
Logic for Privacy in Security Protocols

Sebastian Mödersheim
Danmarks Tekniske Universitet

Based on joint work with
Laouen Fernet, Sébastien Gondron, Thomas Gross, Luca Viganò

Workshop on Formal Methods in Security
Reykjavik May 23, 2023

Sebastian Mödersheim Logic for Privacy 1 of 20

Why Privacy?

Vote in public?

• Advantage: Verifiability

• Serious disadvantage:
You may not be free to vote
what you want.

F Your boss, spouse, friends,
potential future employer
can see what you vote.

F Somebody may bribe or
threaten you for voting.

General need for privacy:

• If your actions are observable it can mean subtle restrictions on your freedom.

Sebastian Mödersheim Logic for Privacy 2 of 20

Alpha-Beta Privacy

Alpha-Beta Privacy

• Novel approach based on Herbrand logic

• Declarative privacy goal specification
F Specify what private information you deliberately release
F Allows for incremental approach: discovering the strongest privacy property.

• Reachability problem
F There is just one reality in each state

• Easier to reason about
F manually: often easy proof arguments
F automatically: symbolic/rewriting approaches
F noname Tool: new automated analysis for bounded sessions

• Deeper understanding: relating to existing approaches

Sebastian Mödersheim Logic for Privacy 3 of 20

Idea

Inspiration/Idea

In zero-knowledge proofs we can usually specify a statement that is being proved.

• Definitely, that statement is revealed to the verifier
F e.g. “Alice is over 18”

• The verifier (or others) should not learn anything else
F e.g. “Alice is over 65”

• Everybody can draw conclusions from everything they learned
F e.g. “Alice is over 15”

Can we do something logical in general for privacy?

Sebastian Mödersheim Logic for Privacy 4 of 20

State Space

α1 β1 //

$$

α2 β2

// α0 β0

::

$$

α3 β3

α4 β4

::

// . . .

Every state includes two formulae:
• αi : the information that has been deliberately released so far

F e.g. the end result of an election

• βi : the observations that the intruder has made so far.
F e.g. cryptographic messages exchanged

Attack states:

• when βi allows the intruder to derive more than αi .

Sebastian Mödersheim Logic for Privacy 5 of 20

α-β Privacy

Alphabet Σ contains:
• cryptographic functions and predicates to represent intruder knowledge
• distinguished subset Σ0 ⊆ Σ the high-level information

F e.g. voters, candidates, natural numbers

In every state:
• α over alphabet Σ0

• β over alphabet Σ
• fv(α) ⊆ fv(β)

Definition (α-β privacy)

Privacy in a state (α, β) holds iff
for every Σ0-model I |= α exists a Σ-model I ′ |= β such that
I and I ′ agree on the interpretation of the symbols in Σ0 and fv(α).

Thus from β the intruder does not learn anything (except “technical” stuff)
that is not implied by α already.

Sebastian Mödersheim Logic for Privacy 6 of 20

α-β Privacy

Alphabet Σ contains:
• cryptographic functions and predicates to represent intruder knowledge
• distinguished subset Σ0 ⊆ Σ the high-level information

F e.g. voters, candidates, natural numbers

In every state:
• α over alphabet Σ0

• β over alphabet Σ
• fv(α) ⊆ fv(β)

Definition (α-β privacy)

Privacy in a state (α, β) holds iff
for every Σ0-model I |= α exists a Σ-model I ′ |= β such that
I and I ′ agree on the interpretation of the symbols in Σ0 and fv(α).

Thus from β the intruder does not learn anything (except “technical” stuff)
that is not implied by α already.

Sebastian Mödersheim Logic for Privacy 6 of 20

Example

Three RFID tags have interacted with the airport passport reader:

α ≡ x1, x2, x3 ∈ Agent

The intruder has observed some messages that allow to deduce

β |= x1 6
.

= x3

This violates α-β privacy
because for some models of α there is no corresponding model of β.

Sebastian Mödersheim Logic for Privacy 7 of 20

Intruder Performs A Symbolic Execution
Example Transaction

? x ∈ Agent. ? y ∈ {yes, no}.
rcv(M). try N

.
= dcrypt(inv(pk(s)),M)

in if y
.

= yes then νr .snd(crypt(pk(x), pair(yes,N), r))

else νr .snd(crypt(pk(x), no, r))

catch 0

α x ∈ Agent, y ∈ {yes, no}
β true

γ x
.

= a, y
.

= yes

The intruder knows that x and y are picked from the respective domains.
γ: what really happened—not seen by intruder.

Sebastian Mödersheim Logic for Privacy 8 of 20

Intruder Performs A Symbolic Execution
Example Transaction

rcv(M). try N
.

= dcrypt(inv(pk(s)),M)

in if y
.

