Logic for Privacy in Security Protocols

Sebastian Mödersheim Danmarks Tekniske Universitet

Based on joint work with Laouen Fernet, Sébastien Gondron, Thomas Gross, Luca Viganò

> Workshop on Formal Methods in Security Reykjavik May 23, 2023

Why Privacy?

Vote in <a>public?

- Advantage: Verifiability
- Serious disadvantage: You may not be free to vote what you want.
 - ★ Your boss, spouse, friends, potential future employer can see what you vote.
 - ★ Somebody may bribe or threaten you for voting.

General need for privacy:

• If your actions are observable it can mean subtle restrictions on your freedom.

Alpha-Beta Privacy

Alpha-Beta Privacy

- Novel approach based on Herbrand logic
- Declarative privacy goal specification
 - ★ Specify what private information you deliberately release
 - ★ Allows for incremental approach: discovering the strongest privacy property.
- Reachability problem
 - ★ There is just one reality in each state
- Easier to reason about
 - ★ manually: often easy proof arguments
 - ★ automatically: symbolic/rewriting approaches
 - ★ noname Tool: new automated analysis for bounded sessions
- Deeper understanding: relating to existing approaches

Idea

Inspiration/Idea

In zero-knowledge proofs we can usually specify a statement that is being proved.

- Definitely, that statement is revealed to the verifier
 - ★ e.g. "Alice is over 18"
- The verifier (or others) should not learn anything else
 - ★ e.g. "Alice is over 65"
- Everybody can draw conclusions from everything they learned
 - ★ e.g. "Alice is over 15"

Can we do something logical in general for privacy?

State Space

Every state includes two formulae:

- α_i : the information that has been deliberately released so far
 - ★ e.g. the end result of an election
- β_i : the observations that the intruder has made so far.
 - ★ e.g. cryptographic messages exchanged

Attack states:

• when β_i allows the intruder to derive more than α_i .

α - β Privacy

Alphabet Σ contains:

- cryptographic functions and predicates to represent intruder knowledge
- \bullet distinguished subset $\Sigma_0 \subseteq \Sigma$ the high-level information
 - ★ e.g. voters, candidates, natural numbers

In every state:

- α over alphabet Σ_0
- β over alphabet Σ
- $fv(\alpha) \subseteq fv(\beta)$

α - β Privacy

Alphabet Σ contains:

- cryptographic functions and predicates to represent intruder knowledge
- distinguished subset $\Sigma_0 \subseteq \Sigma$ the high-level information
 - ★ e.g. voters, candidates, natural numbers

In every state:

- α over alphabet Σ_0
- β over alphabet Σ
- $fv(\alpha) \subseteq fv(\beta)$

```
Definition (\alpha-\beta privacy)
```

Privacy in a state (α, β) holds iff for every Σ_0 -model $\mathcal{I} \models \alpha$ exists a Σ -model $\mathcal{I}' \models \beta$ such that \mathcal{I} and \mathcal{I}' agree on the interpretation of the symbols in Σ_0 and $fv(\alpha)$.

Thus from β the intruder does not learn anything (except "technical" stuff) that is not implied by α already.

Sebastian Mödersheim

Example

Three RFID tags have interacted with the airport passport reader:

 $\alpha \equiv x_1, x_2, x_3 \in \texttt{Agent}$

The intruder has observed some messages that allow to deduce

$$\beta \models x_1 \neq x_3$$

This violates α - β privacy because for some models of α there is no corresponding model of β .

Example Transaction

```
* x \in \text{Agent.} * y \in \{\text{yes, no}\}.

\operatorname{rcv}(M). \operatorname{try} N \doteq \operatorname{dcrypt}(\operatorname{inv}(\operatorname{pk}(s)), M)

in if y \doteq \operatorname{yes} \operatorname{then} \nu r.\operatorname{snd}(\operatorname{crypt}(\operatorname{pk}(x), \operatorname{pair}(\operatorname{yes}, N), r))

\operatorname{else} \nu r.\operatorname{snd}(\operatorname{crypt}(\operatorname{pk}(x), \operatorname{no}, r))
```

catch 0

α	$x \in \texttt{Agent}, y \in \{\texttt{yes}, \texttt{no}\}$
β	true
γ	$x \doteq a, y \doteq$ yes

The intruder knows that x and y are picked from the respective domains. γ : what really happened—not seen by intruder.

