisO; we
thus consider each eventuality.

• iAsy: As we assume that the reduction in (120) is the result of rule iAsy,
we know that r′ = L

∧
i∈I [ pi, ci¡]ϕi, Π M[s′] and that

s
τ−→ s′ (121)

as required. Also, since sHML is τ -closed, by (115), (121) and Propo-
sition 4 we deduce that s′ �

∧
i∈I [ pi, ci¡]ϕi as well, so that by the

definition of R we conclude that

(s′, L
∧
i∈I [ pi, ci¡]ϕi, Π M[s′]) ∈ R (122)

and so we are done by (121) and (122).

• iDisI: By assuming that reduction (120) results from iDisI, we have that
r′ = m′[s′] and that

L
∧
i∈I [ pi, ci¡]ϕi, Π M •Ia?v−−−−→ m′ (123)

s
a?v−−−→ s′ (124)

By (119) and (124) we can, however, deduce that for every value w,

L
∧
i∈I [ pi, ci¡]ϕi, Π M 6•Ia?w−−−−−→. This contradicts with (123) and so this

case does not apply.

• iDisO: As we now assume that the reduction in (120) results from iDisO,
we have that r′ = m′[s′] and that

s
a!v−−→ s′ (125)

L
∧
i∈I [ pi, ci¡]ϕi, Π M a!vI•−−−−→ m′. (126)

Again, this case does not apply since from (119) and (125) we can deduce

that L
∧
i∈I [ pi, ci¡]ϕi, Π M 6a!vI•−−−−→ which contradicts with (126).

– µ = a?v: When µ = a?v, the transition in (118) can be performed via rules
iEnI or iTrnI, we consider both possibilities.

• iEnI: This case does not apply since from (118) and by the definition
of L− M we know that the synthesised monitor does not include action
enabling transformations.
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• iTrnI: By assuming that (118) is obtained from rule iTrnI we know
that

recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi, Π M otherwise

)
+ def(

∧
i∈I

[ pi, ci¡]ϕi)
a?vIb?w−−−−−−→m′

(127)

s
b?w−−−→ s′ (128)

r′ = m′[s′]. (129)

Since from (119) we know that the synthesised monitor in (127) does not
disable any action performable by s, and since from the definition of L− M
we know that the synthesis is incapable of producing action replacing
monitors, we can deduce that

a?v = b?w. (130)

With the knowledge of (130), from (128) we can thus deduce that

s
a?v−−−→ s′ (131)

as required. Knowing (130) we can also deduce that in (127) the monitor
transforms an action a?v either (i) via an identity transformation that
was synthesised from one of the disjoint conjunction branches, i.e., from a
branch  pj , cj¡.Lϕj , Π M for some j ∈ I, or else (ii) via the default monitor
synthesised by def(

∧
i∈I [ pi, ci¡]ϕi). We consider both eventualities.

(i) In this case we apply rules eRec, eSel and eTrn on (127) and
deduce that

∃j ∈ I ·  pj , cj¡(a?v) = σ (132)

m′ = Lϕjσ,Π M. (133)

and so from (131), (132) and (117) we infer that s′ � ϕjσ from which
by the definition of R we have that (s′, Lϕjσ,Π M[s′]) ∈ R, and so
from (129) and (133) we can conclude that

(s′, r′) ∈ R (134)

as required, and so this case is done by (131) and (134).
(ii) When we apply rules eRec, eSel and eTrn we deduce that m′ = id

and so by the definition of L− M we have that

m′ = L tt, Π M. (135)

Consequently, as every process satisfies tt, we know that s′ � tt and
so by the definition of R we have that (s′, L tt, Π M[s′]) ∈ R, so that
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from (129) and (135) we can conclude that

(s′, r′) ∈ R (136)

as required. Hence this case is done by (131) and (136).
– µ = a!v: When µ = a!v, the transition in (118) can be performed via iDef,

iTrnO or iEnO. We omit the proof for this case due to its strong resemblance
to that of case µ = a?v.

Case ϕ = maxX.ϕ and X ∈ fv(ϕ). Now, lets assume that

L maxX.ϕ,Π M[s] µ−−→ r′ (137)

and that s � maxX.ϕ from which by the definition of � we have that

s � ϕ{maxX.ϕ/X}. (138)

Since ϕ{maxX.ϕ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we
know that: ϕ cannot be X because (bound) logical variables are required to be
guarded, and it also cannot be tt or ff since X is required to be defined in ϕ, i.e.,
X ∈ fv(ϕ). Hence, we know that ϕ can only have the following form, that is

ϕ = maxY0. . . .maxYn.
∧
i∈I

[ pi, ci¡]ϕi (139)

and so by (138), (139) and the definition of � we have that

s �
∧
i∈I [ pi, ci¡]ϕi{··} where (140)

{··} = {maxX.ϕ/X, (maxY0. . . .maxYn.
∧
i∈I [ pi, ci¡]ϕi)/Y0, . . .}.

