Learning Markov models using ADDs

Workshop in honour of Anna Ingólfsdóttir

Giovanni Bacci

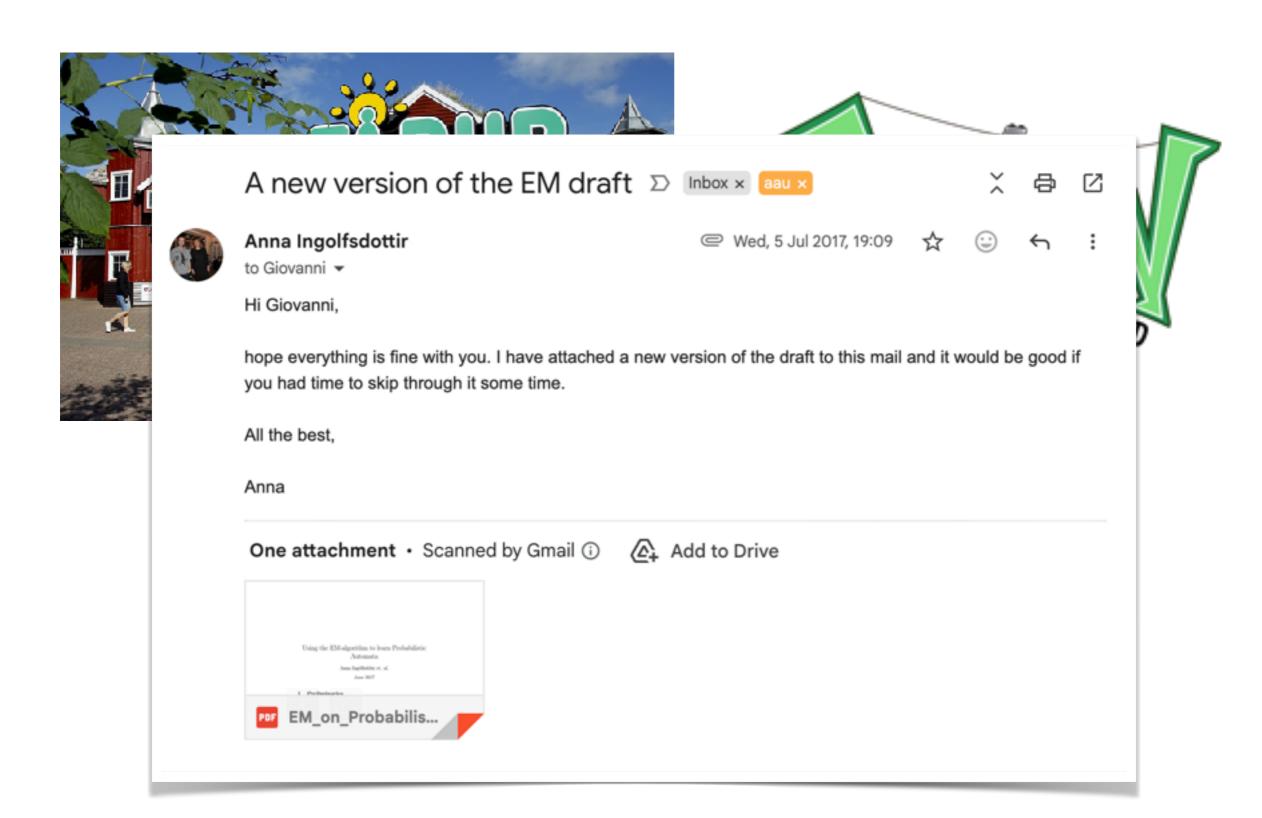
joint work with

Anna Ingólfsdóttir, Kim G. Larsen, Raphaël Reynouard, Sebastian Aaholm, Lars Emanuel Hansen, Daniel Runge Petersen

