
November 14, 2025 — Reykjavík, IS

Learning Markov 
models using ADDs

Giovanni Bacci


joint work with 


Anna Ingólfsdóttir, Kim G. Larsen, Raphaël Reynouard,

Sebastian Aaholm, Lars Emanuel Hansen, Daniel Runge Petersen

Workshop in honour of Anna Ingólfsdóttir 



Where all started 



Where all started 



Where all started 



Model Checking Workflow

Model

Model 
Checking Properties

Requirements

Outcome

Formalising

the typical textbook picture



Model Checking Workflow

Model
Model

System

Model

ObservationsObservations
Observations

Model 
Checking Properties

Requirements

Outcome

Observations

Outcome
Outcome

FormalisingSystem 
Description

Out of 
Resources

Modelling

Translation

Re-model

… a more realistic scenario 



Example of system modelling and analysis      [Milazzo’21] 
Case Study: covid spread in Toscany128 P. Milazzo

like outliers, all provinces exhibit an infection coefficient β in the interval
[0.077, 0.145] and a recovery coefficient γ in [0.06, 0.127]. Provinces with a high
population density, such as Firenze and Prato, actually correspond to highest
infection coefficients. The estimation of plock is instead less regular, thus sug-
gesting that something could be improved about the modelling of the lockdown
effect. Inaccuracies could also be caused by the low quality of measurements in
the first period of the pandemic. Anyway, the estimated plock values provide use-
ful qualitative information about the areas in which lockdown has given better
results.

Fig. 1. Data fitting and predictions
(Pisa province)

Figures 1 and 2 show numerical simu-
lation results of the modified SIR model
(only the curves of I and R are depicted)
compared with the real data about cumu-
lative number of infected individuals
(dots). The curve of I is actually a pre-
diction, since, as we already explained, we
use I to represent “real” infected individu-
als that are hidden in the population. The
shape of this curve, that in many cases
shows an edge at the start of lockdown,
demonstrates the positive effect of such a
prevention measure.

Fig. 2. Data fitting and predictions (other provinces)
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model includes one equation for each class of individuals. The population size is
assumed constant over time and it is normalized in [0, 1] ⊆ IR. Hence, variables
S, I, R ∈ [0, 1] with S+ I +R = 1 describe the ratios of each class of individual
in the population. Moreover, the model is based on the following assumptions:

– infection and recovery are the only relevant events: other events related to
reproduction, death, migration, etc., are not taken into account;

– disease is transmitted by personal contacts between individuals of I and S
classes (horizontal transmission);

– contacts between individuals are random, i.e. the number of infections is
proportional to both I and S;

– after infection and recovery, individuals become resistant to the disease.

Therefore, the model is described by this small system of differential equations:





dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

(1)

where β is the infection coefficient, describing the probability of infection after
the contact of a healthy individual with an infected one, and γ is the recovery
coefficient, describing the rate of recovery of each infected individual (in other
words, 1/γ is the time one individual requires for recovering). Note that:

– S can only decrease, and R can only increase;
– if β < γ (i.e., β/γ < 1), I can only decrease (since S ≤ 1);
– if β > γ (i.e., β/γ > 1), the behavior of I depends on S. It initially increases

if S > γ/β.

Many extensions of the SIR model are available in the literature, and have been
proposed to study different infection schemes, the effects of vaccinations or the
influence of information. In order to apply the SIR model to the COVID-19
epidemic and, in particular, in order to analyze data collected during the first
few months of the epidemic, it is necessary to take into account prevention
measures (e.g. lockdown) that have been enforced by the national governments.
Hence, we propose a variant of the SIR model which includes a time dependent
coefficient p(t) expressing the effect of such measures on the infection rate.

Our modified SIR model is hence defined as follows:





dS
dt = −βSIp(t)
dI
dt = βSIp(t) − γI
dR
dt = γI

(2)

where p(t) ∈ [0, 1] ⊂ IR is used to scale down the infection coefficient β in
accordance with the strength of the enforced prevention measures at time t. A
value of p(t) close to 0 represents strong prevention, while p(t) = 1 means no
prevention at all. Let us consider the first few weeks of the epidemics, and let
us assume that lockdown has been enforced at time tlock. With some degree of
approximation, we can describe p(t) as a piecewise linear function as follows:

beta = 0.122 

gamma = 0.127 

SciPy library  
optimize.curve_fit
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4 Translation into CTMC and Analysis with PRISM

The next step we perform is to translate our extended SIR model into a stochastic
model, by discretizing variables and by considering infection and recovery rates
as parameters of a Continuous Time Markov Chain (CTMC). This allows us
to obtain a model that is, in principle, more accurate in capturing the epidemic
dynamics, by taking into account random fluctuations that may have a significant
role in the case of small numbers of infected individuals.

Dynamical properties of the obtained CTMC could then be analyzed using
the stochastic model checker PRISM [1,9]. Stochastic model checking, compared
for instance to analysis by stochastic simulation, allows computing in a sys-
tematic way the probability of occurrence of emerging behaviors with specific
properties of interest. The main problem of model checking is, however, its poor
scalability to models with a very large state space. A stochastic SIR model rep-
resenting a population of hundreds of thousand of individuals (like in a Tuscan
province) can be very likely affected from this kind of scalability problems.

A way to solve scalability issues can be to resort to statistical model check-
ing methods: a variant of stochastic model checking which provides approximate
results by exploiting stochastic simulation result. PRISM itself has built-in sta-
tistical model checking facilities. However, before considering this solution, there
are a few modelling tricks that can significantly reduce the state space.

PRISM describes CTMC states through a set of bounded integer variables.
Since ODEs of the SIR model are based on real variables, the first step we have
to perform is to discretize the model. Hence, we assume a discretization constant
SIZE and we replace the variables domain [0.0, 1.0] ⊂ IR with [0..SIZE] ⊂ IN.

This leads to the following naive CTMC specification in PRISM input lan-
guage, where model parameters are defined by the beta, gamma and plock con-
stants (initialized with estimations for the province of Pisa), SIZE is the dis-
cretization constant, s, i and r are the model variables (again, initialized with
values from data collected on the province of Pisa) and we have two transitions
describing events of infection and recovery, respectively.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

s : [0.. SIZE] init 99936;
i : [0.. SIZE] init 48;
r : [0.. SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s’=s -1)&(i’=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i’=i -1)&(r’=r+1);

endmodule

The problem of this translation is that, by assuming SIZE = 100000, the
state space turns out to include 1015 potentially reachable states, which make
the model computation and analysis by PRISM unfeasible.

Prism Model for Modified SIR

Infection coefficient

Recovery coefficient
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model includes one equation for each class of individuals. The population size is
assumed constant over time and it is normalized in [0, 1] ⊆ IR. Hence, variables
S, I, R ∈ [0, 1] with S+ I +R = 1 describe the ratios of each class of individual
in the population. Moreover, the model is based on the following assumptions:

– infection and recovery are the only relevant events: other events related to
reproduction, death, migration, etc., are not taken into account;

– disease is transmitted by personal contacts between individuals of I and S
classes (horizontal transmission);

– contacts between individuals are random, i.e. the number of infections is
proportional to both I and S;

– after infection and recovery, individuals become resistant to the disease.

Therefore, the model is described by this small system of differential equations:





dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

(1)

where β is the infection coefficient, describing the probability of infection after
the contact of a healthy individual with an infected one, and γ is the recovery
coefficient, describing the rate of recovery of each infected individual (in other
words, 1/γ is the time one individual requires for recovering). Note that:

– S can only decrease, and R can only increase;
– if β < γ (i.e., β/γ < 1), I can only decrease (since S ≤ 1);
– if β > γ (i.e., β/γ > 1), the behavior of I depends on S. It initially increases

if S > γ/β.

Many extensions of the SIR model are available in the literature, and have been
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4 Translation into CTMC and Analysis with PRISM

The next step we perform is to translate our extended SIR model into a stochastic
model, by discretizing variables and by considering infection and recovery rates
as parameters of a Continuous Time Markov Chain (CTMC). This allows us
to obtain a model that is, in principle, more accurate in capturing the epidemic
dynamics, by taking into account random fluctuations that may have a significant
role in the case of small numbers of infected individuals.

Dynamical properties of the obtained CTMC could then be analyzed using
the stochastic model checker PRISM [1,9]. Stochastic model checking, compared
for instance to analysis by stochastic simulation, allows computing in a sys-
tematic way the probability of occurrence of emerging behaviors with specific
properties of interest. The main problem of model checking is, however, its poor
scalability to models with a very large state space. A stochastic SIR model rep-
resenting a population of hundreds of thousand of individuals (like in a Tuscan
province) can be very likely affected from this kind of scalability problems.

A way to solve scalability issues can be to resort to statistical model check-
ing methods: a variant of stochastic model checking which provides approximate
results by exploiting stochastic simulation result. PRISM itself has built-in sta-
tistical model checking facilities. However, before considering this solution, there
are a few modelling tricks that can significantly reduce the state space.

PRISM describes CTMC states through a set of bounded integer variables.
Since ODEs of the SIR model are based on real variables, the first step we have
to perform is to discretize the model. Hence, we assume a discretization constant
SIZE and we replace the variables domain [0.0, 1.0] ⊂ IR with [0..SIZE] ⊂ IN.

