
THE EXPRESSIVE POWER OF DETERMINISTIC
MONITORS FOR µHML

SÆVAR ÖRN KJARTANSSON

1 Introduction

This report builds upon the work presented in the paper [1]. In that article,
Francalanza, Aceto and Ingólfsdóttir define the notion of a monitor, which runs
in parallel with a system and gives a yes/no verdict which indicates whether the
system satisfies some specific property expressible in Hennessy-Milner logic with
recursion [2]. Here we go one step further and show that we can restrict ourselves
to using only monitors that run deterministically while maintaining the expressive
power of non-deterministic monitors.

The report is organized as follows. Section 2 gives definitions for the calculus
we use to describe systems, the logic we use to describe properties of the systems
and the monitors we use to determine these properties. Section 3 presents some
of the results given in [1] on which this report builds. Sections 4 and 5 give two
different proves for the claim that deterministic monitors are as expressive as non-
deterministic ones. The first proof shows that each monitor is equivalent to a
deterministic monitor and the second shows that each formula is equivalent to
a formula in “deterministic form”, for which we can easily define a deterministic
monitor.

2 Definitions

In this section we give definitions for the main notations we use in this report.
This includes the calculus used to model a system, the logic used to reason about
the systems and finally monitors used to verify that a system satisfies some specific
formula in the logic.

2.1 The Model

Definition 1. A system is a labeled transition system defined by a tuple

〈Proc, (Act ∪ {τ}),→〉

where Proc is a set of states, Act is a set of actions, τ is the silent action and
→⊆ (Proc×(Act∪{τ})×Proc) is a transition function. A system is described as
a process in the regular fragment of CCS. The syntax of these processes is defined
by the following grammar:

p, q ∈ Proc :: = nil | α.p | p+ q | recx.p | x

where x comes from a countably infinite set of process variables.

2 SÆVAR ÖRN KJARTANSSON

The behaviour is defined by the following derivation rules:

Act
α.p

α−→ p
Rec

rec τ−→ p[recx.p/x]

SelL
p
µ−→ p′

p+ q
µ−→ p′

SelR
q
µ−→ q′

p+ q
µ−→ q′

where α ∈ Act and µ ∈ Act ∪ {τ}.
For each p, p′ ∈ Proc and α ∈ Act, we use p α

=⇒ p′ to mean that p can derive
p′ using a single α action and any number of τ actions, p(τ−→)∗.

α−→ .(
τ−→)∗p′. For

each p, p′ ∈ Proc and trace t = α1.α2. . . . αr ∈ Act∗, we use p t
=⇒ p′ to mean

p
α1=⇒ .

α2=⇒ . . .
αr=⇒ p′ if t is non-empty and p(τ−→)∗p′ if t is the empty trace.

2.2 The Logic

We use Hennessy-Milner logic with recursion (µHML) to describe properties of
the processes.

Definition 2. µHML is defined as the set of all closed formulae constructed using
the following grammar:

ϕ,ψ ∈ µHML :: = tt | ff

| ϕ ∧ ψ | ϕ ∨ ψ
| 〈α〉ϕ | [α]ϕ

| minX.ϕ | maxX.ϕ

| X

where X comes from a countable set of logical variables LVar.
Formulae are evaluated in a context of an environment, ρ : LVar → 2Proc,

which gives values to the logical variables in the formula. The semantics for these
formulae is defined as follows:

Jtt, ρKdef= Proc Jff, ρKdef= ∅

Jϕ1 ∧ ϕ2, ρK
def
= Jϕ1, ρK ∩ Jϕ2, ρK Jϕ1 ∨ ϕ2, ρK

def
= Jϕ1, ρK ∪ Jϕ2, ρK

J[α]ϕ, ρKdef=
{
p
∣∣ p α

=⇒ q implies q ∈ Jϕ, ρK
}

J〈α〉ϕ, ρKdef=
{
p
∣∣ p α

=⇒ q and q ∈ Jϕ, ρK
}

JmaxX.ϕ, ρKdef=
⋂{

S
∣∣ Jϕ, ρ[X 7→ S]K ⊆ S

}
JminX.ϕ, ρKdef=

⋃{
S
∣∣ S ⊆ Jϕ, ρ[X 7→ S]K

}
JX, ρKdef= ρ(X)

Since we only work with closed formulae, the environment, ρ, has no effect on the
semantics of a formula and we often drop it and write JϕK instead of Jϕ, ρK.

