The Complexity of Identifying Characteristic Formulas for
pHML

Luca Aceto!, Antonis Achilleos’, Adrian Francalanza?, and Anna Ingdlfsdéttirt

1 School of Computer Science, Reykjavik University, Reykjavik, Iceland
2 Dept. of Computer Science, ICT, University of Malta, Msida, Malta

Abstract

We examine the complexity of determining whether a formula of the maximal-fixed-
point fragment of the Hennessy Milner logic with recursion characterizes a process up to
bisimulation equivalence. We discover that the problem is EXP-complete. The decision
procedure that establishes this upper bound is based on a two-player game.

1 Introduction

Characteristic formulas are formulas that characterize a process’s equivalence class with respect
to an equivalence relation, which in our case is bisimilarity: a formula ¢ is characteristic for
a process p when every process ¢ is bisimilar to p exactly when it satisfies ¢. A construction
of characteristic formulas for variants of CCS processes [10] was introduced in [7]. This con-
struction allows one to verify that two CCS processes are equivalent by reducing this problem
to model checking, for which efficient software tools exist. Similar constructions were studied
later in [11,13] for instance and in a more general manner in [1,2].

We are interested in detecting when a formula is characteristic for a certain process. We
call this the characterization problem and we examine its complexity. We focus on the max-
fragment of pHML [9], a variant of the p-calculus [8], which consists of the pHML formulas
which only use maximal fixed points, as these formulas are sufficient to provide characteristic
formulas for finite-state LT'Ss. One way to determine whether a formula is characteristic for a
process would be to extract a characteristic formula for the model and then check whether it is
equivalent to the given formula. One would hope, however that a given characteristic formula
may be significantly smaller than the formulas one would get from a construction from [7,11,13],
and thus hope for a more efficient method.

Similar to the characterization problem is the completeness problem, which asks whether
a given formula is complete, meaning that any two processes that satisfy it are bisimilar to
each other. Therefore, a complete formula is characteristic if and only if it is satisfiable. The
complexity of the completeness problem was studied in [3] for modal logics without fixed points.
There, it was determined that completeness tends to have the same complexity as validity. We
apply similar techniques as in [3] for the case of the max-fragment of uHML to prove that
the completeness problem for this fragment is EXP-complete. The EXP-completeness of the
characterization problem is an immediate corollary. Although we focus on pHML, it is not
hard to see that our methods also apply to the corresponding, maximal-fixed-point, fragment
of the p-calculus.

Fine [5] introduced normal forms for modal logic and they can be used to prove soundness,
completeness, and the finite frame property for several modal logics with respect to their classes
of frames. Normal forms completely describe the behavior of a Kripke model up to a certain
distance from a state. Therefore, normal forms are closely related the constructions from [7]
which use formulas similar to HML without recursion.

The Complexity of Characteristic Formulas Aceto et al.

2 Background

We present the necessary background. We first give the syntax and semantics of pHML.

Definition 1. The formulae of pHML are constructed using the following grammar:

v, € uHML :: = tt | ff | X
| ony | oV
| (e |]
| minX.p | maxX.p

where X comes from a countably infinite set of logical variables LVAR and « from a finite set
of actions, ACT.

We interpret formulas on processes, which are states of a labeled transition system (LTS).
A labeled transition system is a triple

(PrOC, ACT, —)

where PROC is a set of states or processes, ACT is a set of actions, and -C PROC x ACT x PROC
is a transition relation. For our LTS, we assume that for any processes p, ¢ and action «, there
are processes which we call nil, a.p, and p + ¢, so that for every 8 € AcT and process r,
nil 7& 7 a.p LN pifa=pandp+q = riff p 5 ror ¢ r. In our setting, |p|, the size
of a process is the number of processes that can be reached from p through any sequence of
transitions.

Formulae are evaluated in the context of a labeled transition system and an environment,
p : LVAR — 2PROC which gives values to the logical variables in the formula. For an environment
p, variable X, and set S C PRoC, p[X — S| is the environment which maps X to S and all
Y # X to p(Y). The semantics for pgHML formulae is given through a function [-], which,
given an environment p, maps each formula to a set of processes — namely the processes which
satisfy the formula under the assumption that each X € LVAR is satisfied by the processes in
p(X). [] is defined as follows:

[tt,p] = PrROC and [ff,p] =0

[1 A2, p] = [e1, p] N [i02, P]
[e1 V2, p] = [¢1, p] U [02, p]

[loe,] = {p | Vg. p = g implies ¢ € [[%p]]}
[(a)e, Pl = {p | 3¢.p = gand g € [[%p]]}
[max X, p] = J{S | S C [, p|X = SI1}
[min X0, p] = () {S | 2 [0, p[X = S]]}
[X. p] = p(X).