Example Transaction

 $\begin{aligned} \mathsf{rcv}(M). \ \mathsf{try} \ & N \doteq \mathsf{dcrypt}(\mathsf{inv}(\mathsf{pk}(\mathsf{s})), M) \\ & \text{in if } y \doteq \mathsf{yes then} \ \nu r.\mathsf{snd}(\mathsf{crypt}(\mathsf{pk}(x), \mathsf{pair}(\mathsf{yes}, N), r)) \\ & \text{else } \nu r.\mathsf{snd}(\mathsf{crypt}(\mathsf{pk}(x), \mathsf{no}, r)) \end{aligned}$

catch 0

α	$x \in \texttt{Agent}, y \in \{\texttt{yes}, \texttt{no}\}$	
β	true	
γ	$x \doteq a, y \doteq$ yes	

Intruder can pick any recipe r for M:

- intruder knowledge, closed under public functions
- there infinitely many
- say $r = \operatorname{crypt}(\operatorname{pk}(s), a)$

Example Transaction

try $N \doteq dcrypt(inv(pk(s)), crypt(pk(s), a))$ in if $y \doteq yes$ then $\nu r.snd(crypt(pk(x), pair(yes, N), r))$ else $\nu r.snd(crypt(pk(x), no, r))$

catch 0

α	$x \in \texttt{Agent}, y \in \{\texttt{yes}, \texttt{no}\}$	
β	true	
γ	$x \doteq a, y \doteq yes$	

Algebra: dcrypt(inv(x), crypt(x, y, z)) =_E y Thus: dccryption works $N \doteq a$ —and the intruder knows it.

Example Transaction

if
$$y \doteq$$
 yes then νr .snd(crypt(pk(x), pair(yes, a), r))

else νr .snd(crypt(pk(x), no, r))

 $\gamma \mid x \doteq a, y \doteq yes$

The intruder does not know whether the condition is true:

- structural knowledge struct₁ or struct₂ the structure the message could have
- concr the concrete message observed.
- one of the ϕ_i is the case and *concr* is statically equivalent to *struct_i*.

Sebastian Mödersheim

$$F_1 \sim F_2$$
 iff for all recipes r_1, r_2 :
 $F_1(r_1) \doteq F_1(r_2)$ iff $F_2(r_1) \doteq F_2(r_2)$.

Example: encryption without randomization:

	struct ₁	struct ₂	concr
	$\phi_1 \equiv y \doteq yes$	$\phi_2 \equiv y \doteq no$	
1	crypt(pk(x), pair(yes, a))	crypt(pk(x), no)	crypt(pk(a), pair(yes, a))

$$F_1 \sim F_2$$
 iff for all recipes r_1, r_2 :
 $F_1(r_1) \doteq F_1(r_2)$ iff $F_2(r_1) \doteq F_2(r_2)$.

Example: encryption without randomization:

★ unequal in *concr*

★ but equal in *struct*² if $x \doteq a$.

$$F_1 \sim F_2$$
 iff for all recipes r_1, r_2 :
 $F_1(r_1) \doteq F_1(r_2)$ iff $F_2(r_1) \doteq F_2(r_2)$.

Example: encryption without randomization:

•
$$r_1 = l_1$$
 and $r_2 = \operatorname{crypt}(\operatorname{pk}(a), no)$ is

★ unequal in *concr*

- ★ but equal in *struct*₂ if $x \doteq a$.
- Thus, $\beta \models \neg (x \doteq a \land y = no)$ which does not follow from α .

$$F_1 \sim F_2$$
 iff for all recipes r_1, r_2 :
 $F_1(r_1) \doteq F_1(r_2)$ iff $F_2(r_1) \doteq F_2(r_2)$.