In some of the proofs in section 5, we use an equivalent representation for µHML
formulae that uses systems of equations instead of regular formulae.

Definition 3. We denote a system of equations with a tuple SYS = (Eq,X1,Y)
where X1 is called the principal variable in SYS , Y is a set of variables and Eq is

3

a set of equations:

X1 = F1

X2 = F2

...
Xn = Fn

where Fi is an expression in µHML that can contain variables in Y∪{X1, X2, . . . , Xn}.
A solution to a system of equations is a mapping ρ : LVar → 2Proc where for

each equation X = F , we have JX, ρK = JF, ρK.
For each equation X = F in SYS , when finding a solution for JX, ρK = JF, ρK,

we are interested in either the maximum solution:

X
max
= F

or the minimum:
X

min
= F

For each process p ∈ Proc, p satisfies SYS iff p ∈ JX1, ρK and we say that a
formula ϕ and a system of equations SYS are equivalent iff JX1, ρK = Jϕ, ρK, where
X1 is the principal variable in SYS .

2.3 Monitors

We now define the notion of a monitor. The definition is the same as the one
given in [1] except for a slight change in the behaviour of a verdict.

Definition 4. The syntax of a monitor is identical to that of a regular CCS process
with the exception that the nil process is replaced by verdicts. A verdict can
be one of yes, no and end which represent acceptance, rejection and termination
respectively. A monitor is defined by the following grammar:

m,n ∈Mon :: = v | α.m | m+ n | recx.m | x
v ∈ Verd :: = end | no | yes

where x comes from a countably infinite set of monitor variables.
The behaviour of a monitor is defined by the following derivation rules:

mAct
α.m

α−→ m
mRec

recx.m τ−→ m[recx.m/x]

mSelL
m

µ−→ m′

m+ n
µ−→ m′

mSelR
n

µ−→ n′

m+ n
µ−→ n′

mVerd
v
µ−→ v

where α ∈ Act and µ ∈ Act ∪ {τ}.
For each m,m′ ∈Mon and α ∈ Act, we use m α

=⇒ m′ to mean that m can derive
m′ using a single α action and any number of τ actions, m(

τ−→)∗.
α−→ .(

τ−→)∗m′. For
each m,m′ ∈ Mon and trace t = α1.α2. . . . αr ∈ Act∗, we use m t

=⇒ m′ to mean
m

α1=⇒ .
α2=⇒ . . .

αr=⇒ m′ if t is non-empty and m(
τ−→)∗m′ if t is the empty trace.

In [1] a monitor that has reached a verdict can perform any action α ∈ Act
but cannot perform the transparent τ action, v 6 τ−→. However since µ ∈ Act ∪ {τ},
we allow the monitor to perform τ . This change does not affect any of the results
given in [1] but is important for the proof given in section 4.

4 SÆVAR ÖRN KJARTANSSON

In order for a monitor to run deterministically, it cannot contain a non-deterministic
choice between two sub-monitors reached by the same action,m α−→ n1 andm

α−→ n2,
or a non-deterministic choice between performing an action or performing the tran-
sparent action, m α−→ n1 and m τ−→ n2. It must also be impossible to derive these
choices using the derivation rules above.

Definition 5. A monitor m is deterministic iff

• each bound variable x in m is prefixed by an action, α.x
• each recursive operator recx.n in m is prefixed by an action, α.recx.n.
• for each pair of sub-monitors α1.n1 and α2.n2 that occur in the same sum

in m, we have have α1 6= α2.

This definition of a deterministic monitor might seem restrictive as there exist
monitors that run deterministically that are not in this form, e.g. recx.tt, but as
we will see in section 5, this set of monitors is in fact maximally expressive.

2.4 Monitored system

If a monitor m ∈ Mon is monitoring a process p ∈ proc, then it must mirror
every visible action p performs. If m cannot match an action performed by p, then
m becomes the inconclusive end verdict. We are only looking at the visible actions
and so we allow m and p to perform transparent τ actions independently of each
other.

Definition 6. A monitored system is a monitor m ∈Mon and a process p ∈ Proc
which are run in parallel, denoted m / p. The behaviour of a monitored system is
defined by the following derivation rules:

iMon
p
α−→ p′ m

α−→ m′

m / p
α−→ m′ / p′

iTer
p
α−→ p′ m 6 α−→ m 6 τ−→
m / p

α−→ end / p′

iAsyP
p
τ−→ p′

m / p
τ−→ m / p′

iAsyM
m

τ−→ m′

m / p
τ−→ m′ / p

If a monitored system m / p can derive the yes verdict, we say that m accepts
p, and similarly m rejects p if the monitored system can derive no.