November 14, 2025 — Reykjavík, IS

Where all started

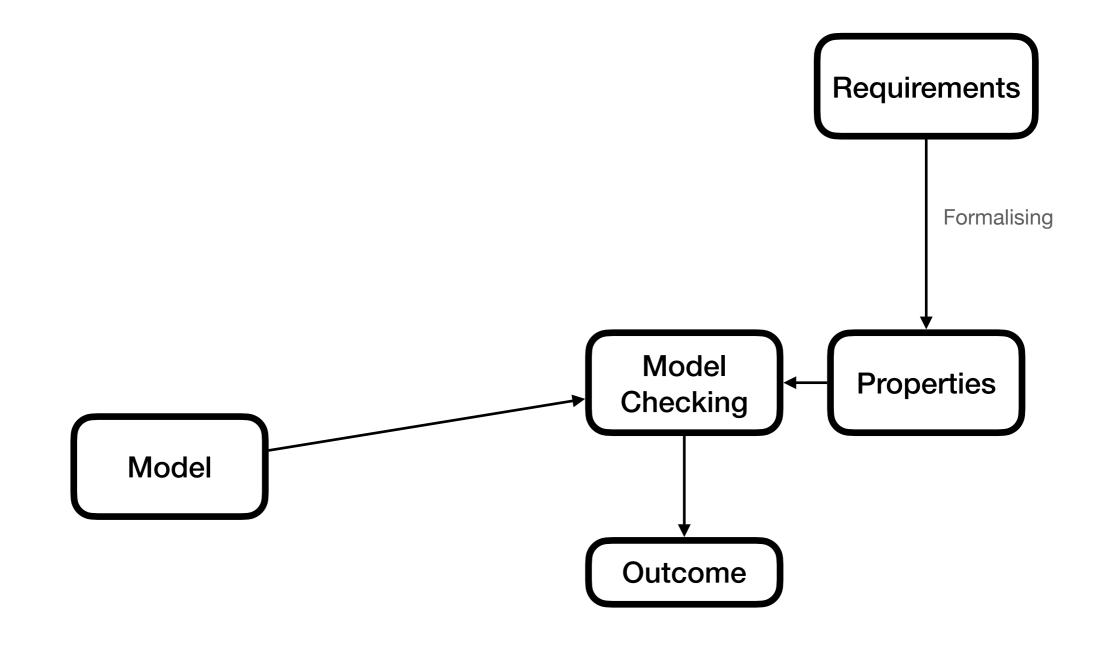
Where all started



Where all started

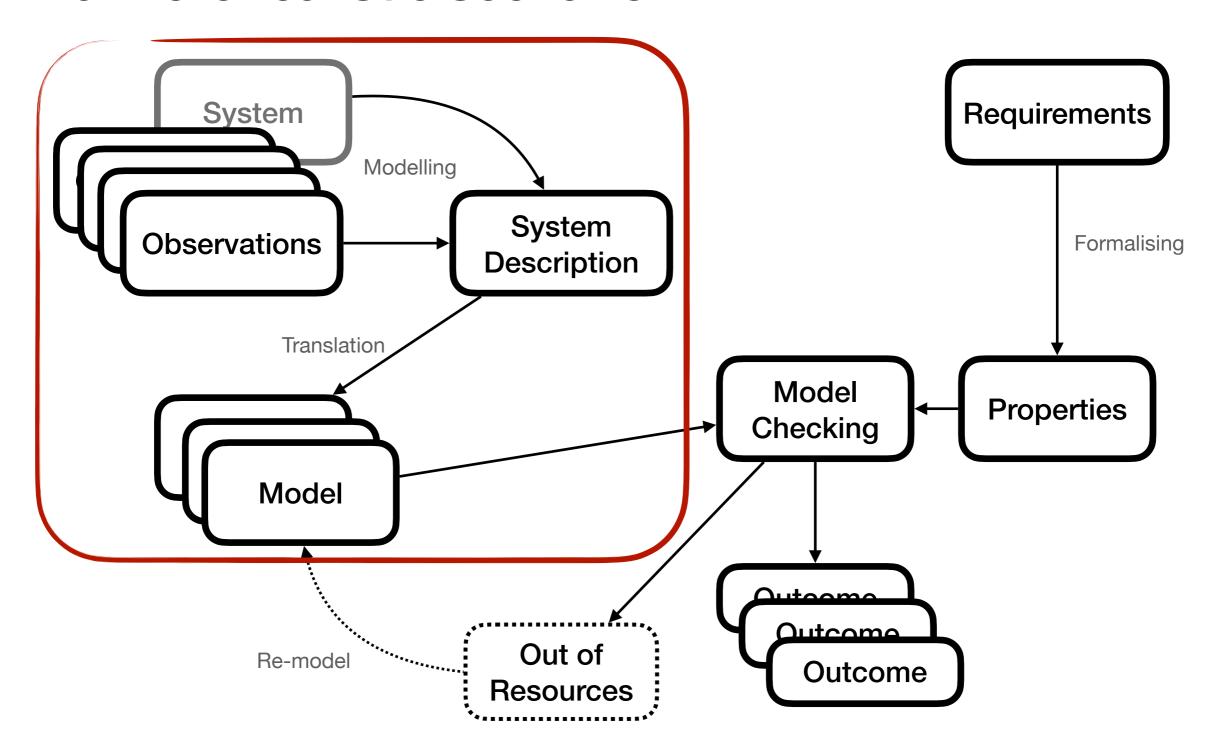
Model Checking Workflow

the typical textbook picture



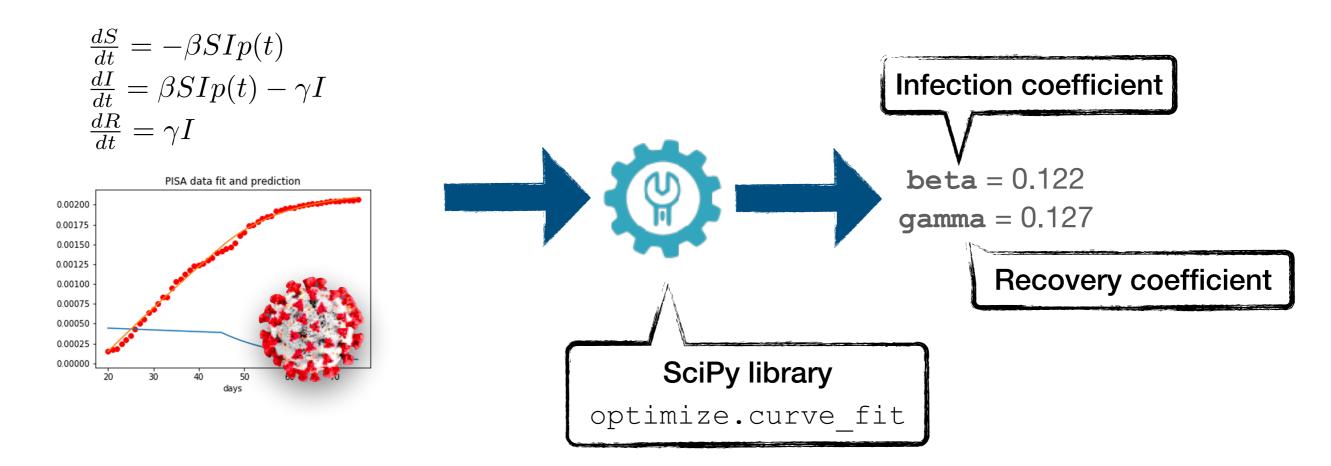
Model Checking Workflow

... a more realistic scenario



Example of system modelling and analysis [N

[Milazzo'21]



```
ctmc

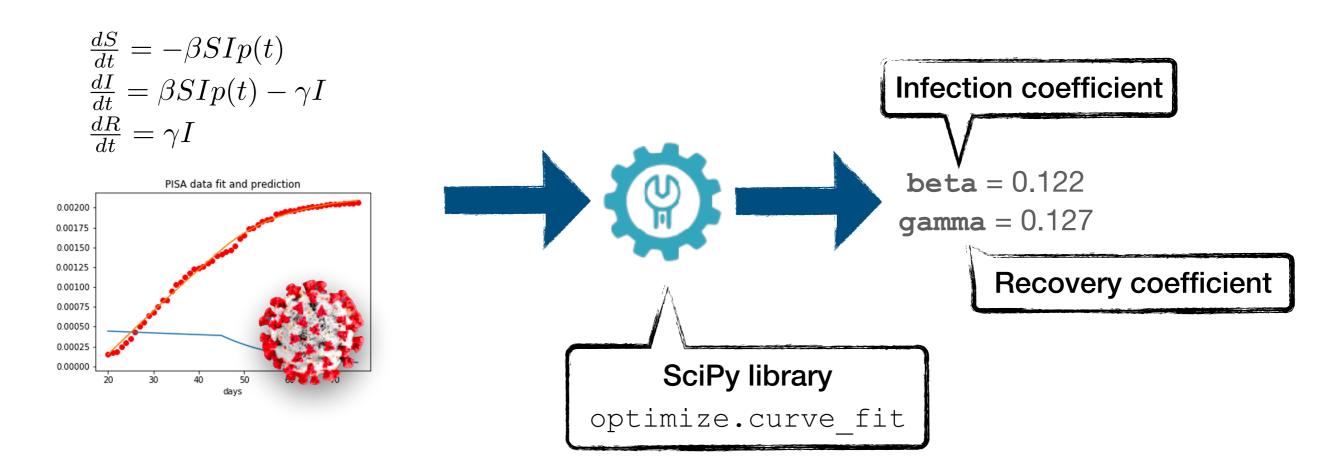
const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

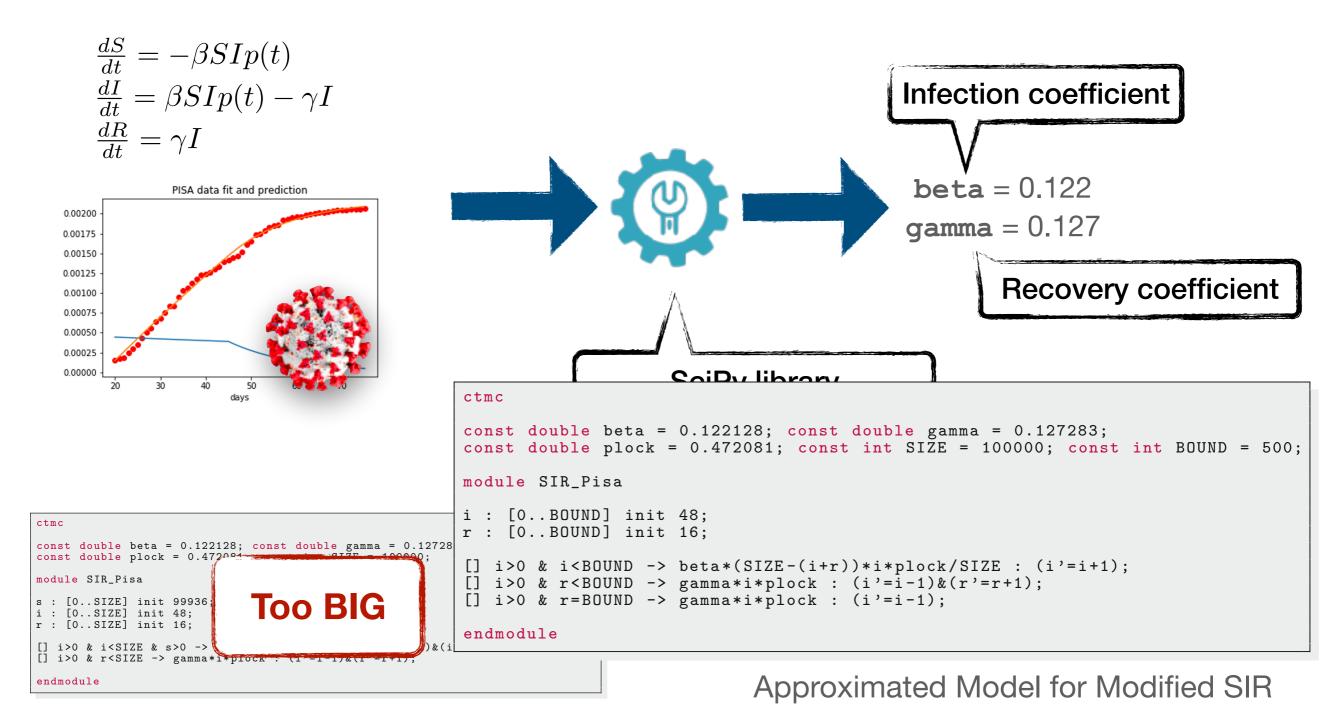
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s'=s-1)&(i'=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i'=i-1)&(r'=r+1);
endmodule
```

Example of system modelling and analysis [Milazzo'21]