This leads to the following naive CTMC specification in PRISM input lan-
guage, where model parameters are defined by the beta, gamma and plock con-
stants (initialized with estimations for the province of Pisa), SIZE is the dis-
cretization constant, s, i and r are the model variables (again, initialized with
values from data collected on the province of Pisa) and we have two transitions
describing events of infection and recovery, respectively.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

s : [0.. SIZE] init 99936;
i : [0.. SIZE] init 48;
r : [0.. SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s’=s -1)&(i’=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i’=i -1)&(r’=r+1);

endmodule

The problem of this translation is that, by assuming SIZE = 100000, the
state space turns out to include 1015 potentially reachable states, which make
the model computation and analysis by PRISM unfeasible.

Prism Model for Modified SIR
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model includes one equation for each class of individuals. The population size is
assumed constant over time and it is normalized in [0, 1] ⊆ IR. Hence, variables
S, I, R ∈ [0, 1] with S+ I +R = 1 describe the ratios of each class of individual
in the population. Moreover, the model is based on the following assumptions:

– infection and recovery are the only relevant events: other events related to
reproduction, death, migration, etc., are not taken into account;

– disease is transmitted by personal contacts between individuals of I and S
classes (horizontal transmission);

– contacts between individuals are random, i.e. the number of infections is
proportional to both I and S;

– after infection and recovery, individuals become resistant to the disease.

Therefore, the model is described by this small system of differential equations:





dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

(1)

where β is the infection coefficient, describing the probability of infection after
the contact of a healthy individual with an infected one, and γ is the recovery
coefficient, describing the rate of recovery of each infected individual (in other
words, 1/γ is the time one individual requires for recovering). Note that:

– S can only decrease, and R can only increase;
– if β < γ (i.e., β/γ < 1), I can only decrease (since S ≤ 1);
– if β > γ (i.e., β/γ > 1), the behavior of I depends on S. It initially increases

if S > γ/β.
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4 Translation into CTMC and Analysis with PRISM

The next step we perform is to translate our extended SIR model into a stochastic
model, by discretizing variables and by considering infection and recovery rates
as parameters of a Continuous Time Markov Chain (CTMC). This allows us
to obtain a model that is, in principle, more accurate in capturing the epidemic
dynamics, by taking into account random fluctuations that may have a significant
role in the case of small numbers of infected individuals.

Dynamical properties of the obtained CTMC could then be analyzed using
the stochastic model checker PRISM [1,9]. Stochastic model checking, compared
for instance to analysis by stochastic simulation, allows computing in a sys-
tematic way the probability of occurrence of emerging behaviors with specific
properties of interest. The main problem of model checking is, however, its poor
scalability to models with a very large state space. A stochastic SIR model rep-
resenting a population of hundreds of thousand of individuals (like in a Tuscan
province) can be very likely affected from this kind of scalability problems.

A way to solve scalability issues can be to resort to statistical model check-
ing methods: a variant of stochastic model checking which provides approximate
results by exploiting stochastic simulation result. PRISM itself has built-in sta-
tistical model checking facilities. However, before considering this solution, there
are a few modelling tricks that can significantly reduce the state space.

PRISM describes CTMC states through a set of bounded integer variables.
Since ODEs of the SIR model are based on real variables, the first step we have
to perform is to discretize the model. Hence, we assume a discretization constant
SIZE and we replace the variables domain [0.0, 1.0] ⊂ IR with [0..SIZE] ⊂ IN.

This leads to the following naive CTMC specification in PRISM input lan-
guage, where model parameters are defined by the beta, gamma and plock con-
stants (initialized with estimations for the province of Pisa), SIZE is the dis-
cretization constant, s, i and r are the model variables (again, initialized with
values from data collected on the province of Pisa) and we have two transitions
describing events of infection and recovery, respectively.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

s : [0.. SIZE] init 99936;
i : [0.. SIZE] init 48;
r : [0.. SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s’=s -1)&(i’=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i’=i -1)&(r’=r+1);

endmodule

The problem of this translation is that, by assuming SIZE = 100000, the
state space turns out to include 1015 potentially reachable states, which make
the model computation and analysis by PRISM unfeasible.

Prism Model for Modified SIR

Too BIG

130 P. Milazzo

A first refinement of the model can be obtained by observing that one of the
three variables s, i and r can be pruned. Indeed, as in the original ODEs we had
S + I + R = 1, in the PRISM counterpart we always have s + i + r = SIZE.
Removing, for instance, s will require to make a small change to the definition
of the first transition, where s has to be replaced by SIZE-(i+r).

Pruning variable s immediately reduces the state space, bringing it to a size
of 1010 states. However, this is still too huge for PRISM.

As a second refinement, we choose to introduce an upper bound to the number
of infected and of recovered individuals. For example, we choose these numbers
to be always smaller than 500. As shown in the following CTMC specification,
where also the first refinement is implemented, this can be obtained by adding a
new constant BOUND that is then used to define the domain of the two variables
i and r. Moreover, we have to explicitly change the model transition to describe
the behavior in the case the upper bound is reached. The two transitions of the
naive translation have to be enabled only when i and r are strictly smaller than
BOUND. Moreover, it is necessary to introduce a third transition that, in case
the number of recovered individuals reaches the upper bound, allows an infected
individual to recover (i.e. it decreases i by one) without increasing r.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000; const int BOUND = 500;

module SIR_Pisa

i : [0.. BOUND] init 48;
r : [0.. BOUND] init 16;

[] i>0 & i<BOUND -> beta*(SIZE -(i+r))*i*plock/SIZE : (i’=i+1);
[] i>0 & r<BOUND -> gamma*i*plock : (i’=i -1)&(r’=r+1);
[] i>0 & r=BOUND -> gamma*i*plock : (i’=i-1);

endmodule

The addition of the upper bound actually makes the model approximated. How-
ever, if the upper bound is high enough to make the probability of the variables
to reach it negligible, we have that the approximation will have no influence on
the probabilities of dynamical properties assessed through model checking. We
remark that the assumption on the small number of infected individuals was one
of the motivations for the use of a stochastic modelling approach. In the case of
big numbers, that could lead to unfeasible models with large state spaces, the
whole stochastic approach would be poorly motivated, since with big numbers
stochastic fluctuations would become much less relevant.

Upper bounds significantly reduce the state space, that now turns out to
include “only” 250000 states. This makes model construction and analysis with
PRISM very fast, in particular (and this is very important) if either the sparse
or the explicit engines are selected in the relevant PRISM settings menu.

As examples of analyses performed with PRISM, we show in Fig. 3 some
results of stochastic simulation and model checking performed using parameters
of the Pisa province and by comparing lockdown and no-lockdown scenarios.

Approximated Model for Modified SIR

Infection coefficient

Recovery coefficient
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model includes one equation for each class of individuals. The population size is
assumed constant over time and it is normalized in [0, 1] ⊆ IR. Hence, variables
S, I, R ∈ [0, 1] with S+ I +R = 1 describe the ratios of each class of individual
in the population. Moreover, the model is based on the following assumptions:

– infection and recovery are the only relevant events: other events related to
reproduction, death, migration, etc., are not taken into account;

– disease is transmitted by personal contacts between individuals of I and S
classes (horizontal transmission);

– contacts between individuals are random, i.e. the number of infections is
proportional to both I and S;

– after infection and recovery, individuals become resistant to the disease.

Therefore, the model is described by this small system of differential equations:





dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

(1)

where β is the infection coefficient, describing the probability of infection after
the contact of a healthy individual with an infected one, and γ is the recovery
coefficient, describing the rate of recovery of each infected individual (in other
words, 1/γ is the time one individual requires for recovering). Note that:

– S can only decrease, and R can only increase;
– if β < γ (i.e., β/γ < 1), I can only decrease (since S ≤ 1);
– if β > γ (i.e., β/γ > 1), the behavior of I depends on S. It initially increases

if S > γ/β.

Many extensions of the SIR model are available in the literature, and have been
proposed to study different infection schemes, the effects of vaccinations or the
influence of information. In order to apply the SIR model to the COVID-19
epidemic and, in particular, in order to analyze data collected during the first
few months of the epidemic, it is necessary to take into account prevention
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where p(t) ∈ [0, 1] ⊂ IR is used to scale down the infection coefficient β in
accordance with the strength of the enforced prevention measures at time t. A
value of p(t) close to 0 represents strong prevention, while p(t) = 1 means no
prevention at all. Let us consider the first few weeks of the epidemics, and let
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approximation, we can describe p(t) as a piecewise linear function as follows:
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as parameters of a Continuous Time Markov Chain (CTMC). This allows us
to obtain a model that is, in principle, more accurate in capturing the epidemic
dynamics, by taking into account random fluctuations that may have a significant
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properties of interest. The main problem of model checking is, however, its poor
scalability to models with a very large state space. A stochastic SIR model rep-
resenting a population of hundreds of thousand of individuals (like in a Tuscan
province) can be very likely affected from this kind of scalability problems.

A way to solve scalability issues can be to resort to statistical model check-
ing methods: a variant of stochastic model checking which provides approximate
results by exploiting stochastic simulation result. PRISM itself has built-in sta-
tistical model checking facilities. However, before considering this solution, there
are a few modelling tricks that can significantly reduce the state space.

PRISM describes CTMC states through a set of bounded integer variables.
Since ODEs of the SIR model are based on real variables, the first step we have
to perform is to discretize the model. Hence, we assume a discretization constant
SIZE and we replace the variables domain [0.0, 1.0] ⊂ IR with [0..SIZE] ⊂ IN.