Definition 7 (Acceptance/Rejection)). acc(m, p)def= ∃t, p′.m/p
t
=⇒ yes/p′ and

rej(m, p)def= ∃t, p′.m / p
t
=⇒ no / p′.

2.5 Correspondence

We now define a correspondence between µHML formulae and verdicts given by
monitors.

A monitor m monitors soundly for a formula ϕ ∈ µHML if a verdict the monitor
gives in a monitored system indicates whether the monitored process satisfies ϕ or
not.

Definition 8 (Sound monitoring). smon(m,ϕ) def= ∀p.(acc(p,m) implies p ∈
JϕK) and (rej(p,m) implies p /∈ JϕK).

A monitor is satisfaction complete with regards to a formula if it accepts all
processes that satisfy the formula and a monitor is violation complete if it rejects
all processes that do not satisfy the formula. A monitor that is either satisfaction
or violation complete is partially complete.

5

Definition 9 (Satisfaction/Violation/Partially-Complete Monitoring).

scmon(m,ϕ)def= ∀p.(p ∈ JϕK implies acc(p,m))

vcmon(m,ϕ)def= ∀p.(p /∈ JϕK implies rej(p,m))

cmon(m,ϕ)def= scmon(m,ϕ) or vcmon(m,ϕ)

A monitor monitors for a formula if it can do it soundly and partially completely.

Definition 10 (Monitoring). mon(m,ϕ)def= smon(m,ϕ) and cmon(m,ϕ).

3 Previous Results

The main result from [1] is to define a subset of µHML which is monitorable and
show that it is maximally expressive. This subset is called mHML and consists of
the safe and co-safe syntactic subsets of µHML, sHML and cHML respectively.

Definition 11 (Monitorable Logic). mHML
def
= sHML ∪ cHML

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ ∧ ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π ∨$ | minX.π | X

In order to prove that mHML is monitorable, in [1] Francalanza, Aceto and Ing-
ólfsdóttir define a monitor synthesis function, L−M, that maps formulae to monitors
and show that for each ϕ ∈ mHML, mon(LϕM, ϕ) holds.

This function is used in the proofs in sections 4 and 5 and so we will give the
definition here.

Definition 12 (Monitor Synthesis).

LttMdef= yes LffMdef= no LXMdef= x

L[α]ψMdef=

{
α.LψM if LψM 6= yes
yes otherwise

L〈α〉ψMdef=

{
α.LψM if LψM 6= no
no otherwise

Lψ1 ∧ ψ2M
def
=


Lψ1M if Lψ2M = yes
Lψ2M if Lψ1M = yes
Lψ1M + Lψ2M otherwise

Lψ1 ∨ ψ2M
def
=


Lψ1M if Lψ2M = no
Lψ2M if Lψ1M = no
Lψ1M + Lψ2M otherwise

LmaxX.ψMdef=

{
recx.LψM if LψM 6= yes
yes otherwise

LminX.ψMdef=

{
recX.ψ if LψM 6= no
no otherwise

Theorem 1 (Monitorability). For each ϕ ∈ mHML, mon(LϕM, ϕ) holds.

proof. See proof of thm. 1 in [1]. �

Example 1. Assume that we have a very simple web server p that alternates
between accepting a request from a client, req, and sending a response back, res,
until the server terminates, cls. We want to verify that the server cannot terminate
while in the middle of serving a client (after executing req but before executing
res). We can encode this property in the following sHML formula

ϕ = maxX.([req][cls]ff ∧ [req][res]X)

6 SÆVAR ÖRN KJARTANSSON

We can then define a violation complete monitor for this formula using the monitor
synthesis function:

m = recx.(req.cls.no+ req.res.x)

Sincem contains a choice between req.cls.ff and req.res.x, it is non-deterministic.
However it is possible to define a deterministic monitor that monitors for ϕ. For
example:

m′ = req.(res.recx.req.(res.x+ cls.no) + cls.no)

In general, given a monitor produced by the monitor synthesis function, we can
define a deterministic monitor that is equivalent to it.

Theorem 2. For each formula ϕ ∈ mHML, there exists a deterministic monitor,
m ∈Mon, such that mon(m,ϕ).