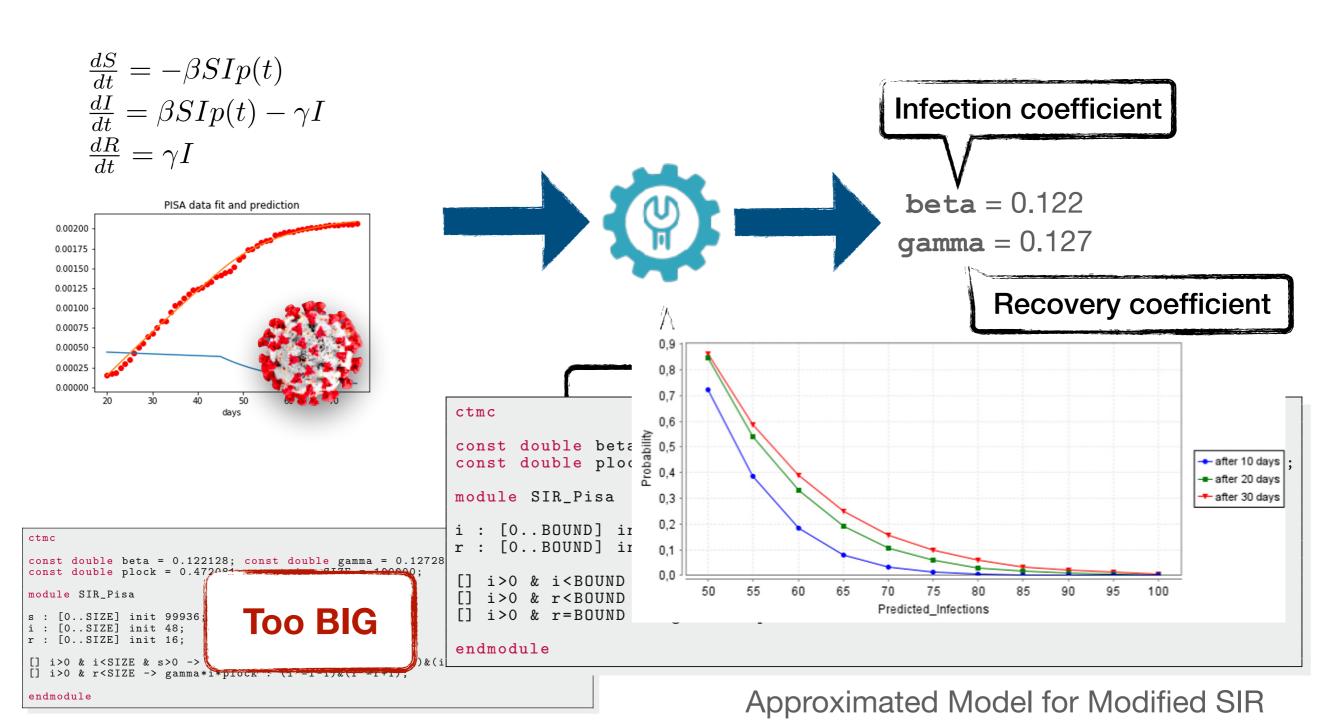


Example of system modelling and analysis [Milazzo'21]



Example of system modelling and analysis

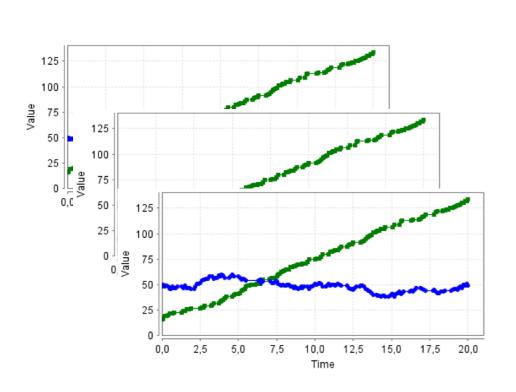
[Milazzo'21]



```
ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[] i>0 & i<SIZE & s>0 \rightarrow
beta * s * i * plock/SIZE : (s'=s-1)&(i'=i+1);
[] i>0 & r<SIZE \rightarrow
gamma * i * plock : (i'=i-1)&(r'=r+1);
endmodule
```



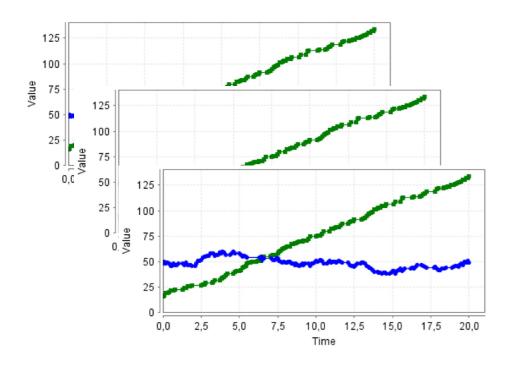
beta = 0.122

gamma = 0.127

```
ctmc // SIR model paramaters const double beta; const double gamma; const double plock; const int SIZE = 100000; // population size module SIR s : [0..SIZE] init 99936; i : [0..SIZE] init 48; r : [0..SIZE] init 48; r : [0..SIZE] init 16; [] i>0 & i<SIZE & s>0 \rightarrow beta * s * i * plock/SIZE : (s'=s-1)&(i'=i+1); [] i>0 & r<SIZE \rightarrow gamma * i * plock : (i'=i-1)&(r'=r+1); endmodule
```

```
Model template (with parameters)
```


beta = 0.122 gamma = 0.127



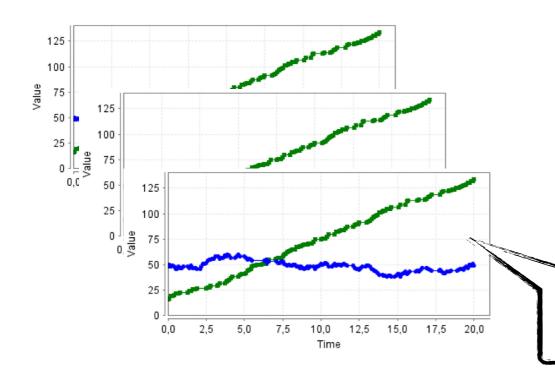
```
ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[] i>0 & i<SIZE & s>0 →
    beta * s * i * plock/SIZE : (s'=s-1)&(i'=i+1);
[] i>0 & r<SIZE →
    gamma * i * plock : (i'=i-1)&(r'=r+1);
endmodule</pre>
```

Model template (with parameters)

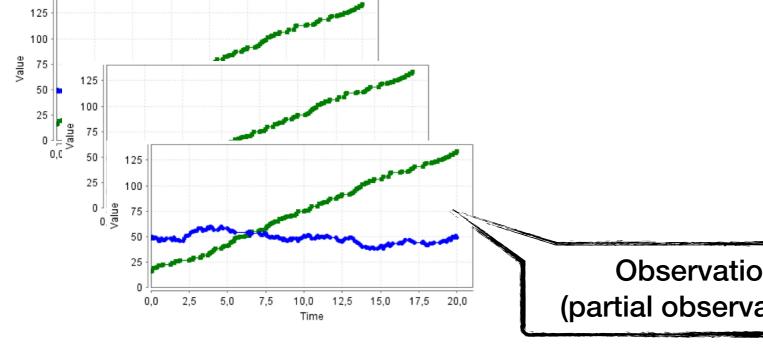
beta = 0.122 gamma = 0.127



Observations (partial observability)

```
ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size
module SIR
s: [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;
[] i>0 & i<SIZE & s>0 \rightarrow
  beta * s * i * plock/SIZE : (s'=s-1)\&(i'=i+1);
[] i>0 \& r<SIZE \rightarrow
   gamma * i * plock : (i'=i-1)&(r'=r+1);
endmodule
```

```
Model template
(with parameters)
                              Parameters that fit
                            best the observation.
                                beta = 0.122
                                gamma = 0.127
```



Observations (partial observability)

```
ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

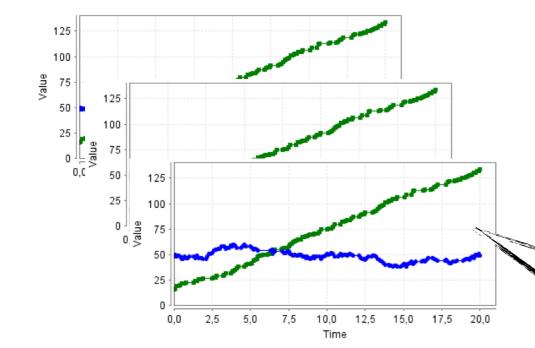
module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[] i>0 & i<SIZE & s>0 \rightarrow
beta * s * i * plock/SIZE : (s'=s-1)&(i'=i+1);
[] i>0 & r<SIZE \rightarrow
gamma * i * plock : (i'=i-1)&(r'=r+1);
endmodule
```

Model template (with parameters)

Parameters that fit best the observation.