Example: encryption without randomization:

	struct ₁	struct ₂	concr
	$\phi_1 \equiv y \doteq yes$	$\phi_2 \equiv y \doteq no$	
I_1	crypt(pk(x), pair(yes, a))	crypt(pk(x), no)	crypt(pk(a), pair(yes, a))

•
$$r_1 = l_1$$
 and $r_2 = \operatorname{crypt}(\operatorname{pk}(a), no)$ is

★ unequal in *concr*

- ★ but equal in *struct*₂ if $x \doteq a$.
- Thus, $\beta \models \neg (x \doteq a \land y = no)$ which does not follow from α .
- The same experiment works for any $x \in Agent$. Thus even $\beta \models y = yes$.

Example Transaction

★ $x' \in Agent. \star y' \in \{yes, no\}.$ $rcv(M'). try N' \doteq dcrypt(inv(pk(s)), M')$ in if $y' \doteq yes then \nu r'.snd(crypt(pk(x'), pair(yes, N'), r'))$ $else \nu r'.snd(crypt(pk(x'), no, r'))$ catch 0

Example Transaction

$$rcv(M'). try N' \doteq dcrypt(inv(pk(s)), M')$$

in if $y' \doteq yes$ then $\nu r'.snd(crypt(pk(x'), pair(yes, N'), r'))$
else $\nu r'.snd(crypt(pk(x'), no, r'))$

catch 0

Let's use l_1 as input message!

Example Transaction

try $N' \doteq dcrypt(inv(pk(s)), crypt(pk(x), pair(yes, a), r))$ in if $y' \doteq yes$ then $\nu r'.snd(crypt(pk(x'), pair(yes, N'), r'))$ else $\nu r'.snd(crypt(pk(x'), no, r'))$

catch 0

Now the intruder cannot tell whether the decryption works—it depends on whether $x \doteq s$.

Sebastian Mödersheim

Evaluating the conditions gives now 6 cases:

$$x \doteq s$$
 $y' \doteq yes$ $y \doteq yes$ $snd(\dots yes)$ $struct_1$ $x \doteq s$ $y' \doteq yes$ $y \doteq no$ $snd(\dots yes)$ $struct_2$ $x \doteq s$ $y' \doteq no$ $y \doteq yes$ $snd(\dots no)$ $struct_1$ $x \doteq s$ $y' \doteq no$ $y \doteq no$ $snd(\dots no)$ $struct_2$ $x \neq s$ $y' \doteq yes$ no $struct_1$ $x \neq s$ $y \doteq yes$ 0 $struct_1$ $x \neq s$ $y \doteq yes$ 0 $struct_2$

Since the intruder can observe that no message is sent, only two cases remain:

$$\begin{array}{ccc} x \neq s & y \doteq \text{yes} & 0 & struct_1 \\ x \neq s & y \doteq \text{no} & 0 & struct_2 \end{array}$$

Thus the intruder can derive: $\beta \models x \neq s$.

Strongest Privacy Goal

In general, when detecting such a violation of (α, β) -privacy, one has two options:

- Strengthen the protocol, e.g., send a decoy message instead of 0.
- Declassification of some information, e.g., release to α that $x \neq s$.

Incremental exploration of the strongest privacy goal that a protocol can achieve

- Start with no α -releases (just domain constraints).
- Whenever a violation is found, make a minimal release that fixes that violation.
- Repeat until no more violations are found.

Examples:

- Abadi-Fournet protocol from *Private Authentication*, TCS 2004.
- ICAO BAC e.g. French vs. British implementation

Noname Tool

A decision procedure for (α, β) -privacy for a bounded number of transitions.

- Symbolic representation for the non-deterministic choices
- Symbolic representation for intruder-chosen recipes
- Handling of constructor/destructor theories
- Number of Case Studies (Unlinkability, Privacy)

Ask for more on Noname and attacks :-)

Alpha-Beta Privacy

Alpha-Beta Privacy

- Novel approach based on Herbrand logic
- Declarative privacy goal specification
 - ★ Specify what private information you deliberately release
 - ★ Allows for incremental approach: discovering the strongest privacy property.
- Reachability problem
 - ★ There is just one reality in each state
- Easier to reason about
 - ★ manually: often easy proof arguments
 - ★ automatically: symbolic/rewriting approaches
 - ★ noname Tool: new automated analysis for bounded sessions
- Deeper understanding: relating to existing approaches