The rest of this report is devoted to providing two proofs for this theorem. The
first one is presented in section 4 and shows that for any valid monitor, there exists
a deterministic monitor that is equivalent to it. The second proof is presented in
section 5 and show that there is a subset of mHML for which the monitor synthesis
function will always produce a deterministic monitor and that this subset is a
maximally expressive subset of mHML.

4 Monitor Rewriting

In this section we show that for each monitor, there exists an equivalent monitor
that is deterministic. Then given a formula ϕ ∈ mHML, we can apply the monitor
synthesis function to produce a monitor for ϕ and then rewrite the monitor such
that it runs deterministically.

We use a result given by Rabinovich in [3] which states that each regular CCS
process is provably equal to a deterministic one, with regards to trace equivalence,
using a small set of algebraic laws.

Definition 13. Let D : Proc→ Proc be a mapping from a regular CCS process
to a trace equivalent deterministic regular CCS process. Such a mapping must
exists as shown by Rabinovich in [3].

In order to apply D to the monitors, we must define a way to encode them as
CCS processes. We do this by replacing each verdict v with a process v.nil.

Definition 14. We define a mapping π : Mon→ Proc as follows:

π(α.m) = α.π(m)

π(m+ n) = π(m) + π(n)

π(recx.m) = recx.π(m)

π(v) = v.nil

π(x) = x

We can see that π is a bijection between monitors and a regular subset of CCS
processes where each verdict action v must be followed by the nil process and the
nil process must be prefixed by a verdict action. The inverse of π is defined as

7

follows:

π−1(α.p) = α.π−1(p)

π−1(p+ q) = π−1(p) + π−1(q)

π−1(recx.p) = recx.π−1(p)

π−1(v.nil) = v

π−1(x) = x

Now if two monitor encodings are trace equivalent, we want the monitors they
encode to be equivalent.

Lemma 1. Let m and n be monitors such that Trace(π(m)) = Trace(π(n)). Then
m monitors for a formula ϕ if and only if n monitors for ϕ.

proof. Using prop. 1 from [1], we see that it is enough to prove that for each verdict
v and trace t, m t

=⇒ v if and only if n t
=⇒ v.

Assume that for a trace t and a verdict v, we have m t
=⇒ v. By examining the

definition of π, we see that π(m)
t
=⇒ v.nil and so t.v ∈ Trace(π(m)). Since π(m)

and π(n) are trace equivalent, we have π(n) t
=⇒ v.nil and so n t

=⇒ v.
By symmetry, if n t

=⇒ v for some verdict v and trace t, then m t
=⇒ v. �

Theorem 3 (Monitor Rewriting). For each monitor m ∈ Mon that monitors
for a formula ϕ ∈ mHML, there exists a deterministic monitor n ∈ Mon that
monitors for ϕ.

proof. We define a new monitor n = π−1 ◦D ◦π(m). Now π(m) and π(n) are trace
equivalent and so by lemma 1, m and n are equivalent.

Although π(n) is deterministic, it is not guaranteed that n is deterministic.
For example although the process p + v.nil could be deterministic, the monitor
π−1(p + v.nil) = π−1(p) + v is not since v can follow any trace. However by
examining the definition of π we see that the only case where non-determinism
can be introduced is where we have π−1(p+ v.nil) = π−1(p) + v for some process
p ∈ Proc.

We can easily remove these non-deterministic choices by applying the following
rule:

m+ v =

{
m if v = end
v if v = yes or v = no

For the case where v = end, m will accept/reject exactly the same processes as
m+ v will.

In the case where v ∈ {yes, no}, we have m + v
τ−→ v since in our definition

of a monitor, we allow a verdict to perform τ . We also note that if m + v can
accept/reject a process, then v can also accept/reject the process, since as shown
in thm 2 in [1], all valid monitors are uni-verdict.

After removing each non-deterministic choice from n, the resulting monitor is
deterministic and equivalent to n, which in turn is equivalent to m. �

5 Formula Rewriting

In this second approach, we show that each formula ϕ ∈ mHML is equivalent to
some formula in deterministic form which will yield a deterministic monitor if we
apply the monitor synthesis function to it. We will only prove this for formulae in
sHML but the proof for cHML is completely analogous.

8 SÆVAR ÖRN KJARTANSSON

We begin by defining a deterministic form for formulae in sHML.

