Informal Workshop on Formal Methods in Security

Modelling Human Threats in Socio-Technical Systems

Rosario Giustolisi

Joint work with Giampaolo Bella and Carsten Schuermann

Context

Sociotechnical System

- A sociotechnical system is the term usually given to any instantiation of socio and technical elements engaged in **goal directed behaviour**. (*Wikipedia*)
- A technical system extended with its human users.
- Security Ceremony: A security protocol extended with its human users.
- Examples
 - Flight boarding, safety
 - Voting, complex
 - POS transaction, security

- (formal) security analysis of
 - Cryptographic protocols

- (formal) security analysis of
 - Cryptographic protocols

Problem

Problem

- Few works focus on the formal security analysis of STS
 - Bella and Coles-Kamp [IFIPSEC12], focus on human-computer interaction
 - Basin et al.[CSF16], focus on human errors
 - Sempreboni and Vigano [EuroSP20], focus on "mutations" of humans and of the underlying technical components

Focus

Focus

Focus

Outline

- Definitions in epistemic modal logic of human threats to STS
- Formal analysis of (Danish) Deposit Return Systems in Tamarin
- Definition of a lattice of human threat models
- Search methodology for finding maximal threat models not breaking security properties

A threat model for interacting humans

- Essentially
 - Honest, follows the rules of a given ceremony precisely
 - Chatty, discloses their own information
 - e.g. reveals their passwords or the content printed on a ticket.
 - Cocky, gives out own objects that are relevant to the given ceremony
 - e.g., hands a physical token or a paper ticket.
 - Forger, counterfeits objects out of known information about them
 - e.g., builds physical token (provided they know the crypto material) via a 3D printer
 - Receipt forger, counterfeits printouts out of known information

Epistemic modal logic

Terms $t ::= x \mid f(t_1, \ldots, t_n)$

Formulas $F, G ::= 1 | P(t_1, \dots, t_n) | F \multimap G | F \otimes G | \llbracket K \rrbracket F | [K] F$ $| \forall x. F | \exists x. F | \Pi K. F | \Sigma K. F$

 $(Look) : \Pi P. \forall o. [P]object(o) \multimap (\llbracket P \rrbracket info(o) \otimes [P]object(o))$

Epistemic modal logic

 $(Chatty): \Pi P. \Pi Q. \forall o. \llbracket P \rrbracket chatty \otimes \llbracket P \rrbracket info(o) \multimap \llbracket Q \rrbracket info(o)$

 $(Give) : \Pi P. \Pi Q. \forall o. \llbracket P \rrbracket cocky \otimes \llbracket P] object(o) \multimap \llbracket Q] object(o)$ $(Hand) : \Pi P. \Pi Q, \forall r. \llbracket P \rrbracket cocky \otimes \llbracket P] receipt(r) \multimap \llbracket Q] receipt(r)$

 $(Print) : \Pi K. \forall o. \llbracket K \rrbracket R forger \otimes \llbracket K \rrbracket info(o) \multimap \llbracket K] receipt(QR(o))$ $(Build) : \Pi K. \forall b. \llbracket K \rrbracket O forger \otimes \llbracket K \rrbracket info(b) \multimap \llbracket K] object(b)$

Deposit Return System

Kæmpe boom i antallet af pantflasker: Hele 1,7 mia. flasker og dåser blev afleveret i 2020

22.3.2021 12:35:29 CET | Dansk Retursystem

Problem

- Security protocols models are normally available
 - E.g. RFC, open-source, reverse engineering, etc.
- Sociotechnical system models are normally **not** available

How to Board a Plane

http://www.wikihow.com/Board-a-Plane

Navigating the Airport

- 1. Print your boarding pass and check your luggage.
- 2. Head to security.
- 3. Find your gate/terminal.
- 4. Hang out and wait for your plane.

Boarding the Plane

- 1. Wait for the announcement to board.
- 2. Get your boarding pass checked.
- 3. Walk down the hallway that leads up to your plane.
- 4. Enter the aircraft.
- 5. Stow your carry-on items.
- 6. Get settled in.

Problem

- Security protocols models are normally available
 - E.g. RFC, open-source, reverse engineering, etc.
- Sociotechnical system models are normally **not** available

Kvickly

COOP

Solution

- Field observation
 - To collect human behaviour
- Patents' analysis
 - To understand the technicalities
- Playing detective
 - To refine drafts of the ceremony

Deposit Return System

 $(Purchase): \Pi S. \Pi C. \forall c. \llbracket S \rrbracket seller \otimes \llbracket C \rrbracket customer \otimes \llbracket S] object(c) \multimap \llbracket C] object(c)$

- $(Return) \quad :\Pi C. \Pi V. \forall c. \llbracket C \rrbracket customer \otimes \llbracket V \rrbracket rvm \otimes [C] object(c) \multimap [V] object(c)$
- $\begin{array}{ll} (Output) &: \Pi V. \Pi Ca. \Pi C. \forall c. \llbracket V \rrbracket rvm \otimes \llbracket Ca \rrbracket cashier \otimes \llbracket C \rrbracket customer \otimes \\ & \llbracket V \rrbracket object(c) \multimap \llbracket Ca \rrbracket info(c) \otimes \exists id. \llbracket C \rrbracket receipt(QR(c, id)) \end{array}$
- $(Hand) \qquad : \Pi C. \ \Pi Ca. \ \forall r. \llbracket C \rrbracket customer \otimes \llbracket Ca \rrbracket cashier \otimes \llbracket C] receipt(r) \multimap \llbracket Ca \rrbracket receipt(r)$
- $(Cash) : \Pi Ca. \forall id, \forall c. \llbracket Ca \rrbracket cashier \otimes \llbracket Ca \rrbracket receipt(QR(c, id)) \otimes \llbracket Ca \rrbracket info(c) \multimap 1$

Formal analysis

- Tamarin
 - Essentially a *constraint solver*
 - Parties and threat specs using *multi-set rewriting*
 - Properties spec using *metric first-order logic*
 - Proofs constructed using *backward search*

Encoding epistemic modal logic => Tamarin

- Properties as metric first-order logic
 - E.g. forall traces, *Cash* is always preceeded by a container *Hand*.