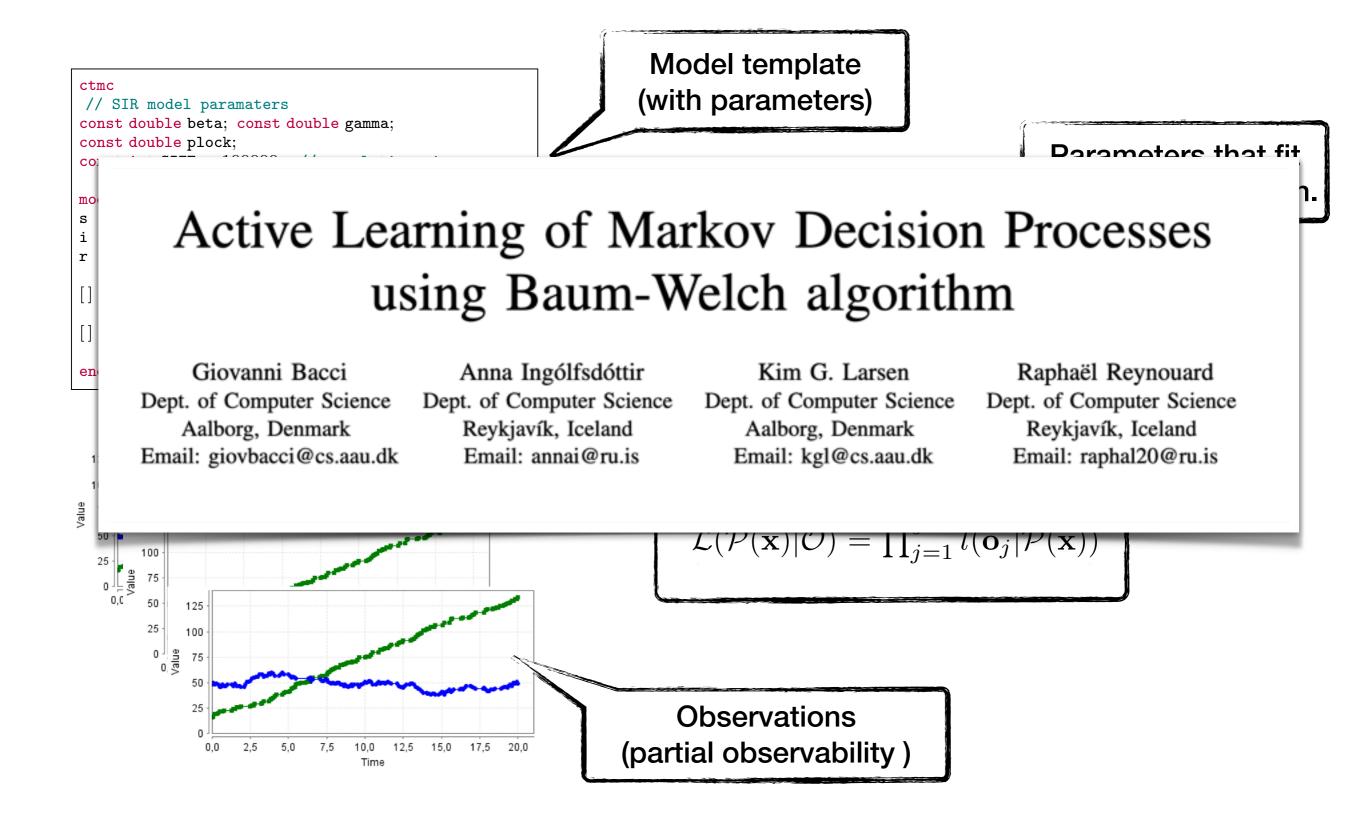
beta = 0.122 gamma = 0.127

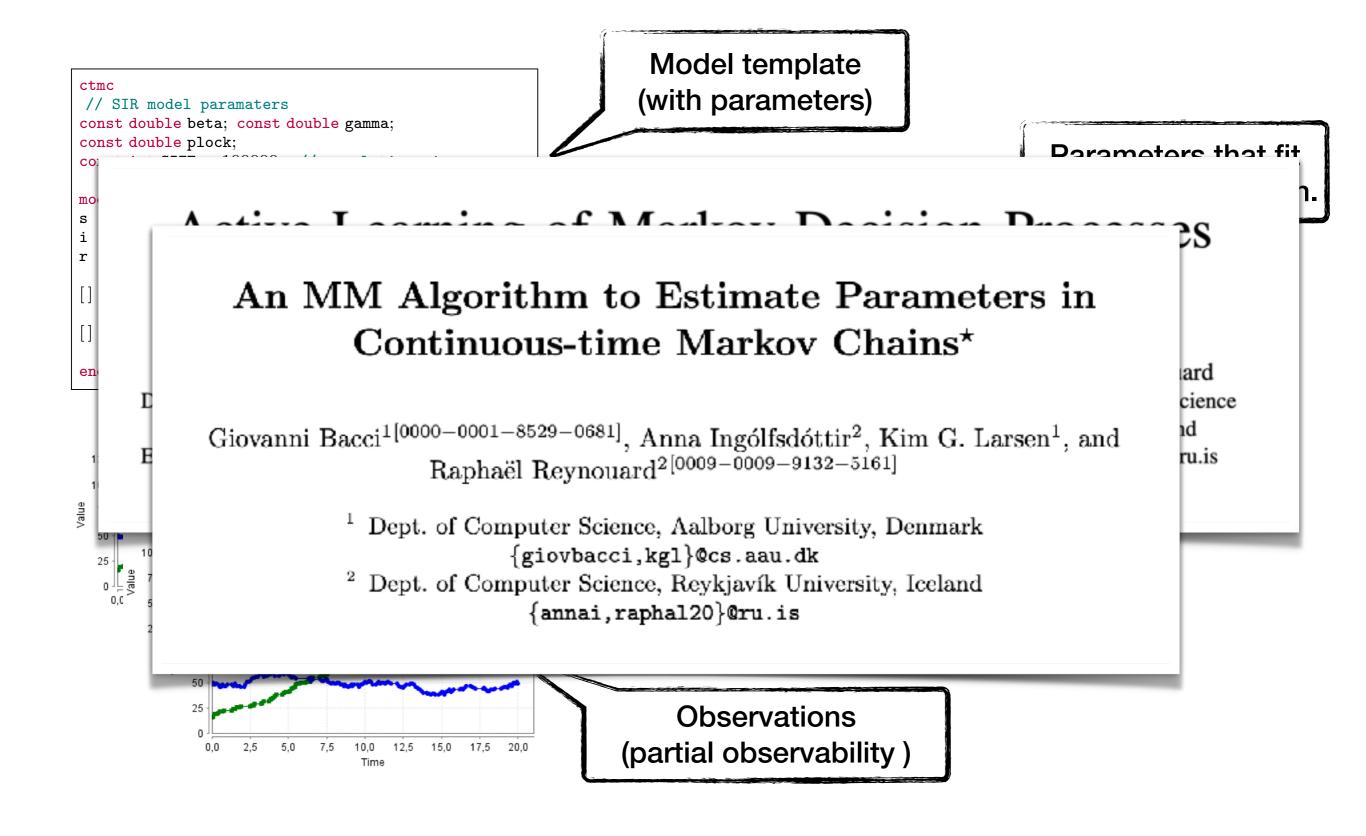


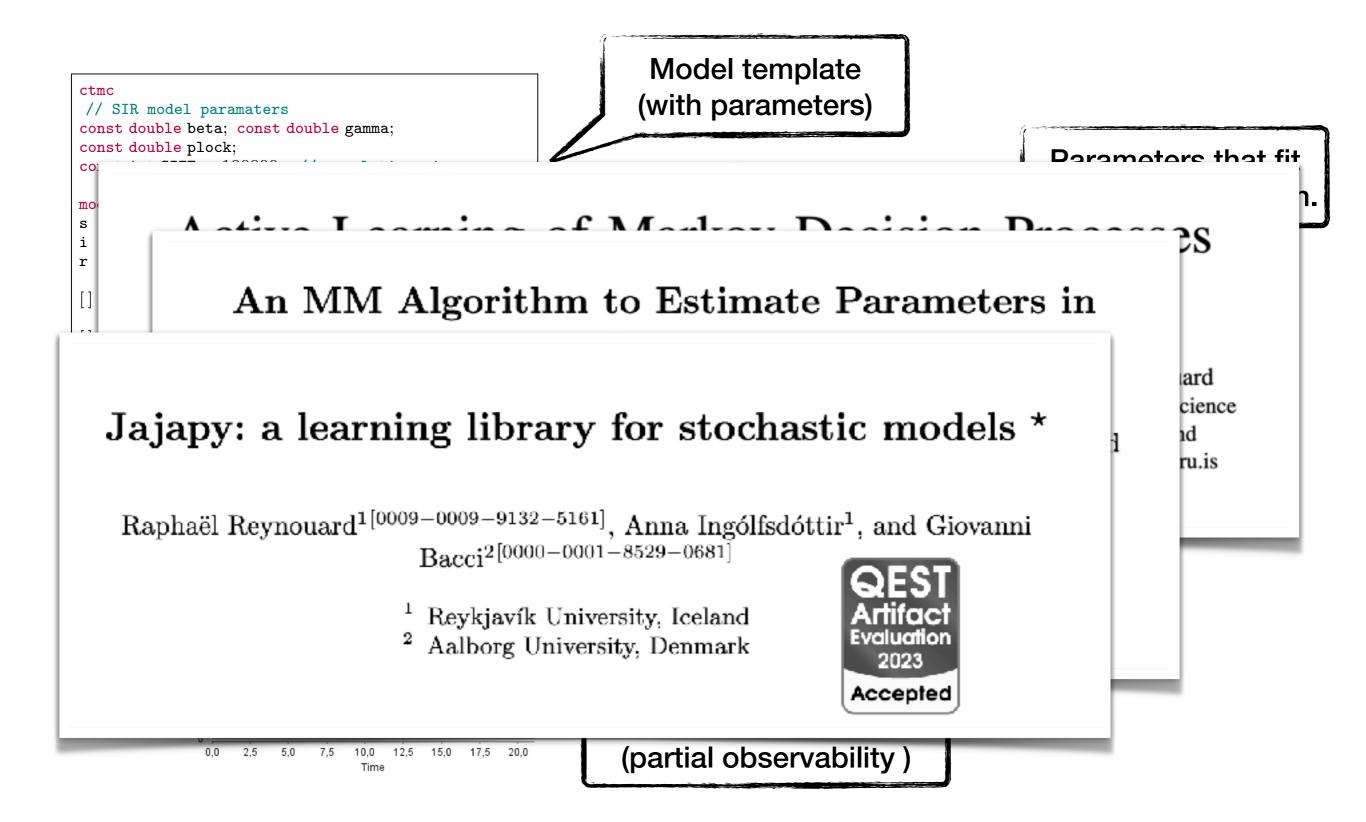
Maximum Likelihood Estimation

$$\mathcal{L}(\mathcal{P}(\mathbf{x})|\mathcal{O}) = \prod_{j=1}^{J} l(\mathbf{o}_j | \mathcal{P}(\mathbf{x}))$$

Observations (partial observability)







Raphaël Reynouard

- The library contains a number of algorithms to learn
 - DTMCs, MDPs, CTMCs, HMMs, and GoHMMs
- Interoperable with STORM via StormPy
- Compatible with PRISM via import/export of PRISM models

Check it out at https://pypi.org/project/jajapy/

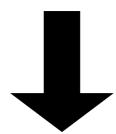