Definition 15. A formula ϕ ∈ sHML is in deterministic form iff:
• each bound variable X in ϕ is prefixed by the [α] operator, [α]X
• each maximum fixed point maxX.ψ in ϕ is prefixed by the [α] operator,
[α] maxXψ

• for each pair of formulae [α1]ψ1 and [α2]ψ2 that occur in the same conj-
unction in ϕ, we have α1 6= α2

The following lemma justifies calling these formulae deterministic by showing
that applying the monitor synthesis function to them will yield a deterministic
monitor.

Lemma 2. Let ϕ ∈ sHML be in deterministic form. Then m = LϕM is determin-
istic.

proof. By examining the definition of the monitor synthesis function, we can see
that LϕM does not contain a sub-monitor α.n1 + α.n2 since it would imply that ϕ
contains a sub-formula [α]ψ1 ∧ [α]ψ2. Furthermore such a sub-monitor cannot be
derived since each bound variable and each maximum fixed point in ϕ is prefixed
by [α] which means each bound variable and each recursive monitor in m is prefixed
by α. �

We also define a standard form for formulae in sHML.

Definition 16. A formula ϕ ∈ sHML is in standard form if all free and unguarded
variables in ϕ are at the top level:

ϕ = ϕ′ ∧
∧
i∈S

Xi

where ϕ′ does not contain a free and unguarded variable.

Lemma 3. Each formula in sHML is equivalent to some formula in sHML that
is in standard form.

proof. We define a function f as follows:

f(ϕ) = {i | Xi occurs free and unguarded in ϕ}
where X1, X2, . . . are all the variables that can occur in the formulae.

Then formally our claim is that for each ϕ ∈ sHML, there exists a formula,
ψ ∈ sHML such that

ϕ ≡ ψ ∧
∧

i∈f(ϕ)

Xi

where f(ψ) = ∅.
We use induction on the size of ϕ to prove this and go through each case below.
ϕ ∈ {tt, ff}: This case holds trivially since f(ϕ) = ∅ and

ϕ ≡ ϕ ∧
∧
i∈∅

Xi

ϕ = Xj: This case holds trivially since f(ϕ) = {j} and

ϕ ≡ tt ∧
∧
i∈{j}

Xi

ϕ = [α]ϕ′: Since ϕ is prefixed with the [α] operator, all variables are guarded
in ϕ and so f(ϕ) = ∅ and

ϕ ≡ ϕ ∧
∧
i∈∅

Xi

9

ϕ = ϕ1 ∧ ϕ2: By the induction hypothesis, there exist formulae ψ1, ψ2 ∈ sHML
such that

f(ψ1) = f(ψ2) = ∅

ϕ1 ≡ ψ1 ∧
∧

i∈f(ϕ1)

Xi

ϕ2 ≡ ψ2 ∧
∧

i∈f(ϕ2)

Xi

Using the fact that ϑ ∧ ϑ ≡ ϑ for each formula ϑ ∈ µHML, we have

ϕ ≡ ϕ1 ∧ ϕ2

≡

ψ1 ∧
∧

i∈f(ϕ1)

Xi

 ∧
ψ2 ∧

∧
i∈f(ϕ2)

Xi


≡ (ψ1 ∧ ψ2) ∧

∧
i∈f(ϕ1)

Xi ∧
∧

i∈f(ϕ2)

Xi

≡ (ψ1 ∧ ψ2) ∧
∧

i∈f(ϕ1)∪f(ϕ2)

Xi

and since f(ψ1) = f(ψ2) = ∅, we have f(ψ1 ∧ ψ2) = ∅.
Each free and unguarded variable in ϕmust either be free and unguarded

in ϕ1 or ϕ2 and each such variable in ϕ1 or ϕ2 must also be free and
unguarded in ϕ. This gives us f(ϕ1) ∪ f(ϕ2) = f(ϕ) and so we have

ϕ ≡ (ψ1 ∧ ψ2) ∧
∧

i∈f(ϕ)

Xi

ϕ = maxXj .ϕ
′: By the induction hypothesis, there exists a formula ψ ∈

sHML such that
ϕ′ ≡ ψ ∧

∧
i∈f(ϕ′)

Xi

where f(ψ) = ∅.
We use the following equivalences:

maxX.ϑ ≡ ϑ[maxX.θ/X](1)
maxX.(ϑ ∧X) ≡ maxX.ϑ(2)

Y [ϑ/X] ≡ Y where X 6= Y(3)

From this we get:

ϕ ≡ maxXj .ϕ
′

≡ maxXj .