Since L
∧
i∈I [ pi, ci¡]ϕi{··}, Π M synthesises the unfolded equivalent of L maxX.ϕ,Π M,

from (137) we know that

L
∧
i∈I [ pi, ci¡]ϕi{··}, Π M[s] µ−−→ r′. (141)

Hence, since we know (140) and (141), from this point onwards the proof proceeds
as per the previous case. We thus omit showing the remainder of this proof.

From the above cases we can therefore conclude that (b) holds as well.

B.2 Proving Auxiliary Lemmas for Theorem 2 (Optimal
Enforcement)

Proof for Lemma 2. We must prove that for every monitor m∈DisTrn and
explicit trace tτ , mc(m, tτ ) =N . We proceed by induction on the length of tτ .

Case tτ = ε. As we assume that tτ = ε, we must consider the following two
cases:
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– ∀µ ·m[sys(ε)] 6µ−−→: This case holds trivially since by the definition of mc we
have that mc(m, ε) = | ε | = 0.

– ∃µ,m′, s ·m[sys(ε)]
µ−−→ m′[s]: Since sys(ε) = nil 6µ−−→, by the rules in our model

we can infer that such a transition is only possible when the monitor enables
an action β via rules iEnO and iEnI, and so this case does not apply since
m /∈DisTrn.

Case tτ = µt′τ . Since we assume that tτ = µt′τ , we consider the following two
cases:

– ∀µ·m[sys(µt′τ )] 6µ−−→: Since µ∈{τ, a?v, a!v}, we start by immediately excluding
the cases when µ∈{τ, a!v} since rules iAsy and iDef prevent the monitor
from blocking the composite system. However, in the case of inputs, µ= a?v,
the monitor may block the input port by not reacting to the input, i.e.,

m 6a?v−−−→. In this case, however, by the definition of mc we can still deduce
that mc(m, (a?v)tτ ) = | (a?v)tτ | as required.

– ∃µ′,m′, s ·m[sys(µt′τ )]
µ′

−−→ m′[s]: When considering only the action disabling
monitors defined in DisTrn, by the rules in our model we can infer that this
instrumented reduction over action µ′ can be attained via rules iDef, iAsy,
iDisI, iDisO, iTrnI and iTrnO. We thus consider each case.
• iDisO: Since by rule iDisO we know that µ= a!v, µ′= τ and s= sys(t′τ ),

by the definition of mc we deduce that mc(m, (a!v)t′τ ) = mc(m′, t′τ ) + 1
and since by the inductive hypothesis we know that mc(m′, t′τ ) =N , then
we conclude that mc(m, (a!v)t′τ ) =N + 1 as required.
• iDisI: We elicit this proof as it is identical to that of iDisO.
• iDef: Since by rule iDef we know that µ=µ′= a!v,m′= id and s= sys(t′τ ),

by the definition of mc we deduce that mc(m, (a!v)t′τ ) =mc(id, t′τ ) and
since by the inductive hypothesis we know that mc(id, t′τ ) =N , then we
can conclude that mc(m, (a!v)t′τ ) =N .

• iAsy, iTrnO and iTrnI: We omit the proofs for these cases as they are
very similar to that of case iDef, and so we are done.

Proof for Lemma 3. The aim of this proof is to show that for every action
α and monitors m,m′ ∈DisTrn, if enf(m,

∧
i∈I [ pi, ci¡]ϕi), m

αIα−−−−→ m′ and
 pi, ci¡(α) =σ (for some j ∈ I) then we have that senf(m′, ϕjσ) and evtenf(m′, ϕjσ).
We therefore start this proof by assuming that

m
αIα−−−−→ m′ (142)

∃j ∈ I ·  pi, ci¡(α) =σ. (143)

and that enf(m,
∧
i∈I

[ pi, ci¡]ϕi) which means that

senf(m,
∧
i∈I

[ pi, ci¡]ϕi)
def

= ∀s ·m[s] �
∧
i∈I

[ pi, ci¡]ϕi (144)

evtenf(m,
∧
i∈I [ pi, ci¡]ϕi)

def

= ∀s, s′′, t · if m[s]
t

=⇒ m′′[s′′] and

s′′ � after(
∧
i∈I

[ pi, ci¡]ϕi, t) then m′′[s′′] ∼ s′′. (145)
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Since both (144) and (145) quantify on every s, we must consider the following

two cases, namely, when m[s] transitions over α and reach m′, i.e.,m[s]
α−−→ m′[s′]

(for some system state s′), and when m[s] does not reach m′ via action α, i.e.,

m[s] 6α−−→ m′[s′].