The End

The End

...not quite

Scalability is still an issue

Problem: Jajapy uses explicit statespace model representation



It does not scale to realistic models

Scalability is still an issue

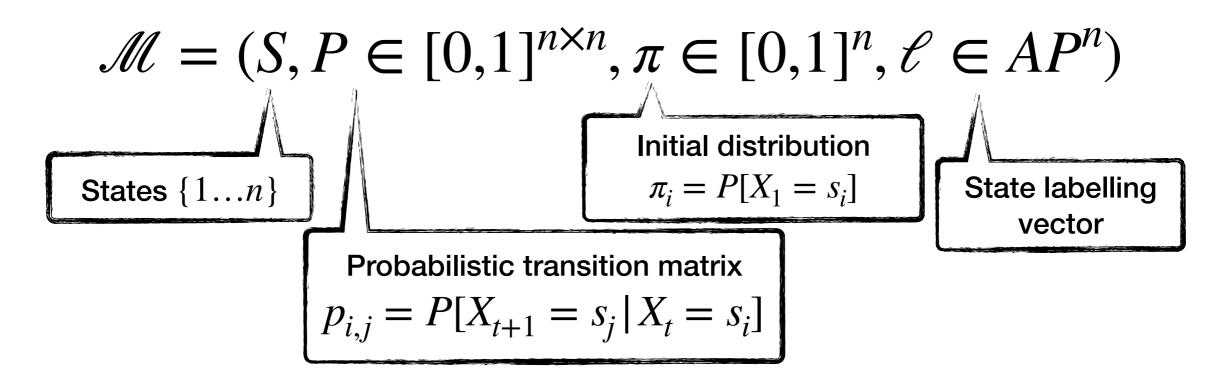
The EM-BDD Algorithm For Learning

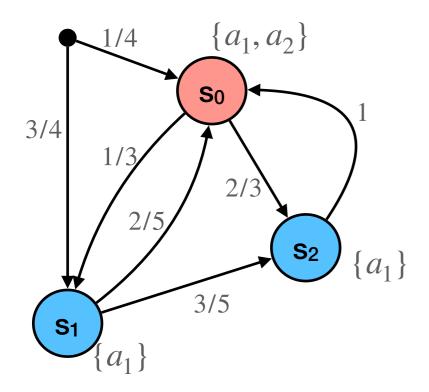
Hidden Markov Models

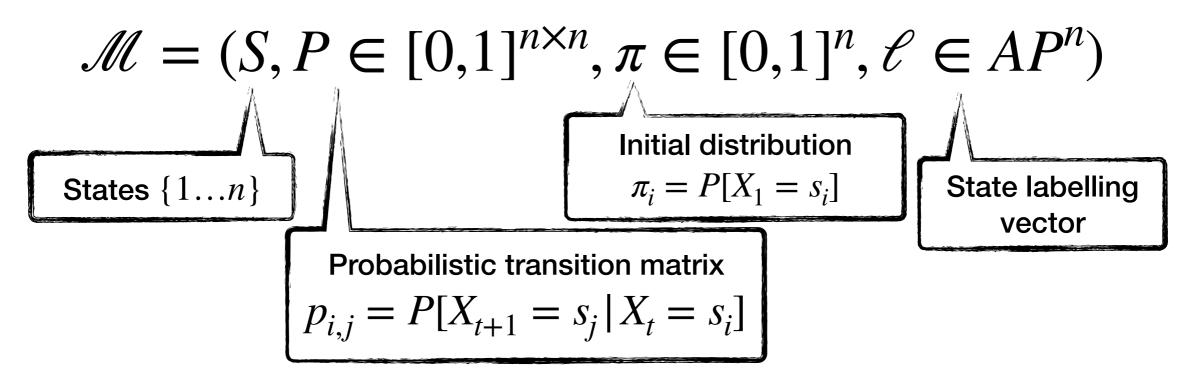
Eva Ósk Gunnarsdóttir
 $^{(\boxtimes)}$ and Anna Ingólfsdóttir

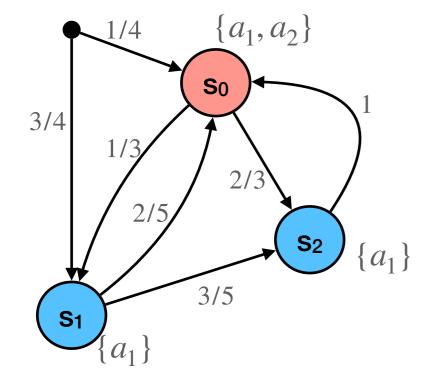
Reykjavík University, Reykjavík, Iceland evag180ru.is

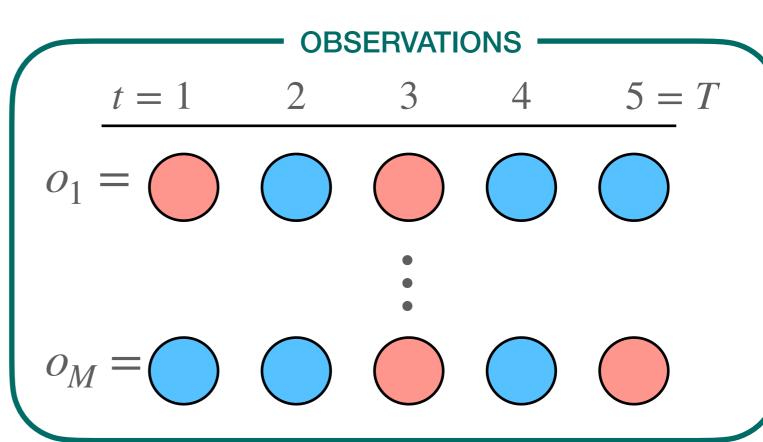
l've told you so! use symbolic methods dels

