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Why Privacy?

Vote in public?

• Advantage: Verifiability

• Serious disadvantage:
You may not be free to vote
what you want.

F Your boss, spouse, friends,
potential future employer
can see what you vote.

F Somebody may bribe or
threaten you for voting.

General need for privacy:

• If your actions are observable it can mean subtle restrictions on your freedom.
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Alpha-Beta Privacy

Alpha-Beta Privacy

• Novel approach based on Herbrand logic

• Declarative privacy goal specification
F Specify what private information you deliberately release
F Allows for incremental approach: discovering the strongest privacy property.

• Reachability problem
F There is just one reality in each state

• Easier to reason about
F manually: often easy proof arguments
F automatically: symbolic/rewriting approaches
F noname Tool: new automated analysis for bounded sessions

• Deeper understanding: relating to existing approaches
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Idea

Inspiration/Idea

In zero-knowledge proofs we can usually specify a statement that is being proved.

• Definitely, that statement is revealed to the verifier
F e.g. “Alice is over 18”

• The verifier (or others) should not learn anything else
F e.g. “Alice is over 65”

• Everybody can draw conclusions from everything they learned
F e.g. “Alice is over 15”

Can we do something logical in general for privacy?
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State Space

α1 β1 //

$$

α2 β2

// α0 β0

::

$$

α3 β3

α4 β4

::

// . . .

Every state includes two formulae:
• αi : the information that has been deliberately released so far

F e.g. the end result of an election

• βi : the observations that the intruder has made so far.
F e.g. cryptographic messages exchanged

Attack states:

• when βi allows the intruder to derive more than αi .
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α-β Privacy

Alphabet Σ contains:
• cryptographic functions and predicates to represent intruder knowledge
• distinguished subset Σ0 ⊆ Σ the high-level information

F e.g. voters, candidates, natural numbers

In every state:
• α over alphabet Σ0

• β over alphabet Σ
• fv(α) ⊆ fv(β)

Definition (α-β privacy)

Privacy in a state (α, β) holds iff
for every Σ0-model I |= α exists a Σ-model I ′ |= β such that
I and I ′ agree on the interpretation of the symbols in Σ0 and fv(α).

Thus from β the intruder does not learn anything (except “technical” stuff)
that is not implied by α already.

Sebastian Mödersheim Logic for Privacy 6 of 20



α-β Privacy

Alphabet Σ contains:
• cryptographic functions and predicates to represent intruder knowledge
• distinguished subset Σ0 ⊆ Σ the high-level information

F e.g. voters, candidates, natural numbers

In every state:
• α over alphabet Σ0

• β over alphabet Σ
• fv(α) ⊆ fv(β)

Definition (α-β privacy)

Privacy in a state (α, β) holds iff
for every Σ0-model I |= α exists a Σ-model I ′ |= β such that
I and I ′ agree on the interpretation of the symbols in Σ0 and fv(α).

Thus from β the intruder does not learn anything (except “technical” stuff)
that is not implied by α already.
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Example

Three RFID tags have interacted with the airport passport reader:

α ≡ x1, x2, x3 ∈ Agent

The intruder has observed some messages that allow to deduce

β |= x1 6
.

= x3

This violates α-β privacy
because for some models of α there is no corresponding model of β.
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Intruder Performs A Symbolic Execution
Example Transaction

? x ∈ Agent. ? y ∈ {yes, no}.
rcv(M). try N

.
= dcrypt(inv(pk(s)),M)

in if y
.

= yes then νr .snd(crypt(pk(x), pair(yes,N), r))

else νr .snd(crypt(pk(x), no, r))

catch 0

α x ∈ Agent, y ∈ {yes, no}
β true

γ x
.

= a, y
.

= yes

The intruder knows that x and y are picked from the respective domains.
γ: what really happened—not seen by intruder.
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Intruder Performs A Symbolic Execution
Example Transaction

rcv(M). try N
.

= dcrypt(inv(pk(s)),M)

in if y
.

= yes then νr .snd(crypt(pk(x), pair(yes,N), r))

else νr .snd(crypt(pk(x), no, r))

catch 0

α x ∈ Agent, y ∈ {yes, no}
β true

γ x
.

= a, y
.

= yes

Intruder can pick any recipe r for M:

• intruder knowledge, closed under public functions

• there infinitely many

• say r = crypt(pk(s), a)

Sebastian Mödersheim Logic for Privacy 9 of 20



Intruder Performs A Symbolic Execution
Example Transaction

try N
.

= dcrypt(inv(pk(s)), crypt(pk(s), a))

in if y
.

= yes then νr .snd(crypt(pk(x), pair(yes,N), r))

else νr .snd(crypt(pk(x), no, r))

catch 0

α x ∈ Agent, y ∈ {yes, no}
β true

γ x
.

= a, y
.

= yes

Algebra: dcrypt(inv(x), crypt(x , y , z)) =E y
Thus: decryption works N

.
= a—and the intruder knows it.
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Intruder Performs A Symbolic Execution
Example Transaction

if y
.