A formula is closed when every occurrence of a variable X is in the scope of recursive operator
max X or min X. Note that the environment, p, has no effect on the semantics of a closed
formula. For a closed formula ¢, we often drop the environment from the notation for [-]
and write [¢] instead of [p, p]. Henceforth we work only with closed formulas, unless stated

The Complexity of Characteristic Formulas Aceto et al.

otherwise. Formulae ¢ and ¢ are (logically) equivalent, written ¢ = 1, if [p, p] = [¢, p] for
every environment p. For a process p and formula ¢, we may also write p |= ¢ instead of p € [¢].
We can define negation —¢ by recursively using de Morgan laws and implication ¢ — % in the
usual way — only =X is X, as recursion variables are always positive. The size of a formula is
the number of symbols we use to write it. The set sub(y) is the set of all subformulas of ¢; we
also define sub(y) = sub(p) U{— | ¢ € sub(p)}. In general, |sub(p)| < 2|y

The max-fragment of pHML, which we call MAXHML, consists of all formulas of pHML
that do not use the minimal fixed point operator, min X; similarly, the min-fragment of pHML,
which we call MINHML, consists of all formulas of pgHML that do not use the maximal fixed
point operator, max X. It is known that model-checking for these fragments can be done in
polynomial time [4].

A relation R C Proc x ProcC is a bisimulation when the following two conditions are
satisfied for all (p,q) € R:

e For every process p and action a, if p = p’, then there exists a process ¢/, such that
g = ¢ and (p',¢') € R.

e For every process ¢ and action «, if ¢ = ¢/, then there exists a process p/, such that
p = p and (p,q') € R.

We call processes p and ¢ bisimilar and write p ~ ¢ if there is a bisimulation R such that
PRq.

Completeness and Characterization

We call a formula ¢ characteristic for a process p when p = ¢ and for every process ¢, p ~ q if
and only if ¢ = . The characterization problem is the following: Given a MAXHMUL-formula ¢
and a process p, is ¢ characteristic for p? A formula ¢ is called complete when for all processes
pand g, if p = ¢ and ¢ = ¢, then p ~ ¢. The completeness problem is the following: Given a
MAXHMUL-formula ¢, is ¢ complete?

3 Lower Bounds

It is known that satisfiability for the min-fragment of the u-calculus (on one action) is EXP-
complete. It is in EXP, as so is the satisfiability problem of the p-calculus [8]. Furthermore, this
fragment suffices [12] to describe the PDL formula that is constructed by the reduction used
in [6] to prove EXP-hardness for PDL, therefore the reduction can be adjusted to prove that
min-fragment of the p-calculus is EXP-complete. We can similarly alter the PDL formula of the
reduction in [6] so that it can be described by the min-fragment of the p-calculus. Therefore,
validity for the min- and max-fragments of the p-calculus (on one action) is EXP-complete.
To see that this lower bound transfers to MAXHML, it suffices to use one extra action to
represent propositional variables (for example, variable z; can be replaced by (a)‘tt). We now
demonstrate that completeness for MAXHML is also EXP-hard, with a similar method as in [3]:

Proposition 1. The completeness problem for MAXHML is EXP-hard.

Proof. To prove the theorem we present a reduction from MINHM L-validity to the completeness
problem for MAXHML. First, notice that A . . [@]ff is complete and it is satisfiable by process
nil. Given a MINHML-formula ¢, there are two cases. If nil = -, then ¢ is not valid and

3

The Complexity of Characteristic Formulas Aceto et al.

we set . = tt. Otherwise, let ¢, = =0V A cpcrla]ff. For the second case, if ¢ is valid, then
@c is equivalent to A\ o []ff, which is complete; if ¢, is complete, then only nil satisfies it
and therefore, ¢ is valid. Thus, in both cases, ¢ is valid if and only if ¢, is complete. O

Notice that in the proof of Proposition 1, the reduction could have returned both ¢, and
nil, instead of just .. Therefore, the same lower bound holds for the characterization problem:

Corollary 2. The characterization problem for MAXHML is EXP-hard.