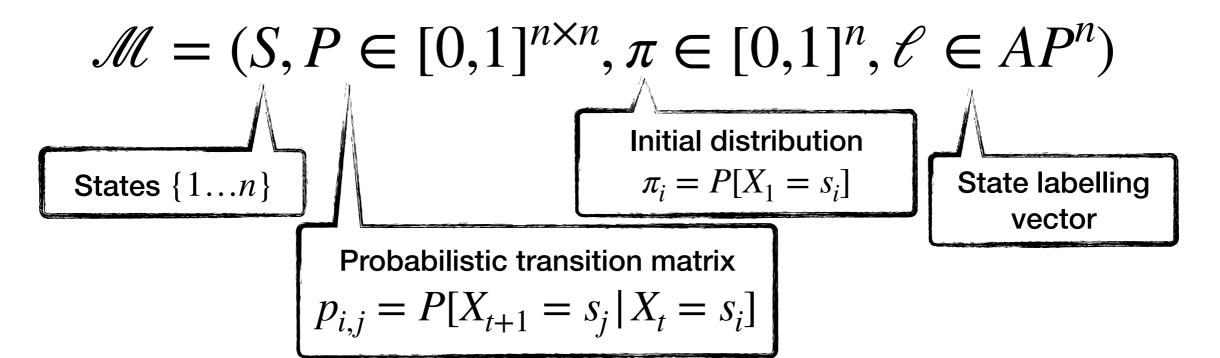


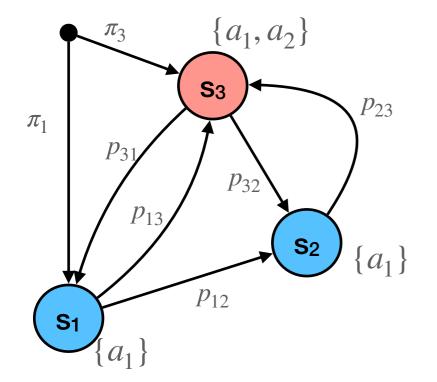


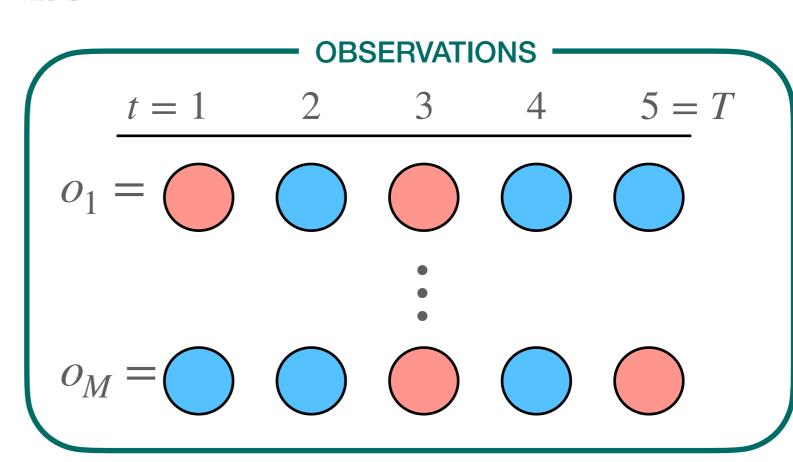


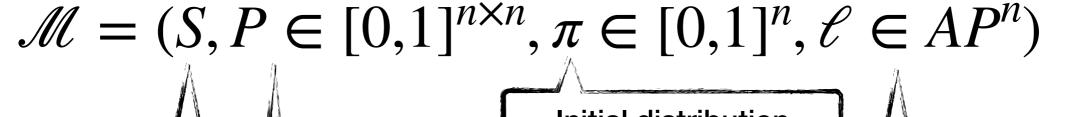












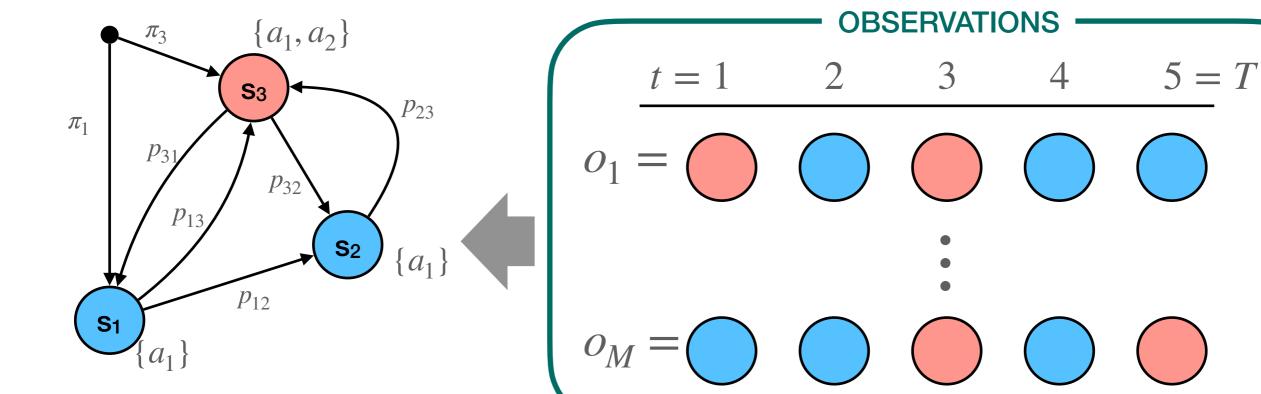
States {1...*n*}

Initial distribution $\pi_i = P[X_1 = s_i]$

State labelling vector

Probabilistic transition matrix

$$p_{i,j} = P[X_{t+1} = s_j | X_t = s_i]$$



Baum Welch Algorithm

in a nutsnell

Observation $\mathbf{o} = o_1 \cdots o_T$

$$\mathcal{M}_h = (S, P, \pi, \mathcal{E})$$

$$\omega_i(t) = 1 \text{ iff } o_t \in \mathcal{E}(s_i)$$

E-Step

FORWARD-ALGORITHM

1
$$\boldsymbol{\alpha}(1) = \boldsymbol{\omega}(1) \odot \boldsymbol{\pi}$$

2 for
$$t = 2$$
 to T

3
$$\boldsymbol{\alpha}(t) = \boldsymbol{\omega}(t) \ominus \left(P^{\top} \boldsymbol{\alpha}(t-1)\right)$$

BACKWARD-ALGORITHM

1
$$\beta(T) = 1$$

2 **for**
$$t = T - 1$$
 to 1

3
$$\boldsymbol{\beta}(t) = P(\boldsymbol{\beta}(t+1) \odot \boldsymbol{\omega}(t+1))$$

$$\gamma(t) = (\boldsymbol{\alpha}(t) \bigcirc \boldsymbol{\beta}(t))/P[\mathbf{o}|\mathcal{M}]$$

$$t = 1 \dots T$$

$$\boldsymbol{\xi}(t) = (P[\mathbf{o}|\mathcal{M}] \cdot P) \ominus (\boldsymbol{\alpha}(t) \otimes (\boldsymbol{\beta}(t+1) \ominus \boldsymbol{\omega}(t+1))^{\top}) \qquad t = 1 \dots T - 1$$

$$t = 1 \dots T - 1$$

M-Step

$$\hat{\boldsymbol{\pi}} = \boldsymbol{\gamma}(1)$$

$$\hat{m{\pi}} = m{\gamma}(1)$$
 Improved initial distribution $\hat{P} = (\mathbf{1} \oslash m{\gamma}) \bullet m{\xi}$ Improved probability matrix

$$\sum_{t=1}^{T} oldsymbol{\gamma}(t)$$

$$\sum_{t=1}^{T} \boldsymbol{\xi}(t)$$

From explicit to symbolic

Symbolic data structures

- Usually based on binary decision diagrams (BDDs) or variants
- Avoid explicit enumeration of data by exploiting regularity
- Potentially very compact storage (but not always)