ψ ∧ ∧
i∈f(ϕ′)\{j}

Xi


≡

ψ ∧ ∧
i∈f(ϕ′)\{j}

Xi

[maxXj .

(
ψ ∧

∧
i∈f(ϕ′)\{j}

Xi

)/
Xj

]

≡ ψ
[
maxXj .

(
ψ ∧

∧
i∈f(ϕ′)\{j}

Xi

)/
Xj

]
∧

∧
i∈f(ϕ′)\{j}

Xi

10 SÆVAR ÖRN KJARTANSSON

Since each variable in ψ is guarded, substituting a variable for a formula
will not introduce unguarded variables and so

f

(
ψ

[
maxXj .

(
ψ ∧

∧
i∈f(ϕ′)\{j}

Xi

)/
Xj

])
= ∅

The variables in ϕ that are free and unguarded are exactly the ones that
are free and unguarded in ϕ′, excluding Xj and so we have

f(ϕ) = f(ϕ′) \ {j}
This gives us:

ϕ ≡ ψ
[
maxXj .

(
ψ ∧

∧
i∈f(ϕ′)\{j}

Xi

)/
Xj

]
∧
∧

i∈f(ϕ)

Xi

�

We now extend the notion of standard and deterministic forms for systems of
equations. Since we will only be working with formulae from sHML which does
not include minimum fixed points, we will assume that for each equation, we are
interested in the maximum solution.

Definition 17. Let SYS be a system of equations that is equivalent to some
formula ϕ ∈ sHML. We say that an equation, Xi = Fi is in standard form if either
Fi = ff, or

Fi =
∧
j∈Ki

[αj]Xj ∧
∧
j∈Si

Yj

for some finite set of indices, Ki and Si.
We say that SYS is in standard form if every equation in SYS is in standard

form.

Lemma 4. For each formula ϕ ∈ sHML, there exists a system of equations that
is equivalent to ϕ and is in standard form.

proof. We use structural induction to show how we can construct a system of equati-
ons from a formula ϕ that is in standard form. As shown in lemma 3, given a formula
ϑ ∈ sHML we can define an equivalent formula ϑ′ where each free and unguarded
variable is at the top level. We can therefore assume that for each fixed point
maxX.ψ that occurs as a sub formula in ϕ, each free and unguarded variable in ψ
is at the top level of ψ and using the equivalence maxX.(ϑ ∧ X) ≡ maxX.ϑ, we
can also assume that X does not appear at the top level of ψ.

We now go through the base cases and each of the top level operators that can
occur in ϕ.

ϕ = tt: We define a system of equations SYS = ({X = tt}, X, ∅). Since∧
j∈∅ ϑj ≡ tt, SYS is in standard form and is equivalent to ϕ.

ϕ = ff: We define a system of equations SYS = ({X = ff}, X, ∅). SYS is in
standard form and is equivalent to ϕ.

ϕ = Y1: We define a system of equations SYS = ({X = Y }, X, {Y }). SYS is
in standard form and is equivalent to ϕ.

ϕ = [α]ψ: By the induction hypothesis, there exists a system of equations,
SYS = (Eq,X1,Y) that is equivalent to ψ and is in standard form.

We define a new system of equations

SYS ′ = (Eq ∪ {X0 = [α]X1}, X0,Y)
Each equation from SYS ′ is in standard form and so SYS ′ is in standard
form. Since X1 = F1 is equivalent to ψ, X0 = [α]X1 is equivalent to [α]ψ
which means SYS ′ is equivalent to ϕ.

11

ϕ = ψ1 ∧ ψ2: By the induction hypothesis, there exist systems of equations
SYS 1 = (Eq1, X1,Y1) and SYS 2 = (Eq2, Z1,Y2) that are equivalent to ψ1

and ψ2 respectively and are in standard form. Let X1 = F1 be the principal
equation from SYS 1 and let Z1 = G1 be the principal equation from SYS 2.

We define a new system of equations

SYS = (Eq,X0,Y1 ∪ Y2)

where

Eq = Eq1 ∪ Eq2 ∪ {X0 = F1 ∧G1}

Now since X1 = F1 is equivalent to ψ1 and Z1 = G1 is equivalent to ψ2,
X0 = F1 ∧G1 is equivalent to ϕ = ψ1 ∧ ψ2.