 $(Purchase): \Pi S. \Pi C. \forall c. \llbracket S \rrbracket seller \otimes \llbracket C \rrbracket customer \otimes \llbracket S \rbrack object(c) \multimap \llbracket C \rbrack object(c)$

- $(\textit{Return}) \quad : \Pi C. \ \Pi V. \ \forall c. \ \llbracket C \rrbracket \textit{customer} \otimes \llbracket V \rrbracket \textit{rvm} \otimes [C]\textit{object}(c) \multimap [V]\textit{object}(c)$
- $\begin{array}{ll} (Output) &: \Pi V. \Pi Ca. \Pi C. \forall c. \llbracket V \rrbracket rvm \otimes \llbracket Ca \rrbracket cashier \otimes \llbracket C \rrbracket customer \otimes \\ \llbracket V \rrbracket object(c) \multimap \llbracket Ca \rrbracket info(c) \otimes \exists id. \llbracket C \rrbracket receipt(QR(c, id)) \end{array}$
- $(Hand) \qquad : \Pi C. \ \Pi Ca. \ \forall r. \llbracket C \rrbracket customer \otimes \llbracket Ca \rrbracket cashier \otimes \llbracket C] receipt(r) \multimap \llbracket Ca] receipt(r)$
- $(Cash) \qquad : \Pi Ca. \ \forall id, \ \forall c. \ \llbracket Ca \rrbracket cashier \otimes \llbracket Ca \rrbracket receipt(QR(c,id)) \otimes \llbracket Ca \rrbracket info(c) \multimap 1$

- Properties as metric first-order logic
 - E.g. forall traces, *Cash* is always preceeded by a container *Hand*.

 $(Purchase): \Pi S. \Pi C. \forall c. \llbracket S \rrbracket seller \otimes \llbracket C \rrbracket customer \otimes \llbracket S \rbrack object(c) \multimap \llbracket C \rbrack object(c)$

 $(\textit{Return}) \quad : \Pi C. \ \Pi V. \ \forall c. \ \llbracket C \rrbracket \textit{customer} \otimes \llbracket V \rrbracket \textit{rvm} \otimes [C]\textit{object}(c) \multimap [V]\textit{object}(c)$

 $\begin{array}{ll} (Output) &: \Pi V. \Pi Ca. \Pi C. \forall c. \llbracket V \rrbracket rvm \otimes \llbracket Ca \rrbracket cashier \otimes \llbracket C \rrbracket customer \otimes \\ & [V]object(c) \multimap \llbracket Ca \rrbracket info(c) \otimes \exists id. \llbracket C \rrbracket receipt(QR(c,id)) \end{array}$

 $(Hand) : \Pi C. \Pi Ca. \forall r. \llbracket C \rrbracket customer \otimes \llbracket Ca \rrbracket cashier \otimes \llbracket C] receipt(r) \multimap \llbracket Ca] receipt(r)$

 $(Cash) : \Pi Ca. \forall id, \forall c. \llbracket Ca \rrbracket cashier \otimes [Ca] receipt(QR(c, id)) \otimes \llbracket Ca \rrbracket info(c) \multimap 1$

 $\forall Ca \ C \ id \ c \ \#i. \ Cash(Ca, id, c)@i \implies \exists \ \#j. \ Hand(C, Ca, QR(c, id))@j \land j < i$

Properties

If a cashier cashes out a voucher, then a corresponding...

Cash for voucher ... receipt has been printed earlier by a RVM

Cash for container ... container has been returned earlier to a RVM

Strong cash for container ... container has been returned earlier to a RVM by the buyer

Cash for purchase ... container has been bought earlier

Strong cash for purchase ... container has been bought earlier by the same customer

What are the maximal threat model combinations (MTMC) for which the property holds?

Results

	Kvickly & Coop		Netto	
	Result	МТМС	Result	МТМС
Cash for voucher	×	$(Ch \land Co \land OF), (RF \land OF)$	\checkmark	$(Ch \land Co \land RF \land OF)$
Cash for container	×	$(Ch \land Co \land OF), (RF \land OF)$	\checkmark	$(Ch \land Co \land RF \land OF)$
Cash for container customer	×	$(Ch \land OF), (RF \land OF)$	×	$(Ch \land OF)$, $(RF \land OF)$
Cash for purchase	×	$(Ch \land Co), (RF \land OF)$	×	$(Ch \land RF \land Co), (RF \land OF)$
Cash for purchase customer	×	Ch, (RF \land OF)	×	Ch, (RF \land OF)

Fix

- Inspiration from *myTomraApp*, piloted in Australia
 - Cash out directly at the RVM

- Fix
- Inspiration from myTomraApp, piloted in Australia
 - Cash out directly at the RVM

- Combination of NemID + e-boks + Storebox
- Receipt linked to the buyer as e-voucher
- NemID 2FA to protect against human threats

Conclusion

- Attempt to **understanding formally** human threats in STS
- Lattice of threat models makes sense when dealing with human threats
- Fixes against human threats require a **shifting to technical solutions**
- Just an attempt
 - A general set of human + physical + network threats
 - Encoding epistemic modal logic to Tamarin
 - More case studies
 - Consider privacy

"under the Danish law it is not allowed to copy or make changes to vouchers or to encourage others to do so."