This leads to the following naive CTMC specification in PRISM input lan-
guage, where model parameters are defined by the beta, gamma and plock con-
stants (initialized with estimations for the province of Pisa), SIZE is the dis-
cretization constant, s, i and r are the model variables (again, initialized with
values from data collected on the province of Pisa) and we have two transitions
describing events of infection and recovery, respectively.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

s : [0.. SIZE] init 99936;
i : [0.. SIZE] init 48;
r : [0.. SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s’=s -1)&(i’=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i’=i -1)&(r’=r+1);

endmodule

The problem of this translation is that, by assuming SIZE = 100000, the
state space turns out to include 1015 potentially reachable states, which make
the model computation and analysis by PRISM unfeasible.
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A first refinement of the model can be obtained by observing that one of the
three variables s, i and r can be pruned. Indeed, as in the original ODEs we had
S + I + R = 1, in the PRISM counterpart we always have s + i + r = SIZE.
Removing, for instance, s will require to make a small change to the definition
of the first transition, where s has to be replaced by SIZE-(i+r).

Pruning variable s immediately reduces the state space, bringing it to a size
of 1010 states. However, this is still too huge for PRISM.

As a second refinement, we choose to introduce an upper bound to the number
of infected and of recovered individuals. For example, we choose these numbers
to be always smaller than 500. As shown in the following CTMC specification,
where also the first refinement is implemented, this can be obtained by adding a
new constant BOUND that is then used to define the domain of the two variables
i and r. Moreover, we have to explicitly change the model transition to describe
the behavior in the case the upper bound is reached. The two transitions of the
naive translation have to be enabled only when i and r are strictly smaller than
BOUND. Moreover, it is necessary to introduce a third transition that, in case
the number of recovered individuals reaches the upper bound, allows an infected
individual to recover (i.e. it decreases i by one) without increasing r.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000; const int BOUND = 500;

module SIR_Pisa

i : [0.. BOUND] init 48;
r : [0.. BOUND] init 16;

[] i>0 & i<BOUND -> beta*(SIZE -(i+r))*i*plock/SIZE : (i’=i+1);
[] i>0 & r<BOUND -> gamma*i*plock : (i’=i -1)&(r’=r+1);
[] i>0 & r=BOUND -> gamma*i*plock : (i’=i-1);

endmodule

The addition of the upper bound actually makes the model approximated. How-
ever, if the upper bound is high enough to make the probability of the variables
to reach it negligible, we have that the approximation will have no influence on
the probabilities of dynamical properties assessed through model checking. We
remark that the assumption on the small number of infected individuals was one
of the motivations for the use of a stochastic modelling approach. In the case of
big numbers, that could lead to unfeasible models with large state spaces, the
whole stochastic approach would be poorly motivated, since with big numbers
stochastic fluctuations would become much less relevant.

Upper bounds significantly reduce the state space, that now turns out to
include “only” 250000 states. This makes model construction and analysis with
PRISM very fast, in particular (and this is very important) if either the sparse
or the explicit engines are selected in the relevant PRISM settings menu.

As examples of analyses performed with PRISM, we show in Fig. 3 some
results of stochastic simulation and model checking performed using parameters
of the Pisa province and by comparing lockdown and no-lockdown scenarios.

Approximated Model for Modified SIR
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some

Analysis of COVID-19 Data with PRISM 131

Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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module SIR
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sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
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Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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with rate 48.96815 · beta · plock, and the other that goes to (99935, 48, 17) with
rate 49 · gamma · plock. ut

One relevant aspect of the class of parametric CTMCs is the fact that it
is closed under parallel composition in the sense described above. Hence, we
address the study of parameter estimation of Prism models from observed data
via maximum likelihood estimation for parametric CTMCs.

4 Learning Parameters from Observed Sample Data

In this section, we present an algorithm to estimate the parameters of a para-
metric CTMC P from a collection of i.i.d. observation sequences O = o1, . . . ,oJ .
Notably, the algorithm is devised to be robust to missing dwell time values. In
this line, we consider partial observations of the form p0:k, ⌧0:k�1 representing
a finite sequence p0⌧0 · · · ⌧k�1pk of consecutive dwell time values and atomic
propositions observed during a random execution of M, where some of the dwell
times, denoted as ⌧t = ;, are assumed to be missing.

We follow a maximum likelihood approach: the parameters x are estimated
to maximize the joint likelihood L(P(x)|O) =

QJ
j=1 l(oj |P(x)) of the observed

data. When P and O are clear from the context, we write L(x) for the joint
likelihood and l(o|x) for the likelihood of the observation o.

According to the assumption that some dwell time values may be missing,
the likelihood of a partial observation o = p0:k, ⌧0:k�1 for a generic CTMC M is

l(o|M) =
X

s0:k
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where T (o) = {t | 1  t < k, ⌧t 6= ;} denotes the subset of indices of the
observation o that correspond to actual dwell time measurement.

Our solution to the maximum likelihood estimation problem builds on an
optimization framework known by the name MM algorithm [23, 24]. In this line,
our algorithm starts with an initial hypothesis x0 and iteratively improves the
current hypothesis xm, in the sense that the likelihood associated with the next
hypothesis xm+1 enjoys the inequality L(xm)  L(xm+1). The procedure termi-
nates when the improvement does not exceed a fixed threshold ✏, namely when
L(xm)� L(xm�1)  ✏.

Before presenting an MM algorithm to solve the MLE problem above, we find
it convenient to introduce some notation. Let P = (S,!, s0, `), we write f⇢ for
the rate map of the transition ⇢ 2 !, and write s ! · for the set of transitions
departing from s 2 S.
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ctmc
// SIR model paramaters
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module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
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[ ] i>0 & i<SIZE & s>0 !
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Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
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written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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One relevant aspect of the class of parametric CTMCs is the fact that it
is closed under parallel composition in the sense described above. Hence, we
address the study of parameter estimation of Prism models from observed data
via maximum likelihood estimation for parametric CTMCs.

4 Learning Parameters from Observed Sample Data

In this section, we present an algorithm to estimate the parameters of a para-
metric CTMC P from a collection of i.i.d. observation sequences O = o1, . . . ,oJ .
Notably, the algorithm is devised to be robust to missing dwell time values. In
this line, we consider partial observations of the form p0:k, ⌧0:k�1 representing
a finite sequence p0⌧0 · · · ⌧k�1pk of consecutive dwell time values and atomic
propositions observed during a random execution of M, where some of the dwell
times, denoted as ⌧t = ;, are assumed to be missing.

We follow a maximum likelihood approach: the parameters x are estimated
to maximize the joint likelihood L(P(x)|O) =
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data. When P and O are clear from the context, we write L(x) for the joint
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where T (o) = {t | 1  t < k, ⌧t 6= ;} denotes the subset of indices of the
observation o that correspond to actual dwell time measurement.

Our solution to the maximum likelihood estimation problem builds on an
optimization framework known by the name MM algorithm [23, 24]. In this line,
our algorithm starts with an initial hypothesis x0 and iteratively improves the
current hypothesis xm, in the sense that the likelihood associated with the next
hypothesis xm+1 enjoys the inequality L(xm)  L(xm+1). The procedure termi-
nates when the improvement does not exceed a fixed threshold ✏, namely when
L(xm)� L(xm�1)  ✏.

Before presenting an MM algorithm to solve the MLE problem above, we find
it convenient to introduce some notation. Let P = (S,!, s0, `), we write f⇢ for
the rate map of the transition ⇢ 2 !, and write s ! · for the set of transitions
departing from s 2 S.
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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with rate 48.96815 · beta · plock, and the other that goes to (99935, 48, 17) with
rate 49 · gamma · plock. ut

One relevant aspect of the class of parametric CTMCs is the fact that it
is closed under parallel composition in the sense described above. Hence, we
address the study of parameter estimation of Prism models from observed data
via maximum likelihood estimation for parametric CTMCs.

4 Learning Parameters from Observed Sample Data

In this section, we present an algorithm to estimate the parameters of a para-
metric CTMC P from a collection of i.i.d. observation sequences O = o1, . . . ,oJ .
Notably, the algorithm is devised to be robust to missing dwell time values. In
this line, we consider partial observations of the form p0:k, ⌧0:k�1 representing
a finite sequence p0⌧0 · · · ⌧k�1pk of consecutive dwell time values and atomic
propositions observed during a random execution of M, where some of the dwell
times, denoted as ⌧t = ;, are assumed to be missing.

We follow a maximum likelihood approach: the parameters x are estimated
to maximize the joint likelihood L(P(x)|O) =

QJ
j=1 l(oj |P(x)) of the observed

data. When P and O are clear from the context, we write L(x) for the joint
likelihood and l(o|x) for the likelihood of the observation o.

According to the assumption that some dwell time values may be missing,
the likelihood of a partial observation o = p0:k, ⌧0:k�1 for a generic CTMC M is

l(o|M) =
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where T (o) = {t | 1  t < k, ⌧t 6= ;} denotes the subset of indices of the
observation o that correspond to actual dwell time measurement.

Our solution to the maximum likelihood estimation problem builds on an
optimization framework known by the name MM algorithm [23, 24]. In this line,
our algorithm starts with an initial hypothesis x0 and iteratively improves the
current hypothesis xm, in the sense that the likelihood associated with the next
hypothesis xm+1 enjoys the inequality L(xm)  L(xm+1). The procedure termi-
nates when the improvement does not exceed a fixed threshold ✏, namely when
L(xm)� L(xm�1)  ✏.