Both X1 = F1 and Z1 = G1 are in standard form and so we can write
them as

F1 =
∧
j∈K1

[αj]Xj ∧
∧
j∈S1

Yj

G1 =
∧
j∈K′

1

[αj]Zj ∧
∧
j∈S′

1

Yj

This allows us to rewrite the equation for X0 as follows:

X0 = F1 ∧G1

=
∧
j∈K1

[αj]Xj ∧
∧
j∈S1

Yj ∧
∧
j∈K′

1

[αj]Zj ∧
∧
j∈S′

1

Yj

=

 ∧
j∈K′

1

[αj]Xj ∧
∧
j∈K′

1

[αj]Zj

 ∧ ∧
j∈S1∪S′

1

Yj

Now SYS is in standard form and is equivalent to ϕ.
ϕ = maxY.ψ: By the induction hypothesis, there exists a system of equations

SYS = (Eq,X1,Y) that is equivalent to ψ and is in standard form.
If ψ does not contain Y , then ϕ ≡ ψ which means ϕ is equivalent to SYS

and we are done.
If ψ does contain Y then we define a new system of equation:

SYS ′ = (Eq ∪ {Y = F1}, Y,Y \ {Y })

where X1 = F1. Since X1 = F1 is equivalent to ψ, F1 can derive Y and
Y = F1, the equation Y = F1 is equivalent to maxY.ψ.

By our assumption that for each maximum fixed point maxX.ψ in ϕ,
X does not appear unguarded in ψ, we know that Y does not appear
unguarded in F1.

However in general we cannot guarantee that Y does not appear unguar-
ded in the equations from SYS , since Y ∈ Y. To overcome this, we replace
each unguarded occurrence of Y with it’s corresponding formula F1. Let
Xi = Fi be a formula that contains an unguarded occurrence of Y . Since

12 SÆVAR ÖRN KJARTANSSON

Xi = Fi is in standard form in SYS , we have

Xi =
∧
j∈Ki

[αj]Xj ∧
∧
j∈Si

Yj

=
∧
j∈Ki

[αj]Xj ∧
∧

j∈Si\{t}

Yj ∧ Yt

where Y = Yt. We now redefine Xi by replacing the unguarded occurrence
of Yt with F1:

Xi =
∧
j∈Ki

[αj]Xj ∧
∧

j∈Si\{t}

Yj ∧ F1

=
∧
j∈Ki

[αj]Xj ∧
∧

j∈Si\{t}

Yj ∧
∧
j∈K1

[αj]Xj ∧
∧
j∈S1

Yj

=
∧

j∈Ki∪K1

[αj]Xj ∧
∧

j∈(Si\{j})∪S1

Yj

and Xi is in standard form.
Since X1 = F1 is in standard form in SYS , Y = F1 must be in standard

form in SYS ′. For all other equations from SYS , we can define equivalent
equations that are in standard form in SYS ′ by replacing any unguarded
occurrence of Y with F1. All equations in SYS ′ are in standard form and
since Y = F1 is equivalent to ϕ, this case holds.

�

Definition 18. Let SYS = (Eq,X1,Y) be a system of equations equivalent to a
formula in sHML. We say that an equation X = F in Eq is in deterministic form
iff:

• any occurrence of some Xi in F must be prefixed with a box operator,
[α]Xi.

• each maximum fixed point maxY.ψ in F is prefixed by a box operator,
[α] maxY.F ′.

• for each pair of formulae, [α1]F1 and [α2]F2, that appear in the same conj-
unction in F , we have α1 6= α2.

We say that SYS is in deterministic form if every equation in Eq is in deterministic
form.

Lemma 5. For each sHML system of equations in standard form, there exists an
equivalent system of equations that is in deterministic form.

proof. Let SYS = (Eq,X1,Y) be a system of equations in standard form that is
equivalent to a formula ϕ ∈ sHML.