= yes then νr .snd(crypt(pk(x), pair(yes,N), r))

else νr .snd(crypt(pk(x), no, r))

catch 0

α x ∈ Agent, y ∈ {yes, no}
β true

γ x
.

= a, y
.

= yes

Intruder can pick any recipe r for M:

• intruder knowledge, closed under public functions

• there infinitely many

• say r = crypt(pk(s), a)

Sebastian Mödersheim Logic for Privacy 9 of 20

Intruder Performs A Symbolic Execution
Example Transaction

try N
.

= dcrypt(inv(pk(s)), crypt(pk(s), a))

in if y
.

= yes then νr .snd(crypt(pk(x), pair(yes,N), r))

else νr .snd(crypt(pk(x), no, r))

catch 0

α x ∈ Agent, y ∈ {yes, no}
β true

γ x
.

= a, y
.

= yes

Algebra: dcrypt(inv(x), crypt(x , y , z)) =E y
Thus: decryption works N

.
= a—and the intruder knows it.

Sebastian Mödersheim Logic for Privacy 10 of 20

Intruder Performs A Symbolic Execution
Example Transaction

if y
.

= yes then νr .snd(crypt(pk(x), pair(yes, a), r))

else νr .snd(crypt(pk(x), no, r))

α x ∈ Agent, y ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=1 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes

The intruder does not know whether the condition is true:

• structural knowledge struct1 or struct2 – the structure the message could have
• concr – the concrete message observed.
• one of the φi is the case and concr is statically equivalent to struct i .

Sebastian Mödersheim Logic for Privacy 11 of 20

Static Equivalence of Frames

F1 ∼ F2 iff for all recipes r1, r2:
F1(r1)

.
= F1(r2) iff F2(r1)

.
= F2(r2).

Example: encryption without randomization:

struct1 struct2 concr
φ1 ≡ y

.
= yes φ2 ≡ y

.
= no

l1 crypt(pk(x), pair(yes, a)) crypt(pk(x), no) crypt(pk(a), pair(yes, a))

• r1 = l1 and r2 = crypt(pk(a), no) is
F unequal in concr
F but equal in struct2 if x

.
= a.

• Thus, β |= ¬(x
.

= a ∧ y = no) which does not follow from α.

• The same experiment works for any x ∈ Agent. Thus even β |= y = yes.

Sebastian Mödersheim Logic for Privacy 12 of 20

Static Equivalence of Frames

F1 ∼ F2 iff for all recipes r1, r2:
F1(r1)

.
= F1(r2) iff F2(r1)

.
= F2(r2).

Example: encryption without randomization:

struct1 struct2 concr
φ1 ≡ y

.
= yes φ2 ≡ y

.
= no

l1 crypt(pk(x), pair(yes, a)) crypt(pk(x), no) crypt(pk(a), pair(yes, a))

• r1 = l1 and r2 = crypt(pk(a), no) is
F unequal in concr
F but equal in struct2 if x

.
= a.

• Thus, β |= ¬(x
.

= a ∧ y = no) which does not follow from α.

• The same experiment works for any x ∈ Agent. Thus even β |= y = yes.

Sebastian Mödersheim Logic for Privacy 12 of 20

Static Equivalence of Frames

F1 ∼ F2 iff for all recipes r1, r2:
F1(r1)

.
= F1(r2) iff F2(r1)

.
= F2(r2).

Example: encryption without randomization:

struct1 struct2 concr
φ1 ≡ y

.
= yes φ2 ≡ y

.
= no

l1 crypt(pk(x), pair(yes, a)) crypt(pk(x), no) crypt(pk(a), pair(yes, a))

• r1 = l1 and r2 = crypt(pk(a), no) is
F unequal in concr
F but equal in struct2 if x

.
= a.

• Thus, β |= ¬(x
.

= a ∧ y = no) which does not follow from α.

• The same experiment works for any x ∈ Agent. Thus even β |= y = yes.

Sebastian Mödersheim Logic for Privacy 12 of 20

Static Equivalence of Frames

F1 ∼ F2 iff for all recipes r1, r2:
F1(r1)

.
= F1(r2) iff F2(r1)

.
= F2(r2).

Example: encryption without randomization:

struct1 struct2 concr
φ1 ≡ y

.
= yes φ2 ≡ y

.
= no

l1 crypt(pk(x), pair(yes, a)) crypt(pk(x), no) crypt(pk(a), pair(yes, a))

• r1 = l1 and r2 = crypt(pk(a), no) is
F unequal in concr
F but equal in struct2 if x

.
= a.

• Thus, β |= ¬(x
.

= a ∧ y = no) which does not follow from α.

• The same experiment works for any x ∈ Agent. Thus even β |= y = yes.