4 A Game to Determine Completeness for tHML

The game is played on a fixed MAXHML-formula ¢. A decomposition is a maximally consistent
subset of sub(¢). D is called a decomposition of 1 € sub(p) when D is a decomposition and
1 € D. The players of the game are called E and B. A play of the game on MAXHML-formula
¢ is a (finite or infinite) sequence m = EgBoF1B1E2Bs - - -, constructed in the following way:

e At first, F picks a decomposition D of ¢ and Ey = By = (D, ¢, 0).

e For every i > 0, for B; = (D1,1,S5), E picks a decomposition Dy D S of ¢, a j € {1, 2},
an o € Act, and for b = {¢ | [a]¢ € D;}, a decomposition D 2 b; Ej1q = (Da—j, «, D)
is move (i + 1) of E.

e Then, B or picks a formula (o))’ € Dy_; and Biy1 = (D, ¢, {¢ | [a]¥p € Dy_;}) which
is move (i + 1) for B.

Player E wins when at some point B has no move to play, because there is no formula
()b € Dy_; to choose from, thus the play is finite and is called a winning play for E. Player
B wins in one of two ways: either E does not have a satisfiable decomposition to pick from (so,
the game is finite), or the game is infinite; in both cases, the play is called a winning play for
B.

A strategy for E on ¢ is an initial move Fy and a partial function, which, given a B; that
may occur in a play on ¢, returns an appropriate move E; 1, for E; similarly, strategy for B
on ¢ is a partial function, which, given an E; that may occur in a play, returns an appropriate
move B; for B. A strategy f for F is called a winning strategy for F on formula ¢ when for
every play m = EgBgE1B1--+ on ¢, if Ej is the initial move given by the strategy and for
every B;, F;11 in the play, E; 11 = f(B;), then 7 is a winning play for F; similarly, we define a
winning strategy for B.

We can immediately observe the following:

Lemma 3. Given a MAXHML-formula ¢, at most one player has a winning strategy on .

Theorem 4. Given a MAXHML-formula ¢, player B has a winning strategy on ¢ if and only
if p is complete. Furthermore, player E has a winning strategy on @ if and only if B does not.

Proof. Tt suffices to prove that
(a) If ¢ is incomplete, then F has a winning strategy; and

(b) if ¢ is complete, then B has a winning strategy.

4

The Complexity of Characteristic Formulas Aceto et al.

To prove (a), we first assume that ¢ is incomplete. Therefore, there are two non-
bisimilar processes pg and gqg that satisfy . We describe a family of strategies for E, using pg
and go, which ensure that for every B; = (D,) in the resulting play, there are non-bisimilar
processes p;, g;, so that p; = A D and ¢; | 9.

This condition is already true for By, so we maintain it recursively for every B; in the play.
Let B; = (D,) in the play, so that there are non-bisimilar processes p;, q;, where p; = A\ D,
and ¢; = 1. Then, there is a decomposition Dy satisfied in ¢;; since p; and ¢; are non-bisimilar,
there is a process p; and action o € ACT, such that p; & piv1 or ¢; = piy1 and for every
¢~ ¢ or, respectively p; = ¢, pi41 is non-bisimilar to ¢’. Therefore, for j = 1, p;4; satisfies
b (as in the game description), so there is a decomposition D of A b, that is satisfied by p; 1.
Player E’s move is then (Ds_j,a, D). Now, either B has no move to play, so F wins, or B
chooses (a)v; there is some ¢;11 = v, which is non-bisimilar to p;41.

Since there is always a satisfiable decomposition for E to play, if F does not win with this
strategy, then the resulting play is infinite. The resulting strategy depends on the choices of
p; and ¢;. Let relation R on processes be such that pRq if and only if for one of the strategies
as described above, there is an i so that p; = p and ¢; = ¢. If for every choice for p; for the
strategies described above, there is a choice for ¢; so that the game continues, then R is a
bisimulation — a contradiction, because py and ¢g are non-bisimilar.

To prove (b), we now assume that ¢ is complete. The strategy for B ensures that
for every B; = {D’,1,S} in the game, A D’ and ¢» A \ S are complete and equivalent to each
other. Lets assume that is the case for B; and E; 1 = (D', a, D). Then, there is a decomposition
D" which is equivalent to 1) A A S and complete and for which, D D {¢’ | [a]¢’ € D"}. Since
D" is complete, A A'S — (a) A\ D is valid; therefore, so is A D’ — (&) A\ D. Therefore, there
is a (a)y)’ € D', such that ' A A{x | [a]x € D'} is equivalent to D.