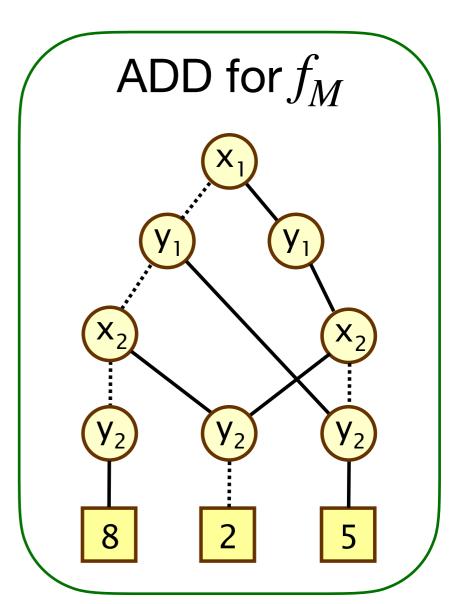
	Explicit	Symbolic
Set of states	Bit vectors	BDDs
Real-valued vectors	Arrays of reals*	ADDs
Real-valued matrices	Sparse matrices	ADDs

Algebraic decision diagrams (ADDs)

- Extension of BDDs to represent real-valued functions
- Like BDDs, and ADD is associated with n Boolean variables
- An ADD M represent a function $f_M : \{0,1\}^n \to \mathbb{R}$

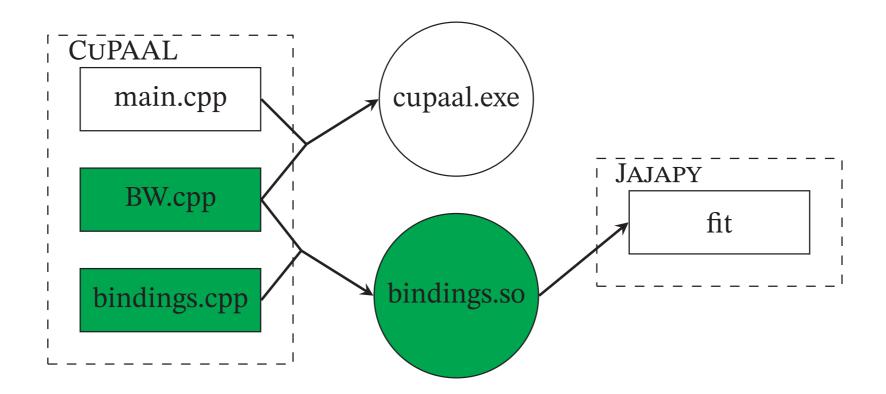
$$M = \begin{bmatrix} 0 & 8 & 0 & 5 \\ 2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

Entry in M	X ₁	X ₂	y ₁	y ₂	$x_1y_1x_2y_2$	f _M
(0,1) = 8	0	0	0	1	0001	8
(1,0) = 2	0	1	0	0	0010	2
(0,3) = 5	0	0	1	1	0101	5
(1,3) = 5	0	1	1	1	0111	5
(2,3) = 5	1	0	1	1	1101	5
(3,2) = 2	1	1	1	0	1110	2

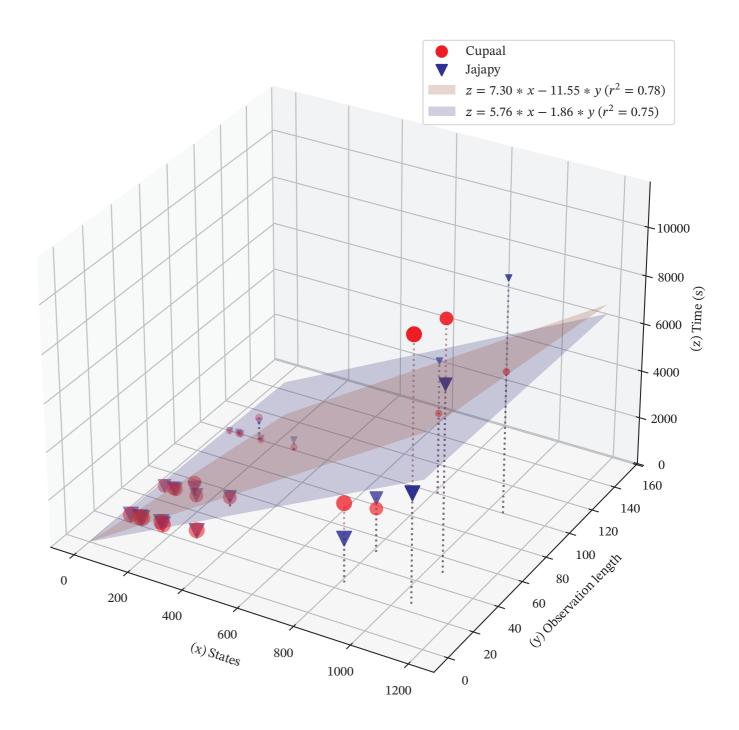


Introducing CuPAAL

- We implemented the BW algorithm using ADDs
- The implementation uses the CUDD library extending it with
 - Hadamard product
 - A specialised version of the Kronecker product
- It integrates with Jajapy

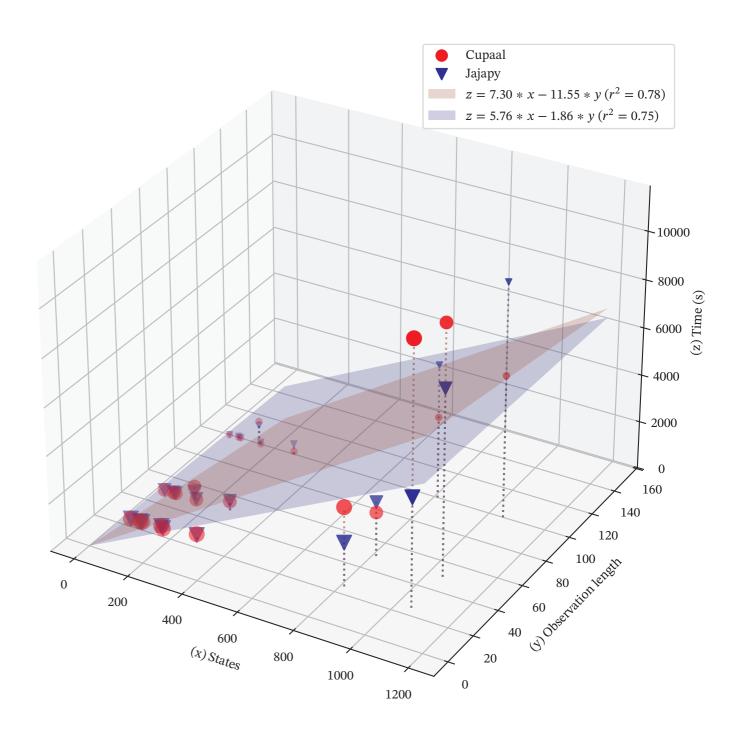


model	states	length	jajapy (s)	cupaal (s)
3.2	26	25	1.38	0.26
3.2	26	50	1.95	0.14
3.2	26	100	4.09	0.23
3.3	69	25	7.95	2.46
3.3	69	50	11.20	1.59
3.3	69	100	19.65	1.75
3.4	147	25	27.10	8.54
3.4	147	50	42.57	9.20
3.4	147	100	84.02	9.90
4.2	61	25	15.68	11.18
4.2	61	50	24.87	13.56
4.2	61	100	52.11	11.24
4.3	274	25	194.88	231.28
4.3	274	50	414.30	379.21
4.3	274	100	447.83	117.78
4.4	812	25	1846.68	3324.83
4.4	812	50	2290.28	1848.44
4.4	812	100	5652.14	3447.56
5.2	141	25	95.59	104.71
5.2	141	50	342.05	553.66
5.2	141	100	798.73	982.97
5.3	1050	25	4586.86	10906.91
5.3	1050	50	7791.95	10405.75
5.3	1050	100	9821.74	5992.51