Before presenting an MM algorithm to solve the MLE problem above, we find
it convenient to introduce some notation. Let P = (S,!, s0, `), we write f⇢ for
the rate map of the transition ⇢ 2 !, and write s ! · for the set of transitions
departing from s 2 S.
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [27], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [22] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the two semantically equiv-
alent Prism models depicted in Fig. 1 implementing a variant of the Susceptible-
Infected-Recovered (SIR) model proposed in [27] to describe the spread of disease
in presence of lockdown restrictions. The model to the left consists of a single
module, whereas the one to the right implements a compositional design where
modules interact by synchronizing on two actions: infection and recovery.

Both models distinguish between three types of individuals: susceptible, in-
fected, and recovered. Susceptible individuals become infected through contact
with another infected person and can recover without outside interference. The
SIR model is parametric in beta, gamma, and plock. beta is the infection coef-
ficient, describing the probability of infection after the contact of a susceptible
individual with an infected one; gamma is the recovery coe�cient, describing the
rate of recovery of an infected individual (in other words, 1/gamma is the time
one individual requires to recover); and plock 2 [0, 1] is used to scale down the
infection coe�cient modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used in each module, as they govern the timing and
probability of events of the CTMC describing its semantics. However, in some
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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One relevant aspect of the class of parametric CTMCs is the fact that it
is closed under parallel composition in the sense described above. Hence, we
address the study of parameter estimation of Prism models from observed data
via maximum likelihood estimation for parametric CTMCs.

4 Learning Parameters from Observed Sample Data

In this section, we present an algorithm to estimate the parameters of a para-
metric CTMC P from a collection of i.i.d. observation sequences O = o1, . . . ,oJ .
Notably, the algorithm is devised to be robust to missing dwell time values. In
this line, we consider partial observations of the form p0:k, ⌧0:k�1 representing
a finite sequence p0⌧0 · · · ⌧k�1pk of consecutive dwell time values and atomic
propositions observed during a random execution of M, where some of the dwell
times, denoted as ⌧t = ;, are assumed to be missing.

We follow a maximum likelihood approach: the parameters x are estimated
to maximize the joint likelihood L(P(x)|O) =

QJ
j=1 l(oj |P(x)) of the observed

data. When P and O are clear from the context, we write L(x) for the joint
likelihood and l(o|x) for the likelihood of the observation o.

According to the assumption that some dwell time values may be missing,
the likelihood of a partial observation o = p0:k, ⌧0:k�1 for a generic CTMC M is
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where T (o) = {t | 1  t < k, ⌧t 6= ;} denotes the subset of indices of the
observation o that correspond to actual dwell time measurement.

Our solution to the maximum likelihood estimation problem builds on an
optimization framework known by the name MM algorithm [23, 24]. In this line,
our algorithm starts with an initial hypothesis x0 and iteratively improves the
current hypothesis xm, in the sense that the likelihood associated with the next
hypothesis xm+1 enjoys the inequality L(xm)  L(xm+1). The procedure termi-
nates when the improvement does not exceed a fixed threshold ✏, namely when
L(xm)� L(xm�1)  ✏.

Before presenting an MM algorithm to solve the MLE problem above, we find
it convenient to introduce some notation. Let P = (S,!, s0, `), we write f⇢ for
the rate map of the transition ⇢ 2 !, and write s ! · for the set of transitions
departing from s 2 S.
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in a nutsnell
Baum Welch Algorithm

ℳh = (S, P, π, ℓ)
Observation  o = o1⋯oT

4 S. Aaholm et al.

Moreover, computing the updated transition probabilities from the forward and
backward coe!cients added an extra O(n2 ·K) overhead in both time and space.

Unsurprisingly, this had a significant impact on the performance of the BW
algorithm as the number of states increased.

To address this limitation, Jajapy 2 introduces a symbolic engine that ef-
ficiently handles both the forward-backward computation and the parameter
updates.

3.1 Symbolic implementation of the Baum-Welch algorithm

Taking inspiration from Prism and Storm, Jajapy 2 now employs symbolic
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3 ϖϖϖ(t) = P (ϖϖϖ(t+ 1)!εεε(t+ 1))

Fig. 2. Computation of the forward and backward coe!cients

The above procedures compute the column vectors ϑϑϑ(t),ϖϖϖ(t) → [0, 1]n for
t = 1 . . . T which are later used to compute the coe!cients ϱϱϱ(t) → [0, 1]n and
ςςς(t) → [0, 1]n→n as follows

ϱϱϱ(t) = (ϑϑϑ(t)! ϖϖϖ(t))/P [o|M] t = 1 . . . T

ςςς(t) = (P [o|M] · P )!
(
ϑϑϑ(t)↑ (ϖϖϖ(t+ 1)!εεε(t+ 1))↑

)
t = 1 . . . T ↓ 1
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E-Step
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where → is the Kronecker product and the probability P [o|M] to observe o in
M is computed as 1→

ωωω(T ). Finally, the transition probability matrix and the
initial probability vector are updated as follows

ε̂εε = ϑϑϑ(1) and P̂ = (1↑ ϑϑϑ) • ϖϖϖ ,

where • is the transposed Khatri-Rao product (a.k.a., row-by-row Kronecker
product), and ϑϑϑ and ϖϖϖ are respectively a shorthand for

∑T
t=1 ϑϑϑ(t) and

∑T
t=1 ϖϖϖ(t).

As anticipated, our symbolic implementation of the BW algorithm employs
ADDs for representing matrices and vectors. For this purpose, Jajapy 2 uses
the Colorado University Decision Diagram (CUDD) library [20] because it im-
plements many of the operations used in the calculations described above, such
as matrix/vector addition, matrix multiplication, and the Hadamard product
(resp. division ↑). Notably, the CUDDs library does not provide direct imple-
mentations of the Kronecker product and the transposed Khatri-Rao product
and have thus been implemented in Jajapy 2.

3.2 Architecture and Technical Aspects

To implement the symbolic matrix-based computations, we chose the CUDD li-
brary to handle the symbolic models and operations to implement this approach.
This was partly because Storm [12] also uses CUDD. Storm is employed in
the original Jajapy implementation [18] via its Python bindings to Stormpy.
Storm is written in C++, and CUDD integrates natively into its symbolic
backend, making it a natural and practical choice for our implementation.

CUDD is integrated into Jajapy 2, via a Makefile, which is compiled into a
.so file. The Ctypes library is then used to create the Python bindings between
the .so file and Jajapy 2.

The models are encoded from Prism models to Jajapy 2 models. This is
done by parsing the Prism model to Jajapy , using Stormpy.

The Jajapy model contains a matrix for it’s transitions, a matrix for it’s
labels, and a vector for the initial state. The model is passed to Jajapy 2 where
these matrices and vectors are encoded into ADDs.

The Transition matrix is a S ↓ S matrix, and is encoded to an ADD, by
assigning each row and column with a binary value. This value is determined
based on the size of the matrix, |binaryV alue| = ↔log2(S)↗. Meaning for a 2↓ 2
matrix, a single binary value for each row and column, will su!ce. For this case,
the first row will be assigned the binary value 0, and the second row will be
assigned 1, and vice versa for the columns.

The label matrix is a S ↓ L matrix, and since there is no guarantee that
S = L, the encoding is handled di"erently. The matrix is instead treated as a
list of vectors. Each vector is encoded as square matrices, where each row or
column (depending on the vector type) is duplicated, which is then encoded to
a list of ADDs.

The Initial state vector is encoded similarly to the label matrix, but only as
a single ADD.
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M-Step
Improved initial distribution

Improved probability matrix



From explicit to symbolic
Symbolic data structures

• Usually based on binary decision diagrams (BDDs) or variants

• Avoid explicit enumeration of data by exploiting regularity 

• Potentially very compact storage (but not always)

Explicit Symbolic

Set of states Bit vectors BDDs

Real-valued 
vectors Arrays of reals* ADDs

Real-valued 
matrices Sparse matrices ADDs



Algebraic decision diagrams (ADDs)
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• Extension of BDDs to represent real-valued functions


• Like BDDs, and ADD is associated with  Boolean variables


• An ADD  represent a function 

n
M fM : {0,1}n → ℝ

M =
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Figures stolen from https://www.prismmodelchecker.org/lectures/biss07/



Introducing CuPAAL

6

4.2.2 From Prism to Cupaal
In the current iteration of C!PAAL, it is possible to use P"#$%
models as input to the BW algorithm. The models are encoded
from P"#$% models to C!PAAL models, which is achieved by
parsing the P"#$% model into J&’&() using S*+"%().

The Jajapy model comprises a transition matrix, a label
matrix, and an initial state vector. The model is passed to
C!PAAL, where these matrices and vectors are encoded into
ADDs as a function 𝜔ω {0, 1}𝜀 ε {0, 1}𝜀 → 𝜗.

The Transition matrix is a 𝜛 ε 𝜛 matrix, where 𝜛 = 𝜛𝜚𝜍𝜚𝜑𝛻,
and is encoded to an ADD by each row and column with a
binary value. This value is determined based on the size of the
matrix, 𝜀 = ⌋𝜕ℵℶ2(𝜛)⌈.

The label matrix is a 𝜛 ε ℷ matrix, where ℷ = ℷ𝜍ℸ𝜑𝜕𝛻, and
since there is no guarantee that 𝜛 = ℷ, the encoding is handled
di!erently. The matrix is instead treated as a list of vectors.

Each vector is encoded as square matrices, where each row
or column (depending on the vector type) is duplicated, which
is then encoded to a list of ADDs.

Knowing the exact dimensions of matrices and that they are
square helps to simplify some of the symbolic operations. An
example of this is provided in subsubsection 4.2.3.

