
Validation of Abstract
Side-Channel Models for
Computer Architectures

Roberto Guanciale KTH
Pablo Buiras KTH
Andreas Lindner KTH

Hamed Nemati CISPA

Side channel attacks

● Power consumption, Electromagnetic radiation, Sound,
Temperature, Timing (caches)

● Difficult to audit

Unfeasible to have precise deterministic models of these
channels.

● Too complex
● Many undocumented features (e.g. cache replacement

policies)
● Different processors / same ISA / different channels

Observational models

cmp x1 x2

add x3 x4 x3

!= =

Verify absence of side-channel
leakage

● Via constant-time (observation)
programming policy (J.B.
Almeida et al.)

Require abstract attacker
observations

● I.e. a model of what an
attacker may see (over
approximation)

ldr x9 [x3]

Observation equivalence classes

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Observation equivalence classes

x1 != x2 x1 == x2

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

Observation equivalence classes

x1 != x2 x1 == x2

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

x1 != x2

M[0]=0

...

M[0]=1 ...

Model Lattice
⊤

⊥

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

Side Channel Abstract Model Validation

P(a) ∼ P(b) ==>

a b
● Are the existing

models sound?
● Program may be wrongly

considered secure

Are the existing models sound? No, Spectre! (P. Kocher et al.)
x1 < |A|

ldr x2 [#A + x1]

ldr x3 [#B + x2]

Assume for every every i

● 0 <= A[i] < |B|

Assumptions and condition ensure no
out-of-bound memory read.

Observations depend on

● Position of A and B
● Size of A and B
● Content of A and B
● Input x1

false

A BK

SCAM-V: Validation via testing

test-gen

BIR

● Abstract Assembly Language
● Infinite number of register

variables
● Assignments, jumps, cond. jumps

BIR
0 : CJMP x1=x2 4 12

4: x3 = x4 + x3; JMP 8

8 : x9 = MEM[x3]; JMP 12

12 : HALT

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Add observations

● Program transformation that
inlines observations

● Different transformations for
different models

BIR
0 : CJMP x1=x2 4 12

4: x3 = x4 + x3; JMP 8

8 : Obs(x3); x9 = MEM[x3]; JMP 12

12 : HALT

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Symbolic execution

● States have symbolic path and
symbolic assignments

● Plus a symbolic observation
list

Symbolic execution
p: true
x1: s1, … xn: sn
O: []

p: s1 != s2
x1: s1, … xn: sn
O: []

p: s1 == s2
x1: s1, … xn: sn
O: []

p: s1 == s2
x3: s4+s3
O: []

p: s1 == s2
x9: M[s4+s3]
O: [s4+s3]

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Relation synthesis

● Self composition
● Cartesian product of the final

symbolic states (i.e. all
possible pair of execution
paths)

● Impose equality of observations

Relation synthesis
p: s1 != s2
...
O: []

p: s1 == s2
...
O: [s3+s4]

p: s1 != s2
...
O: []

p: s1 == s2
...
O: [s3+s4]

∧

(a.x1 == a.x2) /\ (b.x1 != b.x2)
==>
[a.x3+a.x4] == []

(a.x1 == a.x2)/\(b.x1 == b.x2)
==>
[a.x3+a.x4] == [b.x3+b.x4]

...
(a.x1 != a.x2) /\ (b.x1 != b.x2)
==>
[] == []

SMT Solver

● Z3 results in assignments to
relevant variables for the two
states

● Some additional constraints
enforced by the lifter

○ E.g. only a part of memory is
accessible for tests

○ Result in BIR assertions (e.g.
for each memory load/store)

○ Stricter path conditions that
lead to only executable test
cases

How about spectre?

Raspberry Pi3 is claimed to be
immune.

1) Program template
2) We must train the branch

predictor
3) It is really hard to find

counterexamples

∧
…(a.x1 == a.x2) /\ (b.x1 == b.x2) ⇒ (a.x3+a.x4=b.x3+b.x4)

… (a.x1 != a.x2) /\ (b.x1 != b.x2) ⇒ true

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Model Lattice
⊤

⊥

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

Model Lattice Driven Test
⊤

⊥

~1 is model undel validation

~2 is refined model

Generate a,b such that

a ~1 b and not (a ~2 b)
x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

BIR
0 : CJMP x1=x2 4 12

4: x3 = x4 + x3; JMP 8

8 : x9 = MEM[x3]; JMP 12

12 : HALT

0 : CJMP x1=x2 4’ 8’

4’: JMP 4
4: x3 = x4 + x3; JMP 8

8 : Obs1(x3); x9 = MEM[x3]; JMP 12

12’ : x3’ = x4’ + x3’;
Obs1(x3’); x9’ = MEM[x3’];
JMP 12

12: HALT

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Refined Observations

cmp x1 x2

ldr x9 [x3]

0 : CJMP x1=x2 4 8

4 : Obs(x3);
x9 = MEM[x3]; JMP 8

8: HALT

0 : CJMP x1=x2 4’ 8’

4’: JMP 4
4 : Obs1(x3);

x9 = MEM[x3]; JMP 8

8’: Obs2(x3);
x9’ = MEM[x3]; JMP 8

8: HALT

!= =

∧
…(a.x1 == a.x2) /\ (b.x1 == b.x2) ⇒

(a.x3+a.x4 = b.x3+b.x4) /\
(a.x3+a.x4 != b.x3+b.x4)

…

(a.x1 != a.x2) /\ (b.x1 != b.x2) ⇒
true /\
(a.x3+a.x4 != b.x3+b.x4)

Train branch predictor

● interesting cases:
○ a and b follows the same

execution path
● use SMT to generate a state c

that follows the wrong path
○ E.g. if (a.x1 != a.x2) /\ (b.x1

!= b.x2) then (c.x1 == c.x2)
○ Use c to train the

branch-predictor

Program generation

● Generators can be composed
● Generators are randomly instantiated

Test and measure

● ARMv8 (Raspberry Pi 3)
● Execution coordinated by a server
● Bootloader

○ load program
○ sets-up environment (e.g. page tables)
○ sets-up state a
○ exec from state a
○ inspect cache
○ clean state
○ repeat for state b

● Implemented in TrustZone
○ execution bare to metal => no noise
○ instructions for cache inspection

How about spectre?

Raspberry Pi3 is claimed to be immune.

NO!

It seems to be immune to the original
Spectre, but it is affected by other
speculative leakage (i.e. the first load
in the mispredicted branch can leak data)

16000 tests, 600 programs

● Without refinement 2 counterexamples
● With refinement 3971 counterexamples

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

Concluding remarks

Summary:

● Existing observational model often overlook some information flows
● Without sound models we cannot reason about SW security
● Observation equivalence and Model refinement provide a good strategy to

drive tests

New challenges:

● Automatic model repair/improvement
● Hardware coverage