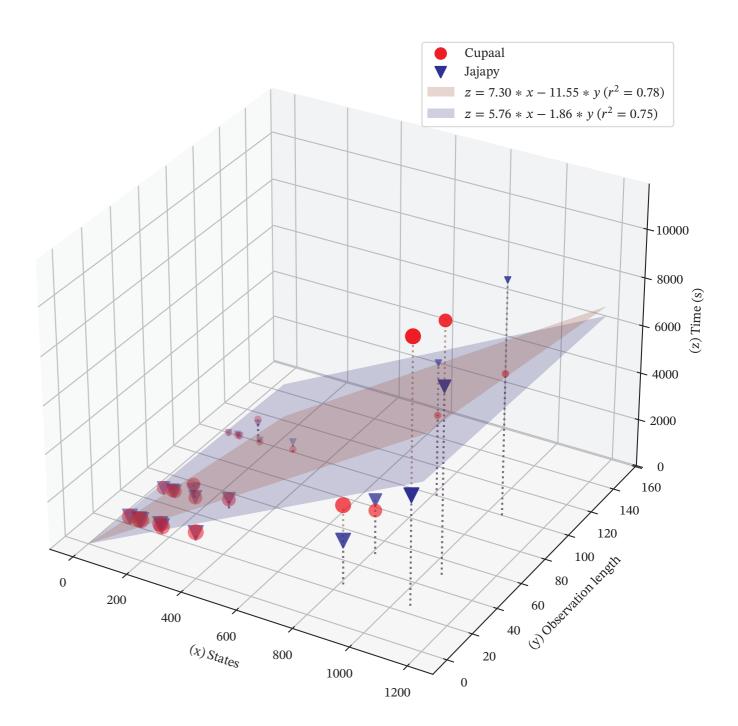
Leader sync [Itai & Rodeh] with N processes and K range of probabilistic choice

model	states	length	jajapy (s)	cupaal (s)
3.2	26	25	1.38	0.26
3.2	26	50	1.95	0.14
3.2	26	100	4.09	0.23
3.3	69	25	7.95	2.46
3.3	69	50	11.20	1.59
3.3	69	100	19.65	1.75
3.4	147	25	27.10	8.54
3.4	147	50	42.57	9.20
3.4	147	100	84.02	9.90
4.2	61	25	15.68	11.18
4.2	61	50	24.87	13.56
4.2	61	100	52.11	11.24
4.3	274	25	194.88	231.28
4.3	274	50	414.30	379.21
4.3	274	100	447.83	117.78
4.4	812	25	1846.68	3324.83
4.4	812	50	2290.28	1848.44
4.4	812	100	5652.14	3447.56
5.2	141	25	95.59	104.71
5.2	141	50	342.05	553.66
5.2	141	100	798.73	982.97
5.3	1050	25	4586.86	10906.91
5.3	1050	50	7791.95	10405.75
5.3	1050	100	9821.74	5992.51



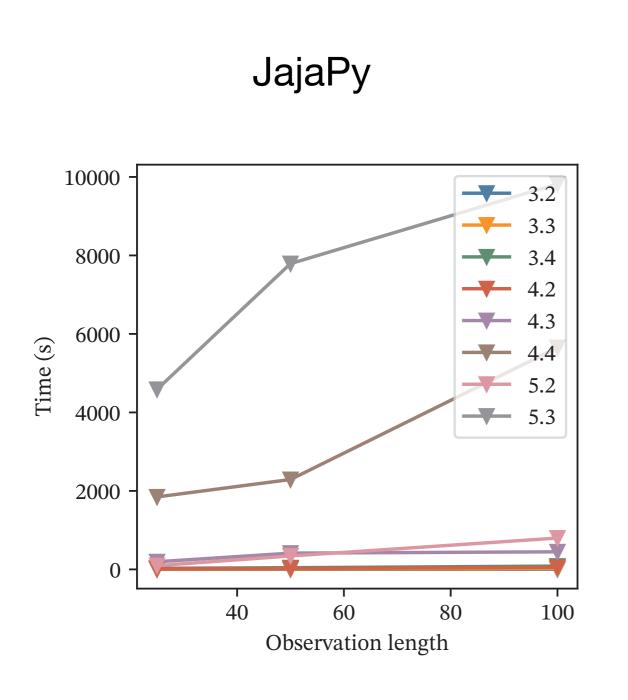
Leader sync [Itai & Rodeh] with N processes and K range of probabilistic choice

model	states	length	jajapy (s)	cupaal (s)
3.2	26	25	1.38	0.26
3.2	26	50	1.95	0.14
3.2	26	100	4.09	0.23
3.3	69	25	7.95	2.46
3.3	69	50	11.20	1.59
3.3	69	100	19.65	1.75
3.4	147	25	27.10	8.54
3.4	147	50	42.57	9.20
3.4	147	100	84.02	9.90
4.2	61	25	15.68	11.18
4.2	61	50	24.87	13.56
4.2	61	100	52.11	11.24
4.3	274	25	194.88	231.28
4.3	274	50	414.30	379.21
4.3	274	100	447.83	117.78
4.4	812	25	1846.68	3324.83
4.4	812	50	2290.28	1848.44
4.4	812	100	5652.14	3447.56
5.2	141	25	95.59	104.71
5.2	141	50	342.05	553.66
5.2	141	100	798.73	982.97
5.3	1050	25	4586.86	10906.91
5.3	1050	50	7791.95	10405.75
5.3	1050	100	9821.74	5992.51

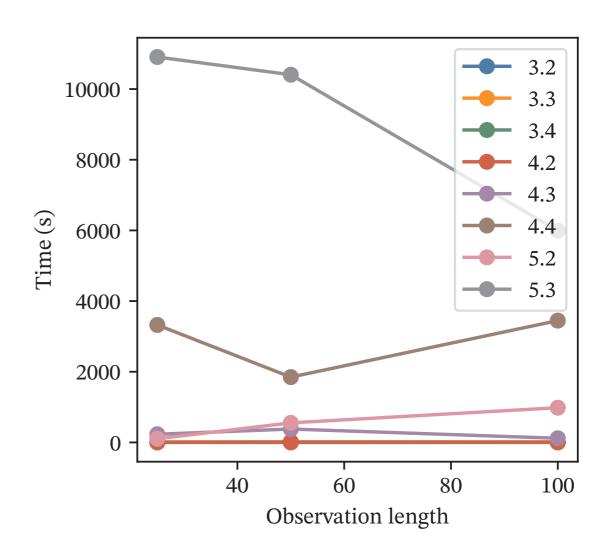


Leader sync [Itai & Rodeh] with N processes and K range of probabilistic choice

a closer look



CuPAAL

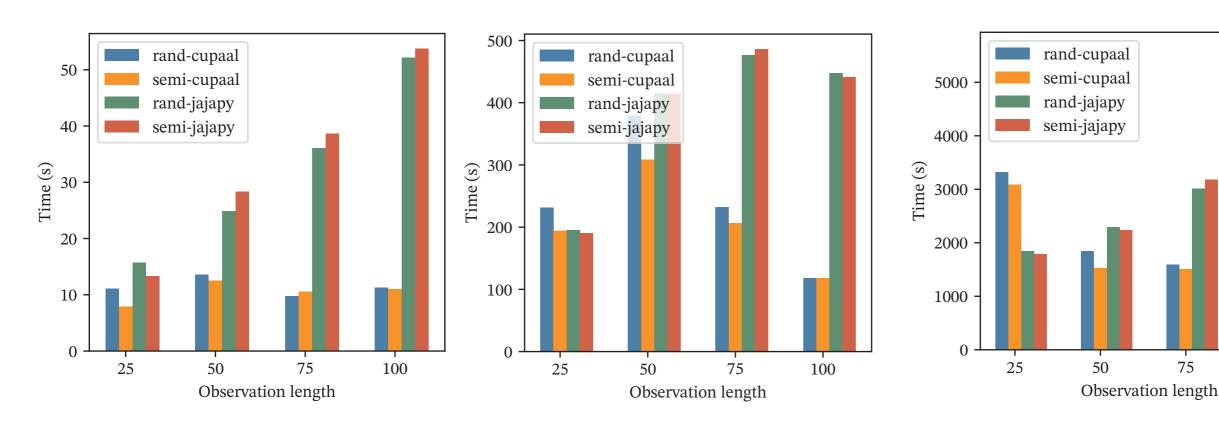


Tuning the initial hypothesis?

We played a bit limiting the image for the probability transition function of the initial hypothesis \mathcal{M}_0

We employed a semi-random generation of \mathcal{M}_0 which favoured structural similarities

Remark: one needs to be careful here



Leader sync (N = 4, K = 2)

Leader sync (N = 4, K = 3)

Leader sync (N = 4, K = 4)

100

Conclusion and Future direction

- Early to say that our approach using ADDs can outperform actual implementation of Jajapy (sparse matrices are quite effective).
- Deeper integration with Prism skipping intermediate model representations.
- Structural similarities might be better exploited on parametric models like those we used.

 It would be great trying out parameter estimation techniques on Stochastic Timed Automata

The End

The End

for today