The Initial state vector is encoded similarly to the label
matrix, but only as a single ADD.

4.2.3 Kronecker Product Implementation
The Kronecker product is implemented in C!PAAL using the
row and column duplication method mentioned in subsubsec-
tion 4.2.2.

The structure of Decision Diagrams in C!PAAL, where
keeping track of all the new binary values used for encoding
from a matrix to an ADD, can add a layer of complexity
for calculation. Especially when computing operations that
translate matrices to new dimensions, such as the Kronecker
product.

Here we present a variation of the Kronecker product that
only works between vectors - speci"cally one row and one
column vector, as it relies on the structure of the vectors being
expanded into square matrices.

This matrix-based approach enables e#cient symbolic
operations, as the Kronecker product can be calculated by
taking the Hadamard product between a column matrix ADD
and a row matrix ADD, simplifying what would otherwise be a
more complex operation.

An example of this can be seen with the two vectors ⊳⊲ and
⊳0:

Let ⊳⊲ = ⌉12{ and ⊳0 =
}3 4⦃.

The Kronecker product of these two vectors is computed as
follows:

⊳⊲ 1 ⊳0 = ⌉1 ⋛ 3 1 ⋛ 4
2 ⋛ 3 2 ⋛ 4{ = ⌉3 4

6 8{ . (12)

Another way to calculate the Kronecker product is to expand
the vectors into matrices. ⊳⊲ and ⊳0 are expanded to be matrices,
similar to how the matrix was treated as a list of vectors and
then expanded to square matrices, as seen with the Label
matrix.

Let 𝛚 = ⌉1 1
2 2{ and 𝛆 = ⌉3 4

3 4{.

main.cpp
C!PAAL

BW.cpp

bindings.cpp

cupaal.exe

bindings.so

!t

J"#"$%

Fig. 2. Architecture of CUPAAL combined with JAJAPY.

The Kronecker product of ⊳⊲ and ⊳0 can also be calculated,
by using the Hadamard product of 𝛚 and 𝛆. This is done as
follows:

𝛚2 𝛆 = ⌉1 ⋛ 3 1 ⋛ 4
2 ⋛ 3 2 ⋛ 4{ = ⌉3 4

6 8{ . (13)

Hereby showing that the Hadamard product can be used to
compute the Kronecker product between two vectors, by using
the row and column duplication method.

4.3 Implementation to Jajapy
This section provides an overview of how C!PAAL is imple-
mented in Jajapy, utilizing bindings between C++ and Python.
Figure 2 shows the overall architecture of the implementation.

C!PAAL consists of two main components: the main
function and the BW library. Both of these are compiled into an
executable program called cupaal.exe, which can be used to
run the BW algorithm on a given model.

4.3.1 Bindings
To implement C!PAAL into J&’&(), we create bindings be-
tween C++ and Python using the pybind11 library [18],
which allows us to call C++ functions from Python, enabling
us to use C!PAAL in J&’&().

In the code examples, some parts have been removed for
brevity and clarity.

We create a C++ bindings "le that uses the BW library
from C!PAAL and de"ne the function we want to expose
to Python; we call this function 345𝜍𝜍𝜕_ℸ6_𝛻78ℸℵ𝜕93, seen
in Listing 3. This function takes model parameters from a
J&’&() model as input and transforms them for use in C!PAAL.
The transformation is done at line 3, where all the parameters
are inputted to create a Markov Model object, which is then
used to run the BW algorithm at line 6.

Each of the values relevant to the BW algorithm is then
passed into the model_data object, which is subsequently
returned to J&’&(), as seen in lines 10 through 15. These are
the initial distribution, the transitions and the emissions.

The C++ bindings "le is then compiled to a shared
library, which can be imported into J&’&(). J&’&() can call
the 345𝜍𝜍𝜕_ℸ6_𝛻78ℸℵ𝜕93 function, which will then call the
C!PAAL implementation of the BW algorithm.

We create a new function in J&’&(), called
cupaal_bw_symbolic, which is used to call the C!PAAL
implementation of the BW algorithm, as seen in Listing 5.

• We implemented the BW algorithm using ADDs


• The implementation uses the CUDD library extending it with 

• Hadamard product 

• A specialised version of the Kronecker product


• It integrates with Jajapy



Comparison with Jajapy9

the accuracy of the symbolic implementation in terms of
log-likelihood and absolute error of the estimated transition
probabilities. The absolute error is de!ned as:

Error = ⌋𝜔 ω 𝜀⌋,

where 𝜔 is the estimated transition probability and 𝜀 is the
reference value from the original model. We use the results
from the !rst experiment, and compare the log-likelihood and
absolute error of the properties estimated by the symbolic
implementation against the original recursive implementation.

The properties used in this experiment are shown in
Listing 7, the properties are taken from the QComp benchmark
set [19].

5.5 Experiment 3: Extra Scalability
The third experiment evaluates the scalability of the symbolic
implementation in J!"!#$ 2 when adjusting the initialization
of the model hypothesis.

This experiment aims to measure the scalability of J!"!#$ 2
under circumstances that are theoretically good for the symbolic
implementation. The more repeated values values the transition
matrix contains, the sparser the Algebraic Decision Diagram
(ADD) representing it will be. By initializing the transition
matrix with a reduced amount of di"erent values, we hope that
the symbolic approach might bene!t.

For the !rst experiment, the transition matrix was initialized
randomly. For this experiment instead, we only use ⌋𝜗⌋ di"erent
values in the transition matrix. It is expected that this improves
the speed of each iteration of the BW algorithm, as it reduces
the number of unique computations necessary for the symbolic
implementation.

6 RESULTS

In this section, we present the results of our experiments,
which are divided into two main parts: the !rst part focuses
on the scalability of J!"!#$ and C%PAAL in terms of time and
scalability, while the second part evaluates the accuracy of both
tools.

The experiments were conducted on a machine with the
speci!cations and environment listed in section A.

6.1 Scalability
These results are the time taken to train a model, based on
two parameters: the number of states, and the length of the
observations in the model increasing.

The results for the leader sync model are displayed in Table 1
and Figure 3, and show the time it takes to train a model, given
the number of states and observation length. Only the training
time is considered; the initialization of the programs is not a
factor in these numbers.

In Figure 3, simple planes are !t with linear regression from
the data in Table 1. This is not an attempt to say anything
de!nitive about the degrees of the scaling, but instead to show
the generally observable trend.

Contrary to our expectations, the data does not show a
clear di"erence in the time taken to train the leader sync model
between J!"!#$ and C%PAAL for Discrete Time Markov Chains
(DTMCs).

TABLE 1
Leader sync model variations in training time in seconds.

model states length jajapy (s) cupaal (s)

3.2 26 25 1.38 0.26
3.2 26 50 1.95 0.14
3.2 26 100 4.09 0.23
3.3 69 25 7.95 2.46
3.3 69 50 11.20 1.59
3.3 69 100 19.65 1.75
3.4 147 25 27.10 8.54
3.4 147 50 42.57 9.20
3.4 147 100 84.02 9.90
4.2 61 25 15.68 11.18
4.2 61 50 24.87 13.56
4.2 61 100 52.11 11.24
4.3 274 25 194.88 231.28
4.3 274 50 414.30 379.21
4.3 274 100 447.83 117.78
4.4 812 25 1846.68 3324.83
4.4 812 50 2290.28 1848.44
4.4 812 100 5652.14 3447.56
5.2 141 25 95.59 104.71
5.2 141 50 342.05 553.66
5.2 141 100 798.73 982.97
5.3 1050 25 4586.86 10906.91
5.3 1050 50 7791.95 10405.75
5.3 1050 100 9821.74 5992.51

For very small models, the running time does not matter
too much, but we observe an initial overhead in J!"!#$ in
comparison to C%PAAL. This is likely related to the general
consensus that Python is a slower language than C in general.

Generally, more states mean longer running time, but
interestingly, variations with similar number of states may
have very di"erent training times. The most obvious example
is the 3.4 and 5.2 models, with 147 and 141 states respectively.
The 5.2 model is much slower, especially in C%PAAL, showing
a ~10 times increase in training time, despite having slightly
fewer states.

Initially, we only had data for observations of length 25, and
the data under those conditions suggested that J!"!#$ scaled
quite a bit better than C%PAAL.

To explore this behaviour, we extended the experiment
to contain data for observations of di"erent lengths, and
now our observations are more in line with our expectations.
J!"!#$gets slower at a pace roughly linear with the length of
the observations; doubling the observation length doubles the
run time of J!"!#$. This is not the case for C%PAAL, where
we do not see any particular increase in running time as the
observation length increases.

In fact, looking at Figure 4 and Figure 5, the C%PAAL
runtimes look a little strange.

6.2 Accuracy
This experiment compares the accuracy of C%PAAL and J!"!#$
in learning the leader sync model. Speci!cally, we model check
how many rounds it takes, for each model to select a new leader,
from the original model, J!"!#$ and C%PAAL using properties
from Listing 7.

Table 2 shows the results. The table includes the number
of rounds for the original model (column rounds), and the
learned models from J!"!#$, and C%PAAL. The column ε
shows the di"erence between C%PAAL and J!"!#$, while 𝜛

Leader sync [Itai & Rodeh] 

with N processes and K range of probabilistic choice

https://github.com/AAU-Dat/P10-Thesis/blob/main/experiments/original-models/dtmc/leader_sync.4-3.v1.prism
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shows the relative error between J!"!#$ and the true value
from the original model.