– m[s] 6α−−→ m′[s′]: This case does not apply since, as stated by assumption
(142), we only consider the cases where the instrumented system causes the
monitor to perform the identity transformation of (142) via rules iTrnI when
α=a?v and iTrnO when α=a!v.

– m[s]
α−−→ m′[s′]: Since m[s]

α−−→ m′[s′], from (144), (143) and by the definition
of � we get that

senf(m′, ϕjσ)
def

= ∀s′ ·m′[s′] � ϕjσ (146)

as required. Now, lets assume that

∀s′′′, u ·m′[s′] u
=⇒ m′′′[s′′′] (147)

s′′′ � after(ϕjσ, u) (148)

and since m[s]
α−−→ m′[s′] when combined with (147) we know that m[s]

αu
==⇒

m′′′[s′′′] and so from (145) and (148) we can deduce that

m′′′[s′′′] ∼ s′′′. (149)

Hence, from assumptions (147), (148) and conclusion (149) we can introduce
the implication and conclude that

evtenf(m′, ϕjσ)
def

= ∀s′, s′′, u · if m′[s′]
u

=⇒ m′′′[s′′′] and s′′′ � after(ϕjσ, u)
then m′′′[s′′′] ∼ s′′′ (150)

and so we are done by (146), (150) and the definition of enf.

Proof for Lemma 4. In this proof we show that for every action α and moni-
tors m,m′ ∈DisTrn, if senf(m,

∧
i∈I [ pi, ci¡]ϕi), evtenf(m,

∧
i∈I [ pi, ci¡]ϕi) and

m
(a!v)I•−−−−−→ m′ then senf(m′,

∧
i∈I [ pi, ci¡]ϕi) and evtenf(m′,

∧
i∈I [ pi, ci¡]ϕi). We

therefore start this proof by assuming that

m
(a!v)I•−−−−−→ m′ (151)

and that enf(m,
∧
i∈I [ pi, ci¡]ϕi), which means that

senf(m,
∧
i∈I [ pi, ci¡]ϕi)

def

= ∀s ·m[s] �
∧
i∈I [ pi, ci¡]ϕi (152)

evtenf(m,
∧
i∈I [ pi, ci¡]ϕi)

def

= ∀s, s′′, t · if m[s]
t

=⇒ m′′[s′′] and
s′′ � after(

∧
i∈I [ pi, ci¡]ϕi, t) then m′′[s′′] ∼ s′′

. (153)

We now consider the following two cases, namely, when m[s] transitions over τ

and reaches m′, i.e., m[s]
τ−→ m′[s′] (for some arbitrary state s′), and when m[s]

does not reach m′ via action τ , i.e., m[s] 6τ−→ m′[s′].
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– m[s] 6τ−→ m′[s′]: This case does not apply since, as stated by assumption
(151), we only consider the cases where the instrumented system causes the
monitor to perform the suppression transformation of (151) via rule iDisO.

– m[s]
τ−→ m′[s′]: Since m[s]

τ−→ m′[s′], from (152) and by Proposition 4 we
deduce that

senf(m′,
∧
i∈I [ pi, ci¡]ϕi)

def

= ∀s′ ·m′[s′] �
∧
i∈I [ pi, ci¡]ϕi (154)

as required. We now assume that

∀s′′′, u ·m′[s′] u
=⇒ m′′′[s′′′] (155)

s′′′ � after(
∧
i∈I [ pi, ci¡]ϕi, u) (156)

and since m[s]
τ−→ m′[s′], by (155) and the definition of

u
=⇒ we have that

m[s]
u−−→ m′′′[s′′′] and so from (153) and (156) we can deduce that

m′′′[s′′′] ∼ s′′′. (157)

Hence, from assumptions (155), (156) and conclusion (157) we can introduce
the implication and conclude that

evtenf(m′,
∧
i∈I [ pi, ci¡]ϕi)

def

= ∀s′, s′′, u · if m′[s′]
u

=⇒ m′′′[s′′′] and
s′′′ � after(

∧
i∈I [ pi, ci¡]ϕi, u) then m′′′[s′′′] ∼ s′′′ (158)

and so we are done by (154) and (158).

Proof for Lemma 5. We elide the proof for this lemma as it is very similar to
Lemma 4. In fact, it can be easily derived by replacing the references to rule

iDisO and the assumption that m
(a!v)I•−−−−−→ m′ from Lemma 4, by rule iDisI and

assumption m
•I(a?v)−−−−−−→ m′ respectively.
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