We define some useful functions:

S(i) = {αj | [αj]Xj is a sub formula in Fi}
D(i, α) = {r | [α]Xr is a sub formula in Fi}
E(i) = {r | Yr is unguarded in Fi}

13

We also define these functions for subsets Q ⊆ {1, 2, . . . , n}:

S(Q) =
⋃
i∈Q

S(i)

D(Q,α) =
⋃
i∈Q

D(i, α)

E(Q) =
⋃
i∈Q

E(i)

Now for each equation Xi = Fi where Fi 6= ff, using these functions we can
rewrite the equation as follows:

Xi =
∧

α∈S(i)

(
[α]

∧
i∈D(i,α)

Xj

)
∧
∧

j∈E(i)

Yi

This equation is not in deterministic form since it contains the conjunction of
variables

∧
j∈D(i,α)Xj . To fix this, we define a new variable XQ for each subset

Q ⊆ {1, 2, . . . , n}, such that XQ is equivalent to ∧j∈QXj and then we can write Xi

as follows:
Xi =

∧
α∈S(i)

[α]XD(i,α) ∧
∧

j∈E(i)

Yi

Now if we can give a deterministic definition for XQ, then the whole system is in
deterministic form.
XQ is equivalent to

∧
j∈QXj and so is equivalent to

∧
j∈Q Fj . If for any j ∈ Q

we have Fi = ff then
∧
j∈Q Fj = ff and we let XQ = ff. Otherwise, we can define

a deterministic form for XQ as follows:

XQ =
∧

α∈S(Q)

[α]XD(Q,α) ∧
∧

j∈E(Q)

Yj

We add all of these equations to the system. We did not change the formula
that SYS describes and SYS is in deterministic form. �

Lemma 6. Let SYS = (Eq,X1,Y) be a sHML system of equations in deterministic
form. There exists a formula ϕ ∈ sHML that is in deterministic form and is
equivalent to SYS .

proof. We use proof by induction on the number of equations in SYS .
For the base case, we assume that SYS contains a single equation, X1 = F1.

Since X1 = F1 is the principal equation in SYS , SYS is equivalent to the formula
maxX1.F1 and so is equivalent to G = F1[maxX1.F1/X1]. Since any occurence of
X1 in F1 is prefixed with [α], G is in deterministic form.

Now assume that SYS contains n > 1 equations. Let Xi = Fi be an equation
that is not the principal equation in SYS . A process satisfies Xi = Fi iff it satisfies
maxXi.Fi. We can therefore define a new system of equations, SYS ′, by replacing
each occurence ofXi withmaxXi.Fi in each equation in SYS and then removeXi =
Fi from the system. Since each occurence ofXi is prefixed by [α] in SYS , performing
the replacement will not break determinism. Using the induction hypothesis and
the fact that SYS ′ contains fewer equations that SYS , we can convert SYS ′ into a
formula ϕ that is equivalent to SYS and is in deterministic form. �

Finally, we are ready to prove the main theorem in this section.

Theorem 4. For each formula ϕ ∈ sHML there exists a formula ψ ∈ sHML that
is equivalent to ϕ and is in deterministic form.

14 SÆVAR ÖRN KJARTANSSON

proof. Follows from lemmas 4, 5 and 6. �

6 Conclusion

The value of this work is to show that we can add a runtime monitor to a system
without having a significant effect on the execution time of the system. In general,
evaluating a non-deterministic monitor for some specific trace takes exponential
time with regards to the length of the trace but by using a deterministic monitor,
we can bring the complexity down to linear time.

If one were to implement a verification tool based on runtime monitors one of two
approaches could be taken, each reflected in one of the two main proofs presented
in this report. The first approach is to create a monitor for the input formula using
the monitor synthesis function and then optimize the monitor such that it runs
deterministically. The second approach is to rewrite the input formula such that
it is in deterministic form and then use the monitor synthesis function to create a
deterministic monitor.

References

[1] Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. On verifying Hennessy-Milner logic
with recursion at runtime. In Ezio Bartocci and Rupak Majumdar, editors, Runtime Verificati-
on, volume 9333 of Lecture Notes in Computer Science, pages 71–86. Springer International
Publishing, 2015.

[2] Kim Guldstrand Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursi-
on. Theoretical Computer Science, 72(2&3):265–288, 1990.

[3] Alexander Rabinovich. A complete axiomatisation for trace congruence of finite state behavi-
ors. Technical report, Proceedings of Mathematical Foundations of Programming Semantics
(IX), LNCS, 1993.

[4] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, New York, NY, USA,
2007.

[5] Robin Milner. A complete inference system for a class of regular behaviours. Journal of Compu-
ter and System Sciences, 28(3):439 – 466, 1984.

School of Computer Science, Reykjavik University, Menntavegi 1, 101 Reykjavík,
Iceland

E-mail address: saevark12@ru.is

	Introduction
	Definitions
	The Model
	The Logic
	Monitors
	Monitored system
	Correspondence

	Previous Results
	Monitor Rewriting
	Formula Rewriting
	Conclusion

