Special Session
A stationary-tower-free proof of Sealing from a supercompact
Online
Sealing is a generic absoluteness principle for the theory of the universally Baire sets of reals introduced by Woodin. It is deeply connected to the Inner Model Program and plays a prominent role in recent advances in inner model theory. Woodin showed in his famous Sealing Theorem that in the presence of a proper class of Woodin cardinals Sealing holds after collapsing a supercompact cardinal. I will outline the importance of Sealing and discuss a new and stationary-tower-free proof of Woodin’s Sealing Theorem that is based on Sargsyan’s and Trang’s proof of Sealing from iterability. This is joint work with Grigor Sargsyan and Bartosz Wcisĺo.
This document was translated from LATEX by HEVEA.