The results show that both C%PAAL and J!"!#$ closely
match the true model. For example, in the row for model 3.2
with 25 observations, the original model takes 1.33 rounds, and
both C%PAAL and J!"!#$ predict 1.28 rounds.

In the same row, the di!erence ϑ is 0.00, meaning the both
implementations learned the same model. The relative error 𝜚
is 0.04, indicating a very small deviation from the true value.
This pattern hold across all models, with C%PAAL and J!"!#$
producing nearly identical results, with only minor di!erences
compared to the true values.

In conclusion, these results show that C%PAAL is a reliable
and accurate implementation of the Baum-Welch (BW) algo-
rithm, matching the performance of J!"!#$ in learning the
model.

6.3 Extra Scalability

This section will cover the second experiment done for compar-
ing C%PAAL and J!"!#$. This experiment explores the e!ect
of random and semi-random initial model parameters, as we
expect repeated values to be highly bene"cial for C%PAAL’s
implementation.
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the accuracy of the symbolic implementation in terms of
log-likelihood and absolute error of the estimated transition
probabilities. The absolute error is de!ned as:

Error = ⌋𝜔 ω 𝜀⌋,

where 𝜔 is the estimated transition probability and 𝜀 is the
reference value from the original model. We use the results
from the !rst experiment, and compare the log-likelihood and
absolute error of the properties estimated by the symbolic
implementation against the original recursive implementation.

The properties used in this experiment are shown in
Listing 7, the properties are taken from the QComp benchmark
set [19].

5.5 Experiment 3: Extra Scalability
The third experiment evaluates the scalability of the symbolic
implementation in J!"!#$ 2 when adjusting the initialization
of the model hypothesis.

This experiment aims to measure the scalability of J!"!#$ 2
under circumstances that are theoretically good for the symbolic
implementation. The more repeated values values the transition
matrix contains, the sparser the Algebraic Decision Diagram
(ADD) representing it will be. By initializing the transition
matrix with a reduced amount of di"erent values, we hope that
the symbolic approach might bene!t.

For the !rst experiment, the transition matrix was initialized
randomly. For this experiment instead, we only use ⌋𝜗⌋ di"erent
values in the transition matrix. It is expected that this improves
the speed of each iteration of the BW algorithm, as it reduces
the number of unique computations necessary for the symbolic
implementation.

6 RESULTS

In this section, we present the results of our experiments,
which are divided into two main parts: the !rst part focuses
on the scalability of J!"!#$ and C%PAAL in terms of time and
scalability, while the second part evaluates the accuracy of both
tools.

The experiments were conducted on a machine with the
speci!cations and environment listed in section A.

6.1 Scalability
These results are the time taken to train a model, based on
two parameters: the number of states, and the length of the
observations in the model increasing.

The results for the leader sync model are displayed in Table 1
and Figure 3, and show the time it takes to train a model, given
the number of states and observation length. Only the training
time is considered; the initialization of the programs is not a
factor in these numbers.

In Figure 3, simple planes are !t with linear regression from
the data in Table 1. This is not an attempt to say anything
de!nitive about the degrees of the scaling, but instead to show
the generally observable trend.

Contrary to our expectations, the data does not show a
clear di"erence in the time taken to train the leader sync model
between J!"!#$ and C%PAAL for Discrete Time Markov Chains
(DTMCs).

TABLE 1
Leader sync model variations in training time in seconds.

model states length jajapy (s) cupaal (s)

3.2 26 25 1.38 0.26
3.2 26 50 1.95 0.14
3.2 26 100 4.09 0.23
3.3 69 25 7.95 2.46
3.3 69 50 11.20 1.59
3.3 69 100 19.65 1.75
3.4 147 25 27.10 8.54
3.4 147 50 42.57 9.20
3.4 147 100 84.02 9.90
4.2 61 25 15.68 11.18
4.2 61 50 24.87 13.56
4.2 61 100 52.11 11.24
4.3 274 25 194.88 231.28
4.3 274 50 414.30 379.21
4.3 274 100 447.83 117.78
4.4 812 25 1846.68 3324.83
4.4 812 50 2290.28 1848.44
4.4 812 100 5652.14 3447.56
5.2 141 25 95.59 104.71
5.2 141 50 342.05 553.66
5.2 141 100 798.73 982.97
5.3 1050 25 4586.86 10906.91
5.3 1050 50 7791.95 10405.75
5.3 1050 100 9821.74 5992.51

For very small models, the running time does not matter
too much, but we observe an initial overhead in J!"!#$ in
comparison to C%PAAL. This is likely related to the general
consensus that Python is a slower language than C in general.

Generally, more states mean longer running time, but
interestingly, variations with similar number of states may
have very di"erent training times. The most obvious example
is the 3.4 and 5.2 models, with 147 and 141 states respectively.
The 5.2 model is much slower, especially in C%PAAL, showing
a ~10 times increase in training time, despite having slightly
fewer states.

Initially, we only had data for observations of length 25, and
the data under those conditions suggested that J!"!#$ scaled
quite a bit better than C%PAAL.

To explore this behaviour, we extended the experiment
to contain data for observations of di"erent lengths, and
now our observations are more in line with our expectations.
J!"!#$gets slower at a pace roughly linear with the length of
the observations; doubling the observation length doubles the
run time of J!"!#$. This is not the case for C%PAAL, where
we do not see any particular increase in running time as the
observation length increases.

In fact, looking at Figure 4 and Figure 5, the C%PAAL
runtimes look a little strange.

6.2 Accuracy
This experiment compares the accuracy of C%PAAL and J!"!#$
in learning the leader sync model. Speci!cally, we model check
how many rounds it takes, for each model to select a new leader,
from the original model, J!"!#$ and C%PAAL using properties
from Listing 7.

Table 2 shows the results. The table includes the number
of rounds for the original model (column rounds), and the
learned models from J!"!#$, and C%PAAL. The column ε
shows the di"erence between C%PAAL and J!"!#$, while 𝜛

Leader sync [Itai & Rodeh] 

with N processes and K range of probabilistic choice
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shows the relative error between J!"!#$ and the true value
from the original model.

The results show that both C%PAAL and J!"!#$ closely
match the true model. For example, in the row for model 3.2
with 25 observations, the original model takes 1.33 rounds, and
both C%PAAL and J!"!#$ predict 1.28 rounds.

In the same row, the di!erence ϑ is 0.00, meaning the both
implementations learned the same model. The relative error 𝜚
is 0.04, indicating a very small deviation from the true value.
This pattern hold across all models, with C%PAAL and J!"!#$
producing nearly identical results, with only minor di!erences
compared to the true values.

In conclusion, these results show that C%PAAL is a reliable
and accurate implementation of the Baum-Welch (BW) algo-
rithm, matching the performance of J!"!#$ in learning the
model.

6.3 Extra Scalability

This section will cover the second experiment done for compar-
ing C%PAAL and J!"!#$. This experiment explores the e!ect
of random and semi-random initial model parameters, as we
expect repeated values to be highly bene"cial for C%PAAL’s
implementation.
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the accuracy of the symbolic implementation in terms of
log-likelihood and absolute error of the estimated transition
probabilities. The absolute error is de!ned as:

Error = ⌋𝜔 ω 𝜀⌋,

where 𝜔 is the estimated transition probability and 𝜀 is the
reference value from the original model. We use the results
from the !rst experiment, and compare the log-likelihood and
absolute error of the properties estimated by the symbolic
implementation against the original recursive implementation.

The properties used in this experiment are shown in
Listing 7, the properties are taken from the QComp benchmark
set [19].

5.5 Experiment 3: Extra Scalability
The third experiment evaluates the scalability of the symbolic
implementation in J!"!#$ 2 when adjusting the initialization
of the model hypothesis.

This experiment aims to measure the scalability of J!"!#$ 2
under circumstances that are theoretically good for the symbolic
implementation. The more repeated values values the transition
matrix contains, the sparser the Algebraic Decision Diagram
(ADD) representing it will be. By initializing the transition
matrix with a reduced amount of di"erent values, we hope that
the symbolic approach might bene!t.

For the !rst experiment, the transition matrix was initialized
randomly. For this experiment instead, we only use ⌋𝜗⌋ di"erent
values in the transition matrix. It is expected that this improves
the speed of each iteration of the BW algorithm, as it reduces
the number of unique computations necessary for the symbolic
implementation.

6 RESULTS

In this section, we present the results of our experiments,
which are divided into two main parts: the !rst part focuses
on the scalability of J!"!#$ and C%PAAL in terms of time and
scalability, while the second part evaluates the accuracy of both
tools.

The experiments were conducted on a machine with the
speci!cations and environment listed in section A.

6.1 Scalability
These results are the time taken to train a model, based on
two parameters: the number of states, and the length of the
observations in the model increasing.

The results for the leader sync model are displayed in Table 1
and Figure 3, and show the time it takes to train a model, given
the number of states and observation length. Only the training
time is considered; the initialization of the programs is not a
factor in these numbers.

In Figure 3, simple planes are !t with linear regression from
the data in Table 1. This is not an attempt to say anything
de!nitive about the degrees of the scaling, but instead to show
the generally observable trend.

Contrary to our expectations, the data does not show a
clear di"erence in the time taken to train the leader sync model
between J!"!#$ and C%PAAL for Discrete Time Markov Chains
(DTMCs).