= yes then νr .snd(crypt(pk(x), pair(yes, a), r))

else νr .snd(crypt(pk(x), no, r))

α x ∈ Agent, y ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=1 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes

The intruder does not know whether the condition is true:

• structural knowledge struct1 or struct2 – the structure the message could have
• concr – the concrete message observed.
• one of the φi is the case and concr is statically equivalent to struct i .

Sebastian Mödersheim Logic for Privacy 11 of 20



Static Equivalence of Frames

F1 ∼ F2 iff for all recipes r1, r2:
F1(r1)

.
= F1(r2) iff F2(r1)

.
= F2(r2).

Example: encryption without randomization:

struct1 struct2 concr
φ1 ≡ y

.
= yes φ2 ≡ y

.
= no

l1 crypt(pk(x), pair(yes, a)) crypt(pk(x), no) crypt(pk(a), pair(yes, a))

• r1 = l1 and r2 = crypt(pk(a), no) is
F unequal in concr
F but equal in struct2 if x

.
= a.

• Thus, β |= ¬(x
.

= a ∧ y = no) which does not follow from α.

• The same experiment works for any x ∈ Agent. Thus even β |= y = yes.
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Sebastian Mödersheim Logic for Privacy 12 of 20



Static Equivalence of Frames

F1 ∼ F2 iff for all recipes r1, r2:
F1(r1)

.
= F1(r2) iff F2(r1)

.
= F2(r2).

Example: encryption without randomization:

struct1 struct2 concr
φ1 ≡ y

.
= yes φ2 ≡ y

.
= no

l1 crypt(pk(x), pair(yes, a)) crypt(pk(x), no) crypt(pk(a), pair(yes, a))

• r1 = l1 and r2 = crypt(pk(a), no) is
F unequal in concr
F but equal in struct2 if x

.
= a.

• Thus, β |= ¬(x
.

= a ∧ y = no) which does not follow from α.

• The same experiment works for any x ∈ Agent. Thus even β |= y = yes.
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Another Round
Example Transaction

? x ′ ∈ Agent. ? y ′ ∈ {yes, no}.
rcv(M ′). try N ′ .= dcrypt(inv(pk(s)),M ′)

in if y ′
.

= yes then νr ′.snd(crypt(pk(x ′), pair(yes,N ′), r ′))

else νr ′.snd(crypt(pk(x ′), no, r ′))

catch 0

α x ∈ Agent, y ∈ {yes, no}, x ′ ∈ Agent, y ′ ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=1 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes, x ′
.

= b, y ′
.

= no
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Another Round
Example Transaction

rcv(M ′). try N ′ .= dcrypt(inv(pk(s)),M ′)

in if y ′
.

= yes then νr ′.snd(crypt(pk(x ′), pair(yes,N ′), r ′))

else νr ′.snd(crypt(pk(x ′), no, r ′))

catch 0

α x ∈ Agent, y ∈ {yes, no}, x ′ ∈ Agent, y ′ ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=1 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes, x ′
.

= b, y ′
.

= no

Let’s use l1 as input message!
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Another Round
Example Transaction

try N ′ .= dcrypt(inv(pk(s)), crypt(pk(x), pair(yes, a), r))

in if y ′
.

= yes then νr ′.snd(crypt(pk(x ′), pair(yes,N ′), r ′))

else νr ′.snd(crypt(pk(x ′), no, r ′))

catch 0

α x ∈ Agent, y ∈ {yes, no}, x ′ ∈ Agent, y ′ ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=0 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes, x ′
.

= b, y ′
.

= no

Now the intruder cannot tell whether the decryption works—it depends on whether x
.

= s.
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Another Round

Evaluating the conditions gives now 6 cases:

x
.

= s y ′
.

= yes y
.

= yes snd(. . . yes) struct1
x
.

= s y ′
.

= yes y
.

= no snd(. . . yes) struct2
x
.

= s y ′
.

= no y
.

= yes snd(. . . no) struct1
x
.

= s y ′
.

= no y
.

= no snd(. . . no) struct2
x 6 .= s y

.
= yes 0 struct1

x 6 .= s y
.

= no 0 struct2
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Another Round

Since the intruder can observe that no message is sent, only two cases remain:

x 6 .= s y
.

= yes 0 struct1
x 6 .= s y

.
= no 0 struct2

Thus the intruder can derive: β |= x 6 .= s.
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Strongest Privacy Goal

In general, when detecting such a violation of (α, β)-privacy, one has two options:

• Strengthen the protocol, e.g., send a decoy message instead of 0.

• Declassification of some information, e.g., release to α that x 6 .= s.

Incremental exploration of the strongest privacy goal that a protocol can achieve

• Start with no α-releases (just domain constraints).

• Whenever a violation is found, make a minimal release that fixes that violation.

• Repeat until no more violations are found.

Examples:

• Abadi-Fournet protocol from Private Authentication, TCS 2004.

• ICAO BAC – e.g. French vs. British implementation
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Noname Tool

A decision procedure for (α, β)-privacy for a bounded number of transitions.

• Symbolic representation for the non-deterministic choices

• Symbolic representation for intruder-chosen recipes

• Handling of constructor/destructor theories

• Number of Case Studies (Unlinkability, Privacy)

Ask for more on Noname and attacks :-)
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Alpha-Beta Privacy

Alpha-Beta Privacy
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