Sebastian Mödersheim Logic for Privacy 12 of 20

Another Round
Example Transaction

? x ′ ∈ Agent. ? y ′ ∈ {yes, no}.
rcv(M ′). try N ′ .= dcrypt(inv(pk(s)),M ′)

in if y ′
.

= yes then νr ′.snd(crypt(pk(x ′), pair(yes,N ′), r ′))

else νr ′.snd(crypt(pk(x ′), no, r ′))

catch 0

α x ∈ Agent, y ∈ {yes, no}, x ′ ∈ Agent, y ′ ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=1 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes, x ′
.

= b, y ′
.

= no

Sebastian Mödersheim Logic for Privacy 13 of 20

Another Round
Example Transaction

rcv(M ′). try N ′ .= dcrypt(inv(pk(s)),M ′)

in if y ′
.

= yes then νr ′.snd(crypt(pk(x ′), pair(yes,N ′), r ′))

else νr ′.snd(crypt(pk(x ′), no, r ′))

catch 0

α x ∈ Agent, y ∈ {yes, no}, x ′ ∈ Agent, y ′ ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=1 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes, x ′
.

= b, y ′
.

= no

Let’s use l1 as input message!

Sebastian Mödersheim Logic for Privacy 14 of 20

Another Round
Example Transaction

try N ′ .= dcrypt(inv(pk(s)), crypt(pk(x), pair(yes, a), r))

in if y ′
.

= yes then νr ′.snd(crypt(pk(x ′), pair(yes,N ′), r ′))

else νr ′.snd(crypt(pk(x ′), no, r ′))

catch 0

α x ∈ Agent, y ∈ {yes, no}, x ′ ∈ Agent, y ′ ∈ {yes, no}
β struct1 struct2 concr

φ1 ≡ y
.

= yes φ2 ≡ y
.

= no

l1 crypt(pk(x), pair(yes, a), r) crypt(pk(x), no, r) crypt(pk(a), pair(yes, a), r)

∧
∨2

i=0 φi ∧ struct i ∼ concr

γ x
.

= a, y
.

= yes, x ′
.

= b, y ′
.

= no

Now the intruder cannot tell whether the decryption works—it depends on whether x
.

= s.

Sebastian Mödersheim Logic for Privacy 15 of 20

Another Round

Evaluating the conditions gives now 6 cases:

x
.

= s y ′
.

= yes y
.

= yes snd(. . . yes) struct1
x
.

= s y ′
.

= yes y
.

= no snd(. . . yes) struct2
x
.

= s y ′
.

= no y
.

= yes snd(. . . no) struct1
x
.

= s y ′
.

= no y
.

= no snd(. . . no) struct2
x 6 .= s y

.
= yes 0 struct1

x 6 .= s y
.

= no 0 struct2

Sebastian Mödersheim Logic for Privacy 16 of 20

Another Round

Since the intruder can observe that no message is sent, only two cases remain:

x 6 .= s y
.

= yes 0 struct1
x 6 .= s y

.
= no 0 struct2

Thus the intruder can derive: β |= x 6 .= s.

Sebastian Mödersheim Logic for Privacy 17 of 20

Strongest Privacy Goal

In general, when detecting such a violation of (α, β)-privacy, one has two options:

• Strengthen the protocol, e.g., send a decoy message instead of 0.

• Declassification of some information, e.g., release to α that x 6 .= s.

Incremental exploration of the strongest privacy goal that a protocol can achieve

• Start with no α-releases (just domain constraints).

• Whenever a violation is found, make a minimal release that fixes that violation.

• Repeat until no more violations are found.

Examples:

• Abadi-Fournet protocol from Private Authentication, TCS 2004.

• ICAO BAC – e.g. French vs. British implementation

Sebastian Mödersheim Logic for Privacy 18 of 20

Noname Tool

A decision procedure for (α, β)-privacy for a bounded number of transitions.

• Symbolic representation for the non-deterministic choices

• Symbolic representation for intruder-chosen recipes

• Handling of constructor/destructor theories

• Number of Case Studies (Unlinkability, Privacy)

Ask for more on Noname and attacks :-)

Sebastian Mödersheim Logic for Privacy 19 of 20

Alpha-Beta Privacy

Alpha-Beta Privacy

• Novel approach based on Herbrand logic

• Declarative privacy goal specification
F Specify what private information you deliberately release
F Allows for incremental approach: discovering the strongest privacy property.

• Reachability problem
F There is just one reality in each state

• Easier to reason about
F manually: often easy proof arguments
F automatically: symbolic/rewriting approaches
F noname Tool: new automated analysis for bounded sessions

• Deeper understanding: relating to existing approaches

Sebastian Mödersheim Logic for Privacy 20 of 20

