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Side channel attacks

● Power consumption, Electromagnetic radiation, Sound, 
Temperature, Timing (caches)

● Difficult to audit

Unfeasible to have precise deterministic models of these 
channels.

● Too complex
● Many undocumented features (e.g. cache replacement 

policies)
● Different processors / same ISA / different channels



Observational models

cmp x1 x2

add x3 x4 x3

!= =

Verify absence of side-channel 
leakage

● Via constant-time (observation) 
programming policy (J.B. 
Almeida et al.)

Require abstract attacker 
observations

● I.e. a model of what an 
attacker may see (over 
approximation)

ldr x9 [x3]



Observation equivalence classes

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Observation equivalence classes

x1 != x2 x1 == x2 

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64



Observation equivalence classes

x1 != x2 x1 == x2 

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64

x1 != x2

M[0]=0

...

M[0]=1 ...



Model Lattice
⊤

⊥

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64



Side Channel Abstract Model Validation

P(a) ∼   P(b)     ==>

a b
● Are the existing 

models sound?
● Program may be wrongly 

considered secure



Are the existing models sound? No,  Spectre! (P. Kocher et al.)
x1 < |A|

ldr x2 [#A + x1]

ldr x3 [#B + x2]

Assume for every every i

● 0 <= A[i] < |B|

Assumptions and condition ensure no 
out-of-bound memory read.

Observations depend on

● Position of A and B
● Size of A and B
● Content of A and B
● Input x1

false

A BK



SCAM-V: Validation via testing



test-gen



BIR

● Abstract Assembly Language
● Infinite number of register 

variables
● Assignments, jumps, cond. jumps



BIR
0 : CJMP x1=x2 4 12

4: x3 = x4 + x3; JMP 8

8 : x9 = MEM[x3]; JMP 12

12 : HALT

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Add observations

● Program transformation that 
inlines observations

● Different transformations for 
different models



BIR
0 : CJMP x1=x2 4 12

4: x3 = x4 + x3; JMP 8

8 : Obs(x3); x9 = MEM[x3]; JMP 12

12 : HALT

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Symbolic execution

● States have symbolic path and 
symbolic assignments

● Plus a symbolic observation 
list



Symbolic execution
p:   true
x1: s1, … xn: sn
O:  []

p:   s1 != s2
x1: s1, … xn: sn
O:  []

p:   s1 == s2
x1: s1, … xn: sn
O:  []

p:   s1 == s2
x3: s4+s3
O:  []

p:   s1 == s2
x9: M[s4+s3]
O:  [s4+s3]

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Relation synthesis

● Self composition
● Cartesian product of the final 

symbolic states (i.e. all 
possible pair of execution 
paths)

● Impose equality of observations



Relation synthesis
p:   s1 != s2
...
O:  []

p:   s1 == s2
...
O:  [s3+s4]

p:   s1 != s2
...
O:  []

p:   s1 == s2
...
O:  [s3+s4]

∧

(a.x1 == a.x2) /\ (b.x1 != b.x2)
==>
[a.x3+a.x4] == []

(a.x1 == a.x2)/\(b.x1 == b.x2)
==>
[a.x3+a.x4] == [b.x3+b.x4]

...
(a.x1 != a.x2) /\ (b.x1 != b.x2)
==>
[] == []



SMT Solver

● Z3 results in assignments to 
relevant variables for the two 
states

● Some additional constraints 
enforced by the lifter

○ E.g. only a part of memory is 
accessible for tests

○ Result in BIR assertions (e.g. 
for each memory load/store)

○ Stricter path conditions that 
lead to only executable test 
cases



How about spectre?

Raspberry Pi3 is claimed to be 
immune.

1) Program template
2) We must train the branch 

predictor
3) It is really hard to find 

counterexamples

∧
…(a.x1 == a.x2) /\ (b.x1 == b.x2) ⇒ (a.x3+a.x4=b.x3+b.x4)

… (a.x1 != a.x2) /\ (b.x1 != b.x2) ⇒ true

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Model Lattice
⊤

⊥

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]

x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64



Model Lattice Driven Test
⊤

⊥

~1 is model undel validation

~2 is refined model

Generate a,b such that

a ~1 b and not (a ~2 b)
x1 != x2

x1 == x2 /\ x4+x3 = 0

x1 == x2 /\ x4+x3 = 1

...

x1 == x2 /\ x4+x3 = 2^64



BIR
0 : CJMP x1=x2 4 12

4: x3 = x4 + x3; JMP 8

8 : x9 = MEM[x3]; JMP 12

12 : HALT
-----------------------------------

0 : CJMP x1=x2 4’ 8’

4’: JMP 4
4:  x3 = x4 + x3; JMP 8

8 : Obs1(x3); x9 = MEM[x3]; JMP 12

12’ : x3’ = x4’ + x3’; 
Obs1(x3’); x9’ = MEM[x3’];
JMP 12

12: HALT

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Refined Observations

cmp x1 x2

ldr x9 [x3]

0 : CJMP x1=x2 4 8

4 : Obs(x3);
x9 = MEM[x3]; JMP 8

8: HALT
-----------------------------------
0 : CJMP x1=x2 4’ 8’

4’: JMP 4
4 : Obs1(x3);

x9 = MEM[x3]; JMP 8

8’: Obs2(x3);
x9’ = MEM[x3]; JMP 8

8: HALT

!= =

∧
…(a.x1 == a.x2) /\ (b.x1 == b.x2) ⇒ 

(a.x3+a.x4 = b.x3+b.x4) /\ 
(a.x3+a.x4 != b.x3+b.x4) 

…

(a.x1 != a.x2) /\ (b.x1 != b.x2) ⇒ 
true /\
(a.x3+a.x4 != b.x3+b.x4) 



Train branch predictor

● interesting cases:
○ a and b follows the same 

execution path
● use SMT to generate a state c 

that follows the wrong path
○ E.g. if (a.x1 != a.x2) /\ (b.x1 

!= b.x2) then (c.x1 == c.x2)
○ Use c to train the 

branch-predictor



Program generation

● Generators can be composed
● Generators are randomly instantiated



Test and measure

● ARMv8 (Raspberry Pi 3)
● Execution coordinated by a server
● Bootloader

○ load program
○ sets-up environment (e.g. page tables)
○ sets-up state a
○ exec from state a
○ inspect cache
○ clean state
○ repeat for state b

● Implemented in TrustZone
○ execution bare to metal => no noise
○ instructions for cache inspection



How about spectre?

Raspberry Pi3 is claimed to be immune.

NO!

It seems to be immune to the original 
Spectre, but it is affected by other 
speculative leakage (i.e. the first load 
in the mispredicted branch can leak data)

16000 tests, 600 programs

● Without refinement 2 counterexamples
● With refinement 3971 counterexamples

cmp x1 x2

add x3 x4 x3

!= =

ldr x9 [x3]



Concluding remarks

Summary:

● Existing observational model often overlook some information flows
● Without sound models we cannot reason about SW security
● Observation equivalence and Model refinement provide a good strategy to 

drive tests

New challenges:

● Automatic model repair/improvement
● Hardware coverage