TABLE 1
Leader sync model variations in training time in seconds.

model states length jajapy (s) cupaal (s)

3.2 26 25 1.38 0.26
3.2 26 50 1.95 0.14
3.2 26 100 4.09 0.23
3.3 69 25 7.95 2.46
3.3 69 50 11.20 1.59
3.3 69 100 19.65 1.75
3.4 147 25 27.10 8.54
3.4 147 50 42.57 9.20
3.4 147 100 84.02 9.90
4.2 61 25 15.68 11.18
4.2 61 50 24.87 13.56
4.2 61 100 52.11 11.24
4.3 274 25 194.88 231.28
4.3 274 50 414.30 379.21
4.3 274 100 447.83 117.78
4.4 812 25 1846.68 3324.83
4.4 812 50 2290.28 1848.44
4.4 812 100 5652.14 3447.56
5.2 141 25 95.59 104.71
5.2 141 50 342.05 553.66
5.2 141 100 798.73 982.97
5.3 1050 25 4586.86 10906.91
5.3 1050 50 7791.95 10405.75
5.3 1050 100 9821.74 5992.51

For very small models, the running time does not matter
too much, but we observe an initial overhead in J!"!#$ in
comparison to C%PAAL. This is likely related to the general
consensus that Python is a slower language than C in general.

Generally, more states mean longer running time, but
interestingly, variations with similar number of states may
have very di"erent training times. The most obvious example
is the 3.4 and 5.2 models, with 147 and 141 states respectively.
The 5.2 model is much slower, especially in C%PAAL, showing
a ~10 times increase in training time, despite having slightly
fewer states.

Initially, we only had data for observations of length 25, and
the data under those conditions suggested that J!"!#$ scaled
quite a bit better than C%PAAL.

To explore this behaviour, we extended the experiment
to contain data for observations of di"erent lengths, and
now our observations are more in line with our expectations.
J!"!#$gets slower at a pace roughly linear with the length of
the observations; doubling the observation length doubles the
run time of J!"!#$. This is not the case for C%PAAL, where
we do not see any particular increase in running time as the
observation length increases.

In fact, looking at Figure 4 and Figure 5, the C%PAAL
runtimes look a little strange.

6.2 Accuracy
This experiment compares the accuracy of C%PAAL and J!"!#$
in learning the leader sync model. Speci!cally, we model check
how many rounds it takes, for each model to select a new leader,
from the original model, J!"!#$ and C%PAAL using properties
from Listing 7.

Table 2 shows the results. The table includes the number
of rounds for the original model (column rounds), and the
learned models from J!"!#$, and C%PAAL. The column ε
shows the di"erence between C%PAAL and J!"!#$, while 𝜛
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shows the relative error between J!"!#$ and the true value
from the original model.

The results show that both C%PAAL and J!"!#$ closely
match the true model. For example, in the row for model 3.2
with 25 observations, the original model takes 1.33 rounds, and
both C%PAAL and J!"!#$ predict 1.28 rounds.

In the same row, the di!erence ϑ is 0.00, meaning the both
implementations learned the same model. The relative error 𝜚
is 0.04, indicating a very small deviation from the true value.
This pattern hold across all models, with C%PAAL and J!"!#$
producing nearly identical results, with only minor di!erences
compared to the true values.

In conclusion, these results show that C%PAAL is a reliable
and accurate implementation of the Baum-Welch (BW) algo-
rithm, matching the performance of J!"!#$ in learning the
model.

6.3 Extra Scalability

This section will cover the second experiment done for compar-
ing C%PAAL and J!"!#$. This experiment explores the e!ect
of random and semi-random initial model parameters, as we
expect repeated values to be highly bene"cial for C%PAAL’s
implementation.
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Table 4 is the table that compares C!PAAL to J"#"$%, and
the impact of random and semi-random initialization, in regards
to the time needed to learn the model.

Looking at the columns rand-ja and semi-ja which
show the impact of random and semi randon initialization for
J"#"$%, there is no major impact between the two. But when
looking at the di!erences for C!PAAL it is clear that the semi-
random approach is generally faster than the completly random,
this becomes especially pronounced as the number of states for
the model increase.

We expected this to be the case, as with the number of
observations meant more repeated values, the semi random
initialization had a similar e!ect. This seems to partially aleviate
the poor scaling C!PAAL su!ers from as the number of model
states increase.

Table Table 5, displays three models with a varrying number

TABLE 2
Leader sync model comparison of the average number of rounds inside.

∱ ⌋𝜔⌋ rounds J"#"$% C!PAAL ω 𝜀
3.2 25 1.33 1.28 1.28 0.00 0.04
3.2 75 1.33 1.30 1.30 0.00 0.02
3.2 100 1.33 1.28 1.28 0.00 0.04
3.3 25 1.12 1.23 1.23 0.00 0.09
3.3 50 1.12 1.11 1.11 0.00 0.01
3.3 100 1.12 1.13 1.13 0.00 0.00
3.4 25 1.07 1.08 1.08 0.00 0.01
3.4 50 1.07 1.09 1.09 0.00 0.02
3.4 100 1.07 1.11 1.11 0.00 0.04
4.2 25 2.00 2.11 2.12 -0.00 0.06
4.2 50 2.00 2.16 2.16 0.00 0.08
4.2 100 2.00 2.00 2.00 0.00 0.00
4.3 25 1.35 1.37 1.37 0.00 0.01
4.3 50 1.35 1.28 1.28 0.00 0.05
4.3 100 1.35 1.25 1.25 0.00 0.07
4.4 25 1.19 1.25 1.25 0.00 0.05
4.4 50 1.19 1.17 1.17 0.00 0.01
4.4 100 1.19 1.27 1.27 0.00 0.07
5.2 25 3.20 3.27 3.27 -0.00 0.02
5.2 50 3.20 3.06 3.06 -0.00 0.04
5.2 100 3.20 3.50 3.50 0.00 0.09
5.3 25 1.35 1.32 1.32 0.00 0.02
5.3 50 1.35 1.27 1.27 0.00 0.06
5.3 100 1.35 1.33 1.33 0.00 0.01
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Fig. 6. Model 4.2 - Runtime for random and semi-random

og states and observation sequences. This table is used to
highlight that the di!erent methods of initialising model
parameters, has an impact of the number of iterations needed,
but not showing a clear strength in either method.

This is to be expected, as depending on how close or far
o!, the values are to the learned model, has an impact on the
number of iterations needed. But it also showcases that there
is no impact on the loglikelihood, meaning that no matter the
method used the model learned is still equally close to the
correct model.

Figures Figure 6 Figure 7 Figure 8 give a visual repre-
sentation of how C!PAAL compares to J"#"$%based on the
observation counts while using both random and semi-random
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Table 4 is the table that compares C!PAAL to J"#"$%, and
the impact of random and semi-random initialization, in regards
to the time needed to learn the model.

Looking at the columns rand-ja and semi-ja which
show the impact of random and semi randon initialization for
J"#"$%, there is no major impact between the two. But when
looking at the di!erences for C!PAAL it is clear that the semi-
random approach is generally faster than the completly random,
this becomes especially pronounced as the number of states for
the model increase.

We expected this to be the case, as with the number of
observations meant more repeated values, the semi random
initialization had a similar e!ect. This seems to partially aleviate
the poor scaling C!PAAL su!ers from as the number of model
states increase.

Table Table 5, displays three models with a varrying number

TABLE 2
Leader sync model comparison of the average number of rounds inside.

∱ ⌋𝜔⌋ rounds J"#"$% C!PAAL ω 𝜀
3.2 25 1.33 1.28 1.28 0.00 0.04
3.2 75 1.33 1.30 1.30 0.00 0.02
3.2 100 1.33 1.28 1.28 0.00 0.04
3.3 25 1.12 1.23 1.23 0.00 0.09
3.3 50 1.12 1.11 1.11 0.00 0.01
3.3 100 1.12 1.13 1.13 0.00 0.00
3.4 25 1.07 1.08 1.08 0.00 0.01
3.4 50 1.07 1.09 1.09 0.00 0.02
3.4 100 1.07 1.11 1.11 0.00 0.04
4.2 25 2.00 2.11 2.12 -0.00 0.06
4.2 50 2.00 2.16 2.16 0.00 0.08
4.2 100 2.00 2.00 2.00 0.00 0.00
4.3 25 1.35 1.37 1.37 0.00 0.01
4.3 50 1.35 1.28 1.28 0.00 0.05
4.3 100 1.35 1.25 1.25 0.00 0.07
4.4 25 1.19 1.25 1.25 0.00 0.05
4.4 50 1.19 1.17 1.17 0.00 0.01
4.4 100 1.19 1.27 1.27 0.00 0.07
5.2 25 3.20 3.27 3.27 -0.00 0.02
5.2 50 3.20 3.06 3.06 -0.00 0.04
5.2 100 3.20 3.50 3.50 0.00 0.09
5.3 25 1.35 1.32 1.32 0.00 0.02
5.3 50 1.35 1.27 1.27 0.00 0.06
5.3 100 1.35 1.33 1.33 0.00 0.01
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Fig. 6. Model 4.2 - Runtime for random and semi-random

og states and observation sequences. This table is used to
highlight that the di!erent methods of initialising model
parameters, has an impact of the number of iterations needed,
but not showing a clear strength in either method.

This is to be expected, as depending on how close or far
o!, the values are to the learned model, has an impact on the
number of iterations needed. But it also showcases that there
is no impact on the loglikelihood, meaning that no matter the
method used the model learned is still equally close to the
correct model.

Figures Figure 6 Figure 7 Figure 8 give a visual repre-
sentation of how C!PAAL compares to J"#"$%based on the
observation counts while using both random and semi-random
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Fig. 4. CUPAAL runtimes with increasing observation length.
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Fig. 5. JAJAPY runtimes with increasing observation length.