We prove that D is complete. To reach a contradiction, assume that D is incomplete.
Then it would be satisfiable in two non-bisimilar processes p and ¢. For every (a)x € D" not
satisfiable in any of p, g, let p, |= x and for process r that satisfies D", let

rp:oz.p—l—ZpX—!— Z r’ and
Px

B
T‘g'f‘/
Ty = a.q—l—pr + Z .
Px BFo
Ly

Then, r, and r, satisfy D" and are non-bisimilar, which is a contradiction. As we see above,
as B maintains this condition, then there is always a move to play. Then, every play for which
B follows such a strategy is either finite because B wins at some point, or infinite, so B wins
as well. O

Corollary 5. The completeness problem for MAXHMUL is EXP-complete.

Proof. The lower bound is provided by Proposition 1. For the upper bound, we use an alterna-
ting polynomial-space algorithm with an oracle from EXP. Given a MAXHMUL-formula ¢, the
algorithm constructs a play of the game on ¢ move-by-move, keeping in memory only the pre-
vious move. For the moves of E it uses a universal choice and for the moves of B an existential
choice. The oracle to EXP is used to verify that each decomposition is, indeed, satisfiable. [

Corollary 6. The characterization problem for MAXHML is EXP-complete.

The Complexity of Characteristic Formulas Aceto et al.

Proof. The lower bound is provided bt Corollary 2. For the upper bound, given a formula ¢ and
process p, we can verify that p |= ¢ and that ¢ is complete; the first can be done in polynomial
time and the second in exponential time. O

5 Future Work

There are several relevant equivalence relations and preorders on processes that one may want
to characterize, as well as many other corresponding logics — see [1,2], for a general treatment.
Therefore, there are many more cases in which our methods might be applied. It is an interesting
phenomenon that the complexity of completeness/characterization tends to be identical to the
complexity of validity, despite the fact that we have not used any reduction to validity to solve
these problems. It would be interesting to see whether there is a general observation to make
concerning this phenomenon.

It would perhaps be even more important than our current results to be able to extract
characteristic formulas from processes in an efficient manner. So far, this characteristic formula
extraction has been used as a link between behavioral equivalence and model checking. Ideally,
for certain cases we could thus reduce behavioral equivalence to model checking in an efficient
manner, perhaps using the tools of modern algorithmic and complexity theory that tackle
intractable problems.

References

[1] L. Aceto, D. Della Monica, I. Fdbregas, and A. Ingdlfsdéttir. When Are Prime Formulae Charac-
teristic?, pages 76-88. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[2] Luca Aceto, Anna Ingolfsdottir, Paul Blain Levy, and Joshua Sack. Characteristic formulae
for fixed-point semantics: a general framework. Mathematical Structures in Computer Science,
22(02):125-173, 2012.

[3] Antonis Achilleos. The completeness problem for modal logic. CoRR, abs/1605.01004, 2016.

[4] E Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the propositional
mu-calculus. In IEEE Symposium on Logic in Computer Science, pages 267-278. IEEE Computer
Society Press, 1986.

[5] Kit Fine. Normal forms in modal logic. Notre Dame journal of formal logic, 16(2):229-237, 1975.

[6] Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular programs. Journal
of computer and system sciences, 18(2):194-211, 1979.

[7] S. Graf and J. Sifakis. A modal characterization of observational congruence on finite terms of
CCS. Information and Control, 68(1-3):125-145, January 1986.

[8] Dexter Kozen. Results on the propositional p-calculus. Theoretical Computer Science, 27(3):333—
354, 1983.

[9] Kim Guldstrand Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72(2&3):265-288, 1990.

[10] R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[11] Markus Mller-Olm. Derivation of characteristic formulae. Electronic Notes in Theoretical Com-
puter Science, 18:159-170, 1998.

[12] V. R. Pratt. A decidable mu-calculus: Preliminary report. In 22nd Annual Symposium on Foun-
dations of Computer Science (sfcs 1981). IEEE, oct 1981.

[13] Bernhard Steffen and Anna Ingélfsdéttir. Characteristic formulas for processes with divergence.
Information and Computation, 110(1):149-163, 1994.

	Introduction
	Background
	Lower Bounds
	A Game to Determine Completeness for HML
	Future Work