Table 4 is the table that compares C!PAAL to J"#"$%, and
the impact of random and semi-random initialization, in regards
to the time needed to learn the model.

Looking at the columns rand-ja and semi-ja which
show the impact of random and semi randon initialization for
J"#"$%, there is no major impact between the two. But when
looking at the di!erences for C!PAAL it is clear that the semi-
random approach is generally faster than the completly random,
this becomes especially pronounced as the number of states for
the model increase.

We expected this to be the case, as with the number of
observations meant more repeated values, the semi random
initialization had a similar e!ect. This seems to partially aleviate
the poor scaling C!PAAL su!ers from as the number of model
states increase.

Table Table 5, displays three models with a varrying number

TABLE 2
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4.2 50 2.00 2.16 2.16 0.00 0.08
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TABLE 3
Experiment three results

∱ ⌋𝜔⌋ i ran i semi s ran-ja s ran-cup s semi-ja s semi-cup ⋛ ran ⋛ semi s/i ran-ja s/i semi ja s/i ran-cup s/i semi-cup ja change cup change

4.2 25 18 16 15.68 11.12 13.26 7.87 -140.41 -140.41 0.87 0.83 0.62 0.49 -4.87 -20.34
4.2 50 17 20 24.87 13.56 28.32 12.54 -149.13 -149.13 1.46 1.42 0.80 0.63 -3.21 -21.41
4.2 75 17 18 36.02 9.72 38.62 10.54 -117.80 -117.80 2.12 2.15 0.57 0.59 1.27 2.41
4.2 100 17 18 52.11 11.24 53.75 10.95 -138.63 -138.63 3.07 2.99 0.66 0.61 -2.58 -8.04
4.3 25 18 18 194.88 231.28 190.65 194.04 -79.92 -79.92 10.83 10.59 12.85 10.78 -2.17 -16.10
4.3 50 18 18 414.30 379.21 414.95 308.81 -67.24 -67.25 23.02 23.05 21.07 17.16 0.16 -18.56
4.3 75 18 18 476.68 232.21 486.04 206.67 -65.71 -65.71 26.48 27.00 12.90 11.48 1.96 -11.00
4.3 100 18 18 447.83 117.78 441.40 118.17 -62.55 -62.55 24.88 24.52 6.54 6.57 -1.44 0.33
4.4 25 18 18 1846.67 3324.83 1793.90 3087.66 -62.55 -62.55 102.59 99.66 184.71 171.54 -2.86 -7.13
4.4 50 18 18 2290.28 1848.44 2239.18 1526.81 -48.49 -48.49 127.24 124.40 102.69 84.82 -2.23 -17.40
4.4 75 17 18 3017.72 1597.78 3177.81 1512.33 -52.26 -52.26 177.51 176.54 93.99 84.02 -0.55 -10.61
4.4 100 18 18 5652.14 3447.56 5586.23 2959.75 -65.71 -65.71 314.01 310.35 191.53 164.43 -1.17 -14.15
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Fig. 7. Model 4.3 - Runtime for random and semi-random
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Fig. 8. Model 4.4 - Runtime for random and semi-random

TABLE 4
Leader sync model variations in training time with random and

semi-random initial values.

∱ ⌋𝜀⌋ ⌋𝜔⌋ rand-ja rand-cup semi-ja semi-cup

4.2 61 25 15.68 11.12 13.26 7.87
4.2 61 50 24.87 13.56 28.32 12.54
4.2 61 75 36.02 9.72 38.62 10.54
4.2 61 100 52.11 11.24 53.75 10.95
4.3 274 25 194.88 231.28 190.65 194.04
4.3 274 50 414.30 379.21 414.95 308.81
4.3 274 75 476.68 232.21 486.04 206.67
4.3 274 100 447.83 117.78 441.40 118.17
4.4 812 25 1846.67 3324.83 1793.90 3087.66
4.4 812 50 2290.28 1848.44 2239.18 1526.81
4.4 812 75 3017.72 1597.78 3177.81 1512.33
4.4 812 100 5652.14 3447.56 5586.23 2959.75

TABLE 5
Leader sync model variations in loglikelihood for random and

semi-random initial values.

∱ ⌋𝜀⌋ ⌋𝜔⌋ iter(rand) iter(semi) ⋛ rand ⋛ semi
4.2 61 25 18 16 -140.41 -140.41
4.2 61 50 17 20 -149.13 -149.13
4.2 61 75 17 18 -117.80 -117.80
4.2 61 100 17 18 -138.63 -138.63
4.3 274 25 18 18 -79.92 -79.92
4.3 274 50 18 18 -67.24 -67.25
4.3 274 75 18 18 -65.71 -65.71
4.3 274 100 18 18 -62.55 -62.55
4.4 812 25 18 18 -62.55 -62.55
4.4 812 50 18 18 -48.49 -48.49
4.4 812 75 17 18 -52.26 -52.26
4.4 812 100 18 18 -65.71 -65.71

initialization.
These graphs showcase the general trend of C!PAAL

performing slightly better with a semi-random initialization,
where for J"#"$% we observe there is no clear tendency for
what performes best.

Table Table 3 shows the seconds pr iteration to compute,
for C!PAAL and J"#"$% for both random and semi-random
initialization. J"#"$% is not noticable a!ected by either method,
giving a gain of about 1% when using the semi-random
initialization over the random approach, this can be explained
by coinsidence as the di!erences is negligable. C!PAAL does
have a slight gain when using the semi-random approach,
showcasing a gain of ω 11% less time needed pr. iteration

12

TABLE 3
Experiment three results

∱ ⌋𝜔⌋ i ran i semi s ran-ja s ran-cup s semi-ja s semi-cup ⋛ ran ⋛ semi s/i ran-ja s/i semi ja s/i ran-cup s/i semi-cup ja change cup change

4.2 25 18 16 15.68 11.12 13.26 7.87 -140.41 -140.41 0.87 0.83 0.62 0.49 -4.87 -20.34
4.2 50 17 20 24.87 13.56 28.32 12.54 -149.13 -149.13 1.46 1.42 0.80 0.63 -3.21 -21.41
4.2 75 17 18 36.02 9.72 38.62 10.54 -117.80 -117.80 2.12 2.15 0.57 0.59 1.27 2.41
4.2 100 17 18 52.11 11.24 53.75 10.95 -138.63 -138.63 3.07 2.99 0.66 0.61 -2.58 -8.04
4.3 25 18 18 194.88 231.28 190.65 194.04 -79.92 -79.92 10.83 10.59 12.85 10.78 -2.17 -16.10
4.3 50 18 18 414.30 379.21 414.95 308.81 -67.24 -67.25 23.02 23.05 21.07 17.16 0.16 -18.56
4.3 75 18 18 476.68 232.21 486.04 206.67 -65.71 -65.71 26.48 27.00 12.90 11.48 1.96 -11.00
4.3 100 18 18 447.83 117.78 441.40 118.17 -62.55 -62.55 24.88 24.52 6.54 6.57 -1.44 0.33
4.4 25 18 18 1846.67 3324.83 1793.90 3087.66 -62.55 -62.55 102.59 99.66 184.71 171.54 -2.86 -7.13
4.4 50 18 18 2290.28 1848.44 2239.18 1526.81 -48.49 -48.49 127.24 124.40 102.69 84.82 -2.23 -17.40
4.4 75 17 18 3017.72 1597.78 3177.81 1512.33 -52.26 -52.26 177.51 176.54 93.99 84.02 -0.55 -10.61
4.4 100 18 18 5652.14 3447.56 5586.23 2959.75 -65.71 -65.71 314.01 310.35 191.53 164.43 -1.17 -14.15

25 50 75 100
Observation length

0

100

200

300

400

500

Ti
m
e
(s
)

rand-cupaal
semi-cupaal
rand-jajapy
semi-jajapy

Fig. 7. Model 4.3 - Runtime for random and semi-random

25 50 75 100
Observation length

0

1000

2000

3000

4000

5000

Ti
m
e
(s
)

rand-cupaal
semi-cupaal
rand-jajapy
semi-jajapy

Fig. 8. Model 4.4 - Runtime for random and semi-random

TABLE 4
Leader sync model variations in training time with random and

semi-random initial values.
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initialization.
These graphs showcase the general trend of C!PAAL

performing slightly better with a semi-random initialization,
where for J"#"$% we observe there is no clear tendency for
what performes best.

Table Table 3 shows the seconds pr iteration to compute,
for C!PAAL and J"#"$% for both random and semi-random
initialization. J"#"$% is not noticable a!ected by either method,
giving a gain of about 1% when using the semi-random
initialization over the random approach, this can be explained
by coinsidence as the di!erences is negligable. C!PAAL does
have a slight gain when using the semi-random approach,
showcasing a gain of ω 11% less time needed pr. iterationLeader sync (N = 4 , K = 3) Leader sync (N = 4 , K = 4)

We played a bit limiting the image for the probability transition function of the 
initial hypothesis 


We employed a semi-random generation of  which 

favoured structural similarities


Remark: one needs to be careful here 

ℳ0
ℳ0



Conclusion and Future direction
• Early to say that our approach using ADDs can outperform actual 

implementation of Jajapy (sparse matrices are quite effective).


• Deeper integration with Prism skipping intermediate model 
representations.


• Structural similarities might be better exploited on parametric 
models like those we used.


• It would be great trying out parameter estimation techniques on 
Stochastic Timed Automata



The End



